

H2 Mathematics (9758) Chapter 5 Vectors Discussion Solutions

Level 1

1 (a) *OEFG* is a parallelogram as shown in the diagram.

- (i) Find \overrightarrow{OF} and \overrightarrow{EG} .
- (ii) Find the size of the angle *GEO*.
- (b) The points P, Q and R have coordinates (4, 1, 1), (-8, 5, -15) and (7, 0, 5) respectively. Show that P, Q, and R are collinear.
- (c) Given $\mathbf{a} = \mathbf{i} + \mathbf{j} \mathbf{k}$ and $\mathbf{b} = \mathbf{j} 3\mathbf{k}$, find a vector perpendicular to both \mathbf{a} and \mathbf{b} .

(b)	$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \begin{pmatrix} -8\\5\\-15 \end{pmatrix} - \begin{pmatrix} 4\\1\\1 \end{pmatrix} = \begin{pmatrix} -12\\4\\-16 \end{pmatrix}$ $\overrightarrow{PR} = \overrightarrow{OR} - \overrightarrow{OP} = \begin{pmatrix} 7\\0\\5 \end{pmatrix} - \begin{pmatrix} 4\\1\\1 \end{pmatrix} = \begin{pmatrix} 3\\-1\\4 \end{pmatrix}$ Recommended to work out the constant like this to ensure that you have the correct relationship between the vectors $\overrightarrow{PQ} = \begin{pmatrix} -12\\4\\-16 \end{pmatrix} = -4\begin{pmatrix} 3\\-1\\4 \end{pmatrix} = -4\overrightarrow{PR}$ Since $\overrightarrow{PQ} = -4\overrightarrow{PR}$, P, Q, R are collinear. (Other answers such as $\overrightarrow{PQ} = -\frac{4}{5}\overrightarrow{QR}$ is also accepted)
(c)	A vector perpendicular to both a and b : $\mathbf{a} \times \mathbf{b} = \begin{pmatrix} 1\\1\\-1 \end{pmatrix} \times \begin{pmatrix} 0\\1\\-3 \end{pmatrix} = \begin{pmatrix} -2\\3\\1 \end{pmatrix}$ $\begin{pmatrix} \mathbf{b} \times \mathbf{a} = \begin{pmatrix} 2\\-3\\-1 \end{pmatrix} \text{ is also accepted} \end{pmatrix}$

[3]

2 2010(9740)/I/1

The position vectors **a** and **b** are given by

$$\mathbf{a} = 2p\mathbf{i} + 3p\mathbf{j} + 6p\mathbf{k}$$
 and $\mathbf{b} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$,

where p > 0. It is given that $|\mathbf{a}| = |\mathbf{b}|$.

- (i) Find the exact value of *p*. [2]
- (ii) Show that $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} \mathbf{b}) = 0$.

Q2	Suggested Solutions		
(i)	Since $ \mathbf{a} = \mathbf{b} $,		
	$\sqrt{(2p)^{2} + (3p)^{2} + (6p)^{2}} = \sqrt{1^{2} + 2^{2} + 2^{2}}$		
	$4p^2 + 9p^2 + 36p^2 = 9$	Note that there are 2 possible	
	$p^2 = \frac{9}{10}$	values of p when you solve	
	49	$p^2 = \frac{9}{49}$.	
	$p = \pm \frac{3}{7}$		
	Since $p > 0$, $p = \frac{3}{7}$	Always reject with reason	
(ii)	Method 1:	Make ourse the dot for the dot product is	
	$(\mathbf{a}+\mathbf{b})\cdot(\mathbf{a}-\mathbf{b})$	visible in your working.	
	$= \left \mathbf{a} \right ^2 - \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{a} - \left \mathbf{b} \right ^2$	Properties to note here:	
	$= \mathbf{a} ^2 - \mathbf{a} ^2$ (:: $ \mathbf{b} = \mathbf{a} $)	1. $\mathbf{a} \cdot \mathbf{a} = \mathbf{a} ^2$	
	=0	2. $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$	
	Method 2:		
	$\begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & 1 \end{bmatrix}$		
	$ \left[\begin{array}{c} (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = \begin{bmatrix} \frac{3}{7} \begin{bmatrix} 3 \\ 6 \end{bmatrix} + \begin{bmatrix} -2 \\ 2 \end{bmatrix} \right] \cdot \begin{bmatrix} \frac{3}{7} \begin{bmatrix} 3 \\ 6 \end{bmatrix} - \begin{bmatrix} -2 \\ 2 \end{bmatrix} \end{bmatrix} $		
	$\begin{pmatrix} 13/7 \end{pmatrix} \begin{pmatrix} -1/7 \end{pmatrix}$		
	$= -5/7 \cdot 23/7 $		
	(32/7) $(4/7)$		
	$=-\frac{13}{10}-\frac{115}{10}+\frac{128}{10}=0$		
	49 49 49		

[3]

3 2009 MJC Promo

The points *A*, *B* and *C* have position vectors
$$\begin{pmatrix} 2\\1\\5 \end{pmatrix}, \begin{pmatrix} 3\\y\\7 \end{pmatrix}$$
 and $\begin{pmatrix} 5\\10\\11 \end{pmatrix}$ with respect to the

origin O respectively.

- (i) Find the value of *y* such that *A*, *B* and *C* are collinear. [2]
- (ii) Find the exact area of triangle *OAC*.
- (iii) The point D divides OC internally such that OD : OC = 2 : 5. Find the vector \overrightarrow{AD} .

	[3]
Q3	Solution
(i)	$\overrightarrow{AB} = \lambda \overrightarrow{AC}$ for some $\lambda \in \mathbb{R}$. (or other valid combinations)
	$\begin{pmatrix} 1 \end{pmatrix}$ $\begin{pmatrix} 3 \end{pmatrix}$
	$\begin{vmatrix} v \\ v \\ -1 \end{vmatrix} = \lambda \begin{vmatrix} q \\ q \end{vmatrix} \implies \lambda = \frac{1}{2}$
	$\begin{vmatrix} y & 1 \\ 2 \end{vmatrix} = \frac{1}{2} + \frac{1}{2} $
	$\begin{pmatrix} 2 \end{pmatrix}$ $\begin{pmatrix} 6 \end{pmatrix}$
	$\therefore y = 4$
(ii)	Area of triangle $OAC = \frac{1}{OA} = \frac{1}{OC}$
	Area of thangle $OAC = \frac{-1}{2} OA \times OC $
	(11-50)
	$\begin{bmatrix} 1 \\ 25 \\ 25 \end{bmatrix}$
	$\frac{-2}{2}$
	(20-5)
	$1\sqrt{20^2+2^2+15^2}$
	$=-\sqrt{39}+3+15$
	$1 \sqrt{3} \sqrt{3} \sqrt{3}$
	$=\frac{-\sqrt{1755}}{2}=\frac{-\sqrt{195}}{2}$ units ²
(iii)	
	5
	OD: OC = 2:5
	$\overrightarrow{OD} = -\overrightarrow{OC}$
	5
	\rightarrow \rightarrow \rightarrow
	AD = OD - OA
	$-\frac{2}{\alpha c}$ $\vec{\alpha}$
	$=\frac{-\partial C}{5}$
	$\begin{pmatrix} 0 \end{pmatrix}$
	- 3
	(-3/5)

Level 2

- 4 The position vectors of the points A, B and C are $\overrightarrow{OA} = -8\mathbf{j}-\mathbf{k}$, $\overrightarrow{OB} = \mathbf{i}+5\mathbf{k}$ and $\overrightarrow{OC} = p\mathbf{i}+(2p-11)\mathbf{j}-4\mathbf{k}$ respectively. Find the
 - (i) unit vector(s) parallel to the vector \overrightarrow{AB} ,
 - (ii) position vector of the midpoint of *AB*,
 - (iii) value of *p* such that *A*, *B* and *C* are collinear,
 - (iv) position vector of D such that ABCD is a parallelogram and p = 6.
 - (v) position vector of E such that point E is on AB produced and AB: AE = 2:5.

[2]

5 2009(9740)/II/2

Relative to the origin *O*, two points *A* and *B* have position vectors given by $\mathbf{a} = 14\mathbf{i} + 14\mathbf{j} + 14\mathbf{k}$ and $\mathbf{b} = 11\mathbf{i} - 13\mathbf{j} + 2\mathbf{k}$ respectively.

- (i) The point *P* divides the line *AB* in the ratio 2:1. Find the coordinates of *P*. [2]
- (ii) Show that *AB* and *OP* are perpendicular.
- (iii) The vector **c** is a unit vector in the direction of \overrightarrow{OP} . Write **c** as a column vector, and give the geometrical meaning of $|\mathbf{a} \cdot \mathbf{c}|$. [2]
- (iv) Find $\mathbf{a} \times \mathbf{p}$, where \mathbf{p} is the vector \overrightarrow{OP} , and give the geometrical meaning of $|\mathbf{a} \times \mathbf{p}|$. Hence write down the area of triangle *OAP*. [4]

- 6 (a) Find the unit vector in the direction of -i-3j.
 - (**b**) The vector **v** has a magnitude of 5 and is parallel to $\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$.

Find the possible vector(s) **v**.

(c) Find the vector **r** given that r + j - 2k is parallel to the x-axis and $\mathbf{r} - 2\mathbf{i}$ is parallel to $-2\mathbf{j} + 4\mathbf{k}$.

$$\begin{array}{l} \hline \textbf{Q6} \quad \textbf{Solution} \\ \textbf{(a)} \quad \text{Unit vector in the direction of } -\mathbf{i} - 3\mathbf{j} \\ = \frac{1}{\sqrt{1^2} + 3^2} \begin{pmatrix} -1 \\ -3 \end{pmatrix} = \frac{1}{\sqrt{10}} \begin{pmatrix} -1 \\ -3 \end{pmatrix} = \frac{\sqrt{10}}{10} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\ \text{or } = \frac{1}{\sqrt{1^2} + 3^2} \begin{pmatrix} -1 \\ -3 \end{pmatrix} = \frac{1}{\sqrt{10}} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\ \text{or } = \frac{1}{\sqrt{1^2} + 3^2} \begin{pmatrix} -1 \\ -3 \end{pmatrix} = \frac{1}{\sqrt{10}} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\ \text{or } = \frac{\sqrt{10}}{10} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\ \text{or } = \frac{1}{\sqrt{1^2} + 3^2} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\ \text{or } = \frac{\sqrt{10}}{10} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\ \text{or } = \frac{\sqrt{10}}{10} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\ \text{or } = \frac{\sqrt{10}}{10} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\ \text{or } = \frac{\sqrt{10}}{10} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\ \text{or } = \frac{\sqrt{10}}{10} \begin{pmatrix} -1 \\ -3 \end{pmatrix} \\ \text{or } = \frac{\sqrt{10}}{14} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix} \\ \text{or } = \frac{\sqrt{14}}{14} \begin{pmatrix} 2 \\ -2 \\ -2 \\ 4 \end{pmatrix}$$

$\therefore \lambda = 2 \text{ and } \mu = \frac{1}{2}$	
$\therefore \mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$	
$\frac{\text{Method 2}}{\text{Let } \mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}}$	
$\mathbf{r} + \mathbf{j} - 2\mathbf{k}$ parallel to <i>x</i> -axis	$\Rightarrow \begin{pmatrix} x \\ y+1 \\ z-2 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \text{ for some } \lambda \in \mathbb{R} \setminus \{0\}$
$\mathbf{r} - 2\mathbf{i}$ parallel to $-2\mathbf{j} + 4\mathbf{k}$	$\Rightarrow y = -1, \ z = 2 \text{ and } x = \lambda$ $\Rightarrow \begin{pmatrix} x - 2 \\ y \\ z \end{pmatrix} = \mu \begin{pmatrix} 0 \\ -2 \\ 4 \end{pmatrix} \text{ for some } \mu \in \mathbb{R} \setminus \{0\}$ $\Rightarrow x = 2$
$\therefore \mathbf{r} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$	

- 7 Relative to the origin *O*, two points *A* and *B* have position vectors given by $\mathbf{a} = 3\mathbf{i} + \mathbf{j} + 3\mathbf{k}$ and $\mathbf{b} = 5\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}$ respectively.
 - (i) Find the length of the projection of \overrightarrow{OA} on \overrightarrow{OB} .
 - (ii) Hence, or otherwise, find the position vector of the point C on OB such that AC is perpendicular to OB.

Q7	Solutions
(i)	Length of the projection of \overrightarrow{OA} on \overrightarrow{OB}
	$= \begin{vmatrix} 3 \\ 1 \\ 3 \end{vmatrix} \cdot \frac{1}{\sqrt{50}} \begin{pmatrix} 5 \\ -4 \\ 3 \end{vmatrix} = \frac{20}{\sqrt{50}} = 2\sqrt{2}$
(ii)	Method 1:
	From (i), $\left \overrightarrow{OC} \right = 2\sqrt{2}$ $\overrightarrow{OC} = 2\sqrt{2} \left[\frac{1}{\sqrt{50}} \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix} \right] = \frac{2}{5} \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix}$
	Method 2:
	$\begin{pmatrix} 5 \end{pmatrix}$
	Since <i>OC</i> is parallel to <i>OB</i> : $\overrightarrow{OC} = \lambda \begin{bmatrix} -4 \\ 3 \end{bmatrix}$
	$\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \lambda \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix} - \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} = \begin{pmatrix} 5\lambda - 3 \\ -4\lambda - 1 \\ 3\lambda - 3 \end{pmatrix}$
	Since $\overrightarrow{AC} \perp \overrightarrow{OB}$,
	$ \begin{pmatrix} 5\lambda - 3 \\ -4\lambda - 1 \\ 3\lambda - 3 \end{pmatrix} \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix} = 0 $
	$(5\lambda - 3)(5) + (-4\lambda - 1)(-4) + (3\lambda - 3)(3) = 0$ $50\lambda - 20 = 0$
	$\lambda = \frac{2}{5}$
	$\overrightarrow{OC} = \frac{2}{5} \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix}$

- 8 **a** and **b** are vectors such that $|\mathbf{a}| = \sqrt{3}$, $|\mathbf{b}| = 1$, and the angle between them is $\frac{5\pi}{6}$.
 - (a) By considering $(2\mathbf{a} + \mathbf{b}) \cdot (2\mathbf{a} + \mathbf{b})$, find the exact value of $|2\mathbf{a} + \mathbf{b}|$.
 - (**b**) Find
 - (i) the length of projection of **a** onto **b**,
 - (ii) the projection vector of **a** onto **b**.

9 2014(9740)/I/3

(i)	Given that $\mathbf{a} \times \mathbf{b} = 0$, what can be deduced about the vectors \mathbf{a} and \mathbf{b} ?	[2]
-----	---	-----

(ii) Find a unit vector **n** such that $\mathbf{n} \times (\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}) = \mathbf{0}$. [2]

(iii) Find the cosine of the acute angle between $\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$ and the *z*-axis.

[1]

10 2012(9740)/I/5

Referred to the origin O, the points A and B have position vectors **a** and **b** such that

 $\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j}$.

The point *C* has position vector **c** given by $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$ where λ and μ are positive constants.

- (i) Given that the area of triangle *OAC* is $\sqrt{126}$, find μ . [4]
- (ii) Given instead that $\mu = 4$ and that $OC = 5\sqrt{3}$, find the possible coordinates of C.

Alternatively (Applying properties of vector product)

$$\frac{1}{2} |\overline{OA} \times \overline{OC}| = \sqrt{126}$$

$$|\mathbf{a} \times c| = 2\sqrt{126}$$

$$|\mathbf{a} \times (\mathbf{a} + \mu \mathbf{b})| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mu \mathbf{b}| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mu \mathbf{b}| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mu \mathbf{b}| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mu \mathbf{b}| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mu \mathbf{b}| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mu \mathbf{b}| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mu \mathbf{b}| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{b}| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{b}| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{b}| = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{b} = 2\sqrt{126}$$

$$|\mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{a}$$

Level 3

- 11 The points A, B and C have position vectors **a**, **b** and $\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{b}$ respectively. The point P on AB is such that $AP: PB = \lambda: 1 - \lambda$ and the point P on OC is such that $OP: PC = \mu: 1 - \mu$.
 - (i) Express \overrightarrow{OP} in terms of λ , **a** and **b**.
 - (ii) By expressing \overrightarrow{OP} in terms of μ , **a** and **b**, find the values of λ and μ . Hence show that *P* is the midpoint of *OC*.
 - (iii) It is given that the position vectors of the points A and B are $2\mathbf{j}+\mathbf{k}$ and $12\mathbf{i}-2\mathbf{j}-3\mathbf{k}$ respectively. The point Q lies on OA such that PQ is perpendicular to OA. Find the position vector of the point Q.

$$\begin{bmatrix} \alpha \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} - \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = 0$$
$$\begin{pmatrix} -3 \\ 2\alpha - 1 \\ \alpha \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix} = 0$$
$$\mathbf{a} \cdot \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \cdot \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = a_1 b_1 + a_2 b_2 + a_3 b_3$$
$$4\alpha - 2 + \alpha = 0$$
$$\alpha = \frac{2}{5}$$
$$\overrightarrow{OQ} = \frac{2}{5} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

12 2013(9740)/I/6

The origin *O* and the points *A*, *B* and *C* lie in the same plane, where $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$ (see diagram).

(i) Explain why c can be expressed as $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$, for constants λ and μ . [1]

The point *N* is on *AC* such that AN: NC = 3:4.

- (ii) Write down the position vector of N in terms of **a** and **c**. [1]
- (iii) It is given that the area of triangle *ONC* is equal to the area of triangle *OMC*, where M is the mid-point of *OB*. By finding the areas of these triangles in terms **a** and **b**, find λ in terms of μ in the case where λ and μ are both positive. [5]

Q12	Suggested Solutions		
(i)	Since O, A, B, C lie on the same plane, \overrightarrow{OC} can be expressed as a sum of a scalar multiple of a and a scalar multiple of b .		
	Alternatively, The equation of plane <i>OAB</i> : $\mathbf{r} = 0 + \lambda \mathbf{a} + \mu \mathbf{b}$, $\lambda, \mu \in \mathbb{R}$. Since <i>C</i> lies on plane <i>OAB</i> ,		
	\overrightarrow{OC} satisfies the equation of the plane, i.e. $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$, for some $\lambda, \mu \in \mathbb{R}$		
(ii)	Given AN : NC = 3 : 4. Learning Point: Draw diagram to clearly show the ratio that divides AC internally before applying ratio theorem.		
	Using ratio theorem, $\overrightarrow{ON} = \frac{3c+4a}{7}$		

(iii)	Since <i>M</i> is the mid-point of <i>OB</i> ,		
	$\overrightarrow{OM} = \frac{1}{2}\mathbf{b}$		
	Area of $\triangle ONC$ = Area of $\triangle OMC$	Recall:	
	$\frac{1}{2} \left \overrightarrow{ON} \times \overrightarrow{OC} \right = \frac{1}{2} \left \overrightarrow{OC} \times \overrightarrow{OM} \right $	Area of $\triangle ABC = \frac{1}{2} \left \overrightarrow{AB} \times \overrightarrow{AC} \right $	
	$\left \frac{3\mathbf{c}+4\mathbf{a}}{7}\times\mathbf{c}\right = \left \frac{1}{2}\mathbf{c}\times\mathbf{b}\right $		
	$\left \frac{3}{7}\mathbf{c}\times\mathbf{c}+\frac{4}{7}\mathbf{a}\times\mathbf{c}\right =\left \frac{1}{2}\mathbf{c}\times\mathbf{b}\right $	Properties of vector product: 1. $\mathbf{a} \times (\mathbf{c} + \mathbf{b}) = \mathbf{a} \times \mathbf{c} + \mathbf{a} \times \mathbf{b}$ 2. $\mathbf{a} \times \mathbf{c} = \mathbf{a} \cdot (\mathbf{c} + \mathbf{c}) = \mathbf{a} \times \mathbf{c} + \mathbf{a} \times \mathbf{b}$	
	$\left \frac{4}{7}\mathbf{a}\times\mathbf{c}\right = \left \frac{1}{2}\mathbf{c}\times\mathbf{b}\right $	2. $\mathbf{c} \times \mathbf{c} = 0$ (zero vector) 3. $k\mathbf{a} \times \mathbf{c} = -\mathbf{c} \times k\mathbf{a}$	
	Hint from question: "By finding the areas of these triangles in terms a and b " \Rightarrow replace $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$		
	$\left \frac{4}{7}\mathbf{a} \times (\lambda \mathbf{a} + \mu \mathbf{b})\right = \left \frac{1}{2}(\lambda \mathbf{a} + \mu \mathbf{b}) \times \mathbf{b}\right $	Properties of vector product:	
	$\left \frac{4}{7}\lambda\mathbf{a}\times\mathbf{a}+\frac{4}{7}\mu\mathbf{a}\times\mathbf{b}\right = \left \frac{1}{2}\lambda\mathbf{a}\times\mathbf{b}+\frac{1}{2}\mu\right $	$ \mathbf{a} \times \mathbf{b} = \mathbf{a} \times \mathbf{c} + \mathbf{a} \times \mathbf{b}$ $1. \mathbf{a} \times (\mathbf{c} + \mathbf{b}) = \mathbf{a} \times \mathbf{c} + \mathbf{a} \times \mathbf{b}$ $2. \mathbf{c} \times \mathbf{c} = 0 \text{ (zero vector)}$	
	$\left \frac{4}{7}\mu\mathbf{a}\times\mathbf{b}\right = \left \frac{1}{2}\lambda\mathbf{a}\times\mathbf{b}\right $	3. $k\mathbf{a} \times \mathbf{c} = -\mathbf{c} \times k\mathbf{a}$	
	Since $\mu, \lambda > 0$, $\frac{4}{7}\mu = \frac{1}{2}\lambda \Longrightarrow \lambda = \frac{8}{7}$	μ	

13 2016(9740)/I/5

The vectors **u** and **v** are given by $\mathbf{u} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $\mathbf{v} = a\mathbf{i} + b\mathbf{k}$, where *a* and *b* are constants.

- (i) Find $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} \mathbf{v})$ in terms of *a* and *b*. [2]
- (ii) Given that the i- and k-components of the answer to part (i) are equal, express $(\mathbf{u}+\mathbf{v})\times(\mathbf{u}-\mathbf{v})$ in terms of *a* only. Hence find, in an exact form, the possible values of *a* for which $(\mathbf{u}+\mathbf{v})\times(\mathbf{u}-\mathbf{v})$ is a unit vector. [4]
- (iii) Given instead that $(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} \mathbf{v}) = 0$, find the numerical value of $|\mathbf{v}|$. [2]

Suggested Solutions		
$\mathbf{u} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} \mathbf{v} = \begin{pmatrix} a \\ 0 \end{pmatrix}$		
$\mathbf{u} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $\mathbf{v} = \begin{bmatrix} 0 \\ b \end{bmatrix}$	Properties of vector product:	
$(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v}) = \mathbf{u} \times \mathbf{u} - \mathbf{u} \times \mathbf{v} + \mathbf{v} \times \mathbf{u} - \mathbf{v} \times \mathbf{v}$	1. $\mathbf{a} \times (\mathbf{c} + \mathbf{b}) = \mathbf{a} \times \mathbf{c} + \mathbf{a} \times \mathbf{b}$	
$= 2(\mathbf{v} \times \mathbf{u})$	2. $\mathbf{c} \times \mathbf{c} = 0$ (zero vector) 3. $k\mathbf{a} \times \mathbf{c} = -\mathbf{c} \times k\mathbf{a}$	
$= 2 \left[\begin{pmatrix} a \\ 0 \\ \end{pmatrix} \times \begin{pmatrix} 2 \\ -1 \\ \end{pmatrix} \right]$		
((b) (2)) Recall:		
$= 2 \begin{pmatrix} b \\ 2b - 2a \end{pmatrix} \qquad \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$	$ = \begin{pmatrix} a_2b_3 - a_3b_2 \\ -(a_1b_3 - a_3b_1) \end{bmatrix} $ [in MF27]	
$\begin{pmatrix} -a \end{pmatrix} \begin{pmatrix} 2\\ a_3 \end{pmatrix} \begin{pmatrix} 2\\ b_3 \end{pmatrix}$	$\left(\begin{array}{c} (1 \ b \ b \ b) \\ a_1 b_2 - a_2 b_1 \end{array}\right)$	
Given $b = -a$, $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v}) = 2 \begin{pmatrix} -a \\ 2(-a) - 2a \\ -a \end{pmatrix} = -2a \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix}$		
$\left -2a\right \sqrt{18} = 1$		
$2a\sqrt{18} = \pm 1$]	
$a = \pm \frac{1}{6\sqrt{2}}$ Rationalise the d	lenominator.	
$\therefore a = \frac{\sqrt{2}}{12}$ or $a = -\frac{\sqrt{2}}{12}$ Hint in que hence there	estion: ' <i>possible values of a</i> ', re should be more than 1 answer.	
	Suggested Solutions $\mathbf{u} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix} \mathbf{v} = \begin{pmatrix} a \\ 0 \\ b \end{pmatrix}$ $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v}) = \mathbf{u} \times \mathbf{u} - \mathbf{u} \times \mathbf{v} + \mathbf{v} \times \mathbf{u} - \mathbf{v} \times \mathbf{v}$ $= 2(\mathbf{v} \times \mathbf{u})$ $= 2\begin{pmatrix} a \\ 0 \\ b \end{pmatrix} \times \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ Recall: $\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_2 \\ a_3 \end{pmatrix}$ Given $b = -a$, $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v}) = 2\begin{pmatrix} -a \\ 2(-a) - 2a \\ -a \end{pmatrix}$ Given $b = -a$, $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v}) = 2\begin{pmatrix} -a \\ 2(-a) - 2a \\ -a \end{pmatrix}$ $\begin{vmatrix} -2a \begin{pmatrix} 1 \\ 4 \\ 1 \end{pmatrix} = 1$ Unit vector: Vector \\ \begin{vmatrix} -2a \sqrt{18} = 1 \\ 2a\sqrt{18} = \pm 1 \\ a = \pm \frac{1}{6\sqrt{2}} Hint in que hence there	

(iii)	$(\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = 0$	
	$\mathbf{u} \cdot \mathbf{u} - \mathbf{u} \cdot \mathbf{v} + \mathbf{v} \cdot \mathbf{u} - \mathbf{v} \cdot \mathbf{v} = 0$	Properties of scalar product:
	$\left \mathbf{u}\right ^2 - \left \mathbf{v}\right ^2 = 0$	$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$ $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
	$ \mathbf{v} = \mathbf{u} \text{since } \mathbf{v} \ge 0$	$\mathbf{a} \cdot \mathbf{a} = \mathbf{a} ^2$
	$ \mathbf{v} = \begin{bmatrix} -1\\ 2 \end{bmatrix}$	
	$=\sqrt{2^2 + \left(-1\right)^2 + 2^2}$	
	= 3	

14 2018/9758 A Level/I/6

Vectors **a**, **b** and **c** are such that $\mathbf{a} \neq \mathbf{0}$ and $\mathbf{a} \times 3\mathbf{b} = 2\mathbf{a} \times \mathbf{c}$.

- (i) Show that $3\mathbf{b} 2\mathbf{c} = \lambda \mathbf{a}$, where λ is a constant. [2]
- (ii) It is now given that **a** and **c** are unit vectors, that the modulus of **b** is 4 and that the angle between **b** and **c** is 60° . Using a suitable scalar product, find exactly the two possible values of λ . [5]

