
National Junior College 2022 Preliminary Examination

9749 H2 Physics

Paper 3

Suggested Solution

Section A

	$E_{\rm K}$ positive and decreasing, not touching x-axis			
	<i>E</i> _P (roughly, but not too far off) symmetrical to E_{κ}	B1	
	<i>Е</i> т с	learly shown (visibly or written in text) on the x-axis	B1	
(b)	(i)	Kinetic energy lost equals the gain in gravitational potential energy when object of mas moves from the surface of Earth to infinity $\frac{1}{2}mv^2 - 0 = 0 - (-GMm / R)$	ss <i>m</i> B1	
		$v^2 = 2GM/R$		
	(ii)	gravitational field strength at the surface of planet $g = GM / R^2$ equals the acceleration free fall at the surface of planet	n of B1	
		from (i), $v^2 = 2 (GM / R^2) \times R$	M1	
		$v^2 = 2gR$	A0	
(c)	(i)	$3/2 kT = \frac{1}{2} m v^2 = mgR$	C1	
		$T = 2mgR / 3k = (2 \times 6.6 \times 10^{-27} \times 9.81 \times 6.4 \times 10^6) / (3 \times 1.38 \times 10^{23})$	C1	
		$T = 2.0 \times 10^4 \text{ K}$	A1	
	(ii)	temperature where all substances have minimum internal energy	B1	

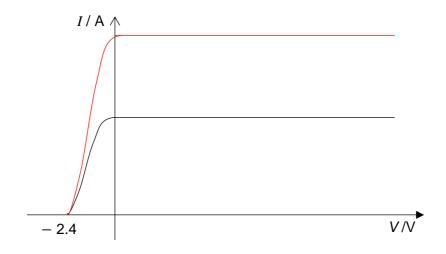
2	(a)	sum of random distribution of kinetic and potential energies of the molecules of the gas		B1		
		no ir	no intermolecular forces for ideal gas			
		so n	o potential energy	A1		
		ther	efore, internal energy equals to total kinetic energy of the molecules only			
	(b)	(i) higher temperature increases r.m.s. speed and change in momentum of each mole colliding with wall of container				
			increase volume reduces frequency of collision	M1		
			force is product of frequency of collision and change in momentum which is constant increase in change in momentum is balanced by reduction in frequency of collision	when A1		
		(ii)	increase in internal energy = $\frac{3}{2}k(460 - 280) \times 1.2 \times 6.02 \times 10^{23}$ (= 2692 J)	C1		
			heat supplied = $1.2 \times 0.032 \times c \times (460 - 280)$ (= 6.912 <i>c</i>)	C1		
			heat supplied = increase in internal energy – work done on gas $6.912c = 2692 + 1300$ (correct use of first law)	C1		
			$c = 580 \text{ J kg}^{-1} \text{ K}^{-1} \text{ or } 578 \text{ J kg}^{-1} \text{ K}^{-1}$	A1		
	(c)	cons	stant volume so no work done	B1		
		less	thermal energy needed for same temperature rise, so smaller specific heat capacity	B1		

(a)	series of distinct coloured lines against dark background			
(b)	phot	ton emitted when electron changes from higher to lower energy	B1	
	ene	rgy of photon proportional to frequency	M1	
	eacl	n line represents photon of specific / distinct energy	A1	
	only	transition between discrete energy levels leads to specific energies		
(c)	$\Delta E =$	= 1.5 – 0.85 (= 0.65 eV or 1.04 × 10 ⁻¹⁹ J)	C1	
	wav	elength $=\frac{hc}{\Delta E} = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{1.04 \times 10^{-19}} = 1.91 \times 10^{-6} \text{ m}$	M1	
	wav	elength is longer than visible light / infrared, so not visible	A1	
(d)	(i)	waves passing slits spread	B1	
		waves from each slit overlap	M1	
		with phase difference 360° / path difference λ	A1	
	(ii)	angle of λ_1 maximum = $\tan^{-1} \frac{147 - 73.5}{240}$ (= 17.027° or 0.29718 rad)	C1	
		$\sin \theta_2 = \sin 17.027^\circ \times \frac{654 \times 10^{-9}}{488 \times 10^{-9}} (\Rightarrow \theta_2 = 23.106^\circ \text{ or } 0.40328 \text{ rad})$	C1	
		$\frac{x-73.5}{240} = \tan 23.106^{\circ}$	M1	
		<i>x</i> = 175.9 cm	A1	

- 4 (a) emission of electrons from a metal surface when surface is irradiated with electromagnetic radiation above threshold frequency B1
 - (b)photon has energy dependent on frequencyB1minimum energy required to remove electron from surfaceB1

emission if energy of photon greater than minimum / work function / threshold energy B1

so, threshold frequency exist


- (c) (i) stopping potential is the minimum potential difference to stop the most energetic electrons from reaching the anode B1
 - (ii) for positive values of V, all the electrons emitted from cathode will reach anode B1
 - (iii) $E = \phi + eV_s$ $hf = 1.6 \times 1.6 \times 10^{-19} + 2.4 \times 1.6 \times 10^{-19}$ C1
 - $f = 9.7 \times 10^{14} \,\mathrm{Hz}$ A1

B1

Β1

(iv) same V_s

saturated current doubled

5 (a) (i) magnetic flux density decreases with distance from straight wire, so magnetic flux linkage in loop decreases as it falls M1 e.m.f. induced in loop proportional to rate of change of magnetic flux linkage A1 OR (M1) loop cuts magnetic flux as it falls (A1) e.m.f. induced proportional to rate of cutting of magnetic flux (ii) B1 magnetic flux into page through the loop decreasing induced current produces magnetic flux into page to oppose the decrease B1 B1 (right hand grip rule gives) induced current flowing clockwise in loop OR magnetic flux density is higher in upper half then lower half of loop, so rate of flux cut and

direction of induced e.m.f. (drives induced current left to right) is same in both halves, so net e.m.f. (B1)

drives current clockwise in loop

induced e.m.f. larger in upper half than lower half of loop

(b) induced e.m.f.

$$= -\frac{\Delta\Phi}{\Delta t} = -\frac{(30-120)\times10^{-3}\times\pi\times0.050^2}{0.040}$$
 M1

= 0.0177 V = 18 mV

(B1)

(B1)

A0

6	(a)	period = 15 ms	C1
		frequency = 1 / period = 1 / 0.015 = 67 Hz	A1
	(b)	r.m.s current = $0.75 / \sqrt{2}$	C1

(c) energy
=
$$I_{\rm rms}^2 R t = 0.53^2 \times 450 \times 30 \times 10^{-3}$$
 C1

(d) instantaneous power *P* dissipated in resistor is $P = I^2 R$ where *I* is instantaneous current and *R* is resistance of resistor B1

current sill flows in resistor in opposite directions during half-cycles, so heating resistor B1

OR

average power $\langle P \rangle$ dissipated in resistor is $\langle P \rangle = I_{rms}^2 R$ where I_{rms} is root-mean-squared current and R is resistance of resistor (B1)

(B1)

Irms not zero, so heating resistor

6

7

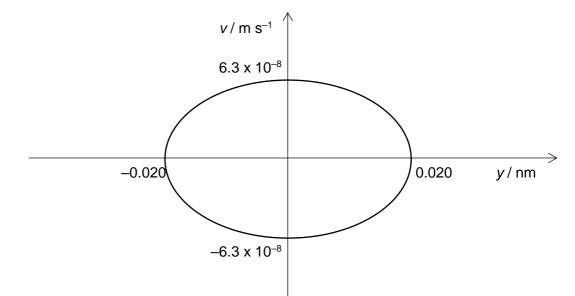
Section B

7	(a)	progressive: energy transferred along direction of propagation of wave	
		longitudinal: particles along wave oscillate along axis parallel to direction of propagation of wa	ves B1

(b)	(i)	amplitude = 2.0×10^{-11} m	A1

(ii) maximum speed
=
$$\omega x_0 = (2\pi \times 500) \times 2 \times 10^{-11}$$
 M1

$$= 6.3 \times 10^{-8} \,\mathrm{m \, s^{-1}}$$
 A0


(iii) maximum kinetic energy =
$$\frac{1}{2} m v_0^2$$

$$\frac{1}{2} \times m \times (6.3 \times 10^{-8})^2 = 2.4 \times 10^{-19}$$
 C1

$$m = 1.2 \times 10^{-4} \text{ kg}$$
 A1

(iv) ellipse / circle

with correct axes labels

(c) (i) energy transferred from beating wings to the ear / eardrum vibrates at same frequency as beating wing B1

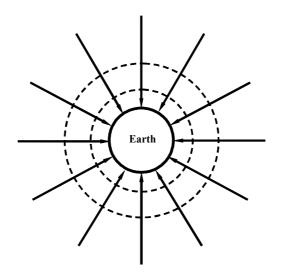
frequency within audible range of person (20 Hz – 20kHz)

(ii) intensity $\propto \frac{1}{\text{distance}^2}$ C1

$$\frac{1.6I}{I} = \left(\frac{2.0}{2.0-x}\right)^2 \text{ where } I \text{ is original intensity}$$
C1

[Turn over

Β1


M1

A1

(iii)	air molecule travels $4 \times 5.0 \times 10^{-9}$ (= 2.0×10^{-8} m) each cycle	C1
	total distance covered in 1800 beats = $1800 \times 2.0 \times 10^{-8} = 3.6 \times 10^{-5} \text{ m}$	A1
(iv)	device generate sound at same frequency as buzzing sound	B1
	of equal / similar amplitude	B1
	and 180° out-of-phase / anti-phase	B1
	leads to destructive interference of buzzing sound and the generated sound	B1
	that cancels the buzzing sound	

(a)	(i)	1.	mass	B1			
		2.	positive electric charge	B1			
	(ii)		magnetic force acts on moving charge in magnetic field, force on it may not be electric field				
(b)	(i)		pritude of magnetic flux density at wire X $\frac{1}{2\pi d} = \frac{4\pi \times 10^{-7} \times 290}{2\pi \times 0.050}$	M1			
		= 1.	$2 \times 10^{-3} \text{ T}$	A0			
	(ii)	F =	$BIL \Rightarrow \frac{F}{L} = BI$				
			e per unit length 2 x 10 ⁻³ x 290	C1			
		= 0.3	35 N m⁻¹	A1			
(c)	(i)	elec	tron moving perpendicular in magnetic field experience a magnetic force	B1			
		force B	e $qv = 4.64 \times 10^{-3} \times 1.6 \times 10^{-19} \times 2.9 \times 10^{7}$	M1			
		= 2.	$15 \times 10^{-14} = 2.2 \times 10^{-14} \text{ N}$	A0			
	(ii)	mag	netic field between the wires is not uniform	B1			
		mag	netic force / resultant force on electron not constant	M1			
		SO, (claim is incorrect	A0			
	(iii)	curv	ve downwards	B1			
(d)	(d) [Method 1] electric force on electron = $qE = 1.6 \times 10^{-19} \times \frac{13500}{0.10} = 2.16 \times 10^{-14}$ N			M1			
	eithe or	er	force equal to (c)(i) , so constant velocity force ≠ (c)(i) , so cannot be constant velocity	A1			
	For e		e] on to move at constant velocity, magnetic force = electric force $\Rightarrow v = \frac{13500}{0.10}/4.64 \times 10^{-3} = 2.91 \times 10^7 \text{ m s}^{-1}$	M1			
	eithe or	er	given speed = speed required, so constant velocity given speed < speed required, so cannot be constant velocity	A1			

(e)	minimum four field lines directed towards Earth radially	B1
	minimum two concentric circles for equipotential surface	B1
	minimum three circles with increasing distance between one circle and next outer circ	

(f) (i) gravitational field strength by earth = gravitational field strength by moon $\frac{GM_{Earth}}{x^2} = \frac{GM_{moon}}{(3.84 \times 10^8 - x)^2}$ C1 $\frac{5.98 \times 10^{24}}{x^2} = \frac{7.35 \times 10^{22}}{(3.84 \times 10^8 - x)^2}$ C1

$$x = 3.5 \times 10^8 \,\mathrm{m}$$
 A0

- (ii) *either* acceleration (or resultant force) of spaceship and its displacement from P is in the same direction
 or spaceship accelerates towards Earth if displaced left of P or towards moon if
 - displaced right of P M1

so claim incorrect

10

A1