

# **Anglo-Chinese Junior College**

JC2 Preliminary Examination Higher 1



A Methodist Institution (Founded 1886)

## CHEMISTRY

Paper 1 Multiple Choice

8873/01 9 September 2024 1 hour

Additional Materials: Multiple Choice Answer Sheet Data Booklet

#### READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Centre number and index number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **thirty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

#### Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

| 1  | С | 11 | D | 21 | С |
|----|---|----|---|----|---|
| 2  | В | 12 | В | 22 | A |
| 3  | С | 13 | С | 23 | В |
| 4  | В | 14 | A | 24 | С |
| 5  | В | 15 | A | 25 | A |
| 6  | D | 16 | В | 26 | D |
| 7  | С | 17 | С | 27 | С |
| 8  | A | 18 | A | 28 | В |
| 9  | D | 19 | D | 29 | В |
| 10 | В | 20 | A | 30 | D |

## ACJC H1 Chem Prelim 2024 Paper 1 Answers

| 1 | Carbon sulfide, CS <sub>2</sub> , is a volatile flammable liquid used in the manufacture of cellophane.                                                                                  |                     |                       |                                       |                    |                           |                  |                |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|---------------------------------------|--------------------|---------------------------|------------------|----------------|
|   | On combustion, CS <sub>2</sub> is oxidised as follows.                                                                                                                                   |                     |                       |                                       |                    |                           |                  |                |
|   |                                                                                                                                                                                          |                     | $CS_2$                | (g) + 3O <sub>2</sub> (g) →           | CO <sub>2</sub> (g | g) + 2SO <sub>2</sub> (g) |                  |                |
|   | A 20 cm <sup>3</sup> sample of carbon disulfide vapour is ignited with 100 cm <sup>3</sup> of oxygen. The final volume of gas after burning is treated with an excess of aqueous alkali. |                     |                       |                                       |                    |                           |                  |                |
|   | Wha                                                                                                                                                                                      | t percentage of th  | is fina               | I volume dissolve                     | s in th            | e alkali?                 |                  |                |
|   | [all v                                                                                                                                                                                   | olumes measured     | at th                 | e same temperatu                      | ure an             | d pressure.]              |                  |                |
|   |                                                                                                                                                                                          |                     |                       | Γ                                     | 1                  | Γ                         | 1                |                |
|   | Α                                                                                                                                                                                        | 20%                 | В                     | 40%                                   | С                  | 60%                       | D                | 80%            |
|   | Ans                                                                                                                                                                                      | wer: C              |                       |                                       |                    |                           | 1                |                |
|   | Thin                                                                                                                                                                                     | king process        |                       |                                       |                    |                           |                  |                |
|   | only                                                                                                                                                                                     | acid will react & d | lissolv               | e in alkali. From t                   | he abo             | ove equation, CO          | 2 <b>&amp; S</b> | $D_2$ are both |
|   | acidi                                                                                                                                                                                    | c gases [learn in   | o <mark>erio</mark> d | icity]                                |                    | •                         |                  |                |
|   | since the reactants & products are all gases, we can assume volume ratio as mole ratio.                                                                                                  |                     |                       |                                       |                    |                           |                  |                |
|   | $CS_2(g) \equiv CO_2(g) \equiv 2SO_2(g)$<br>20 : 20 : 2(20)                                                                                                                              |                     |                       |                                       |                    |                           |                  |                |
|   | So th                                                                                                                                                                                    | ne reaction produc  | ces 20                | $0 + 40 = 60 \text{ cm}^3 \text{ of}$ | acidio             | c gases.                  |                  |                |

Volume of  $O_2$  required to burn  $20 \text{cm}^3$  of  $CS_2 = 20 \times 3 = 60 \text{cm}^3$ Volume of  $O_2$  unreacted = 100 - 60<br/>=  $40 \text{cm}^3$ Total volume of gas at the end of reaction = (acidic gases  $CO_2 + SO_2 + \text{unreacted } O_2)$ <br/>=  $60 + 40 = 100 \text{ cm}^3$ % of final vol that dissolve in alkali =  $60/100 \times 100 \% = 60 \%$ 

| 2 | <ul> <li>2 moles of nitric acid, HNO<sub>3</sub>, a powerful oxidising agent, reacts with 3 moles of hydrogen sulfide, H<sub>2</sub>S, to form three products, one of which is water.</li> <li>In this reaction, the oxidation number of nitrogen decreases by 3.</li> <li>What are the other two products of this reaction?</li> </ul> |                                                                                   |  |  |  |  |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|--|
|   | A         N2O2 and H2SO4         C         NO and SO2                                                                                                                                                                                                                                                                                   |                                                                                   |  |  |  |  |  |
|   | B         NO and S         D         N <sub>2</sub> O <sub>2</sub> and H <sub>2</sub> SO <sub>3</sub>                                                                                                                                                                                                                                   |                                                                                   |  |  |  |  |  |
|   | Ans                                                                                                                                                                                                                                                                                                                                     | wer: B                                                                            |  |  |  |  |  |
|   | O.S<br>Lool                                                                                                                                                                                                                                                                                                                             | of N in HNO₃ =+5 →+2<br>king for N with OS=2, → <u>NO</u>                         |  |  |  |  |  |
|   | 1 m<br>2 m                                                                                                                                                                                                                                                                                                                              | ol of $HNO_3$ gains 3 moles of electrons of of $HNO_3$ gains 6 moles of electrons |  |  |  |  |  |
|   | 6 moles of electrons lost by 3 moles of $H_2S$<br>2 moles of electrons lost by 1 mole of $H_2S$                                                                                                                                                                                                                                         |                                                                                   |  |  |  |  |  |
|   | O.S of S in H <sub>2</sub> S =-2 $\rightarrow 0$<br>Looking for S with OS=0, $\rightarrow \underline{S}$                                                                                                                                                                                                                                |                                                                                   |  |  |  |  |  |
|   | Proc                                                                                                                                                                                                                                                                                                                                    | ducts are <u>NO and S</u>                                                         |  |  |  |  |  |

$$\begin{array}{c|c} \textbf{3} & \mbox{Consider the following half-equations.} \\ & \mbox{MnO}_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2 O \\ & \mbox{F} e^{2+} \rightarrow F e^{3+} + e^- \\ & \mbox{C}_2 O_4^{2-} \rightarrow 2 C O_2 + 2 e^- \end{array} \\ & \mbox{What volume of 0.01 mol dm}^{-3} \mbox{KMnO}_4 \mbox{ is required to oxidise 15 cm}^3 \mbox{ of an acidified solution} \\ & \mbox{of 0.01 mol dm}^{-3} \mbox{F} e C_2 O_4? \end{array}$$

|                                                                                                                                                               |                                        | _                          |                                                                           |                       |                                            |                            |                    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------|---------------------------------------------------------------------------|-----------------------|--------------------------------------------|----------------------------|--------------------|--|
| A                                                                                                                                                             | 3 cm <sup>3</sup>                      | в                          | 6 cm <sup>3</sup>                                                         | С                     | 9 cm <sup>3</sup>                          | D                          | 15 cm <sup>3</sup> |  |
| Answer: C                                                                                                                                                     |                                        |                            |                                                                           |                       |                                            |                            |                    |  |
| The oxidation of FeC <sub>2</sub> O <sub>4</sub> is represented by this overall equation<br>[O]: $Fe^{2+} + C_2O_4^{2-} \rightarrow Fe^{3+} + 2CO_2 + 3e^{-}$ |                                        |                            |                                                                           |                       |                                            |                            |                    |  |
| Therefore 3 mol of $MnO_4^-$ will react completely with 5 mol of $FeC_2O_4$ (balance out the electrons).                                                      |                                        |                            |                                                                           |                       |                                            |                            |                    |  |
| Over                                                                                                                                                          | rall Eqn: <b>3</b> MnO <sub>4</sub> -+ | - <b>5</b> Fe <sup>2</sup> | <sup>2+</sup> + <b>5</b> C <sub>2</sub> O <sub>4</sub> <sup>2–</sup> + 24 | $H^{+} \rightarrow 3$ | 3Mn <sup>2+</sup> + 5Fe <sup>3+</sup> + 10 | ) <b>CO</b> <sub>2</sub> - | + 12H₂O            |  |
| No. of moles of FeC <sub>2</sub> O <sub>4</sub> = $\frac{15}{1000} \times 0.01$<br>= 1.5 × 10 <sup>-4</sup> mol                                               |                                        |                            |                                                                           |                       |                                            |                            |                    |  |
| No. of moles of MnO <sub>4</sub> <sup>-</sup> = $\frac{3}{5} \times 1.5 \times 10^{-4}$<br>= 9.0 x 10 <sup>-5</sup> mol                                       |                                        |                            |                                                                           |                       |                                            |                            |                    |  |
| Volume of MnO <sub>4</sub> <sup>-</sup> = $\frac{9.0 \times 10^{-5}}{0.01} \times 1000$<br>= $9 \text{ cm}^3$                                                 |                                        |                            |                                                                           |                       |                                            |                            |                    |  |

| 4 | Use of the Data Booklet is relevant to this question.                                                                               |                                             |              |                                                      |            |                     |       |          |
|---|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------|------------------------------------------------------|------------|---------------------|-------|----------|
|   | The table shows statements made by three students about the s, p and d electrons in the atoms of the element with atomic number 30. |                                             |              |                                                      |            |                     |       |          |
|   | student statement                                                                                                                   |                                             |              |                                                      |            |                     |       |          |
|   | X There are s electrons in 4 different quantum shells.                                                                              |                                             |              |                                                      |            | ells.               |       |          |
|   |                                                                                                                                     | Y                                           | 1            | There are p electrons in 2 different quantum shells. |            |                     |       |          |
|   | Z The d electrons have the same principal quantum number as the outermost s electrons.                                              |                                             |              |                                                      |            | um                  |       |          |
|   | Whie                                                                                                                                | ch students are co                          | orrect       | )                                                    |            |                     |       |          |
|   | Α                                                                                                                                   | X, Y and Z                                  | В            | X and Y                                              | С          | Y and Z             | D     | X and Z  |
|   | Ans                                                                                                                                 | wer: B                                      |              |                                                      |            |                     |       |          |
|   | Keyword: atoms of the element with atomic number 30 => up to period 4                                                               |                                             |              |                                                      |            |                     |       |          |
|   | e.g.                                                                                                                                | 1s² 2s² 2pº 3s² 3p                          | ° 3d '       | 4s <sup>2</sup> (30 electro                          | ons)       |                     |       |          |
|   | Student X obviously correct as each period/ quantum shells will have s electrons. (there are 1s, 2s, 3s and 4s electrons)           |                                             |              |                                                      |            |                     |       |          |
|   | Stuc<br>elec                                                                                                                        | lent Y stated that t<br>trons so he is corr | here<br>ect. | are p electrons                                      | in 2 diffe | erent shells: there | are 2 | p and 3p |

1

# Student Z is wrong as in Period 4, d electrons are the 3d and outermost s electrons are the 4s





| 7 | Some car paints contain small flakes of silica, SiO <sub>2</sub> .                                                                                                                                                                                          |   |   |          |  |  |  |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----------|--|--|--|--|
|   | In the structure of solid SiO <sub>2</sub>                                                                                                                                                                                                                  |   |   |          |  |  |  |  |
|   | <ul> <li>each silicon atom is bonded to x oxygen atoms,</li> <li>each oxygen atom is bonded to y silicon atoms,</li> <li>each bond is a z type bond.</li> <li>What is the correct combination of x, y and z in these statements?</li> </ul>                 |   |   |          |  |  |  |  |
|   |                                                                                                                                                                                                                                                             | X | У | Z        |  |  |  |  |
|   | Α                                                                                                                                                                                                                                                           | 2 | 1 | covalent |  |  |  |  |
|   | В                                                                                                                                                                                                                                                           | 2 | 1 | ionic    |  |  |  |  |
|   | С                                                                                                                                                                                                                                                           | 4 | 2 | covalent |  |  |  |  |
|   | D                                                                                                                                                                                                                                                           | 4 | 2 | ionic    |  |  |  |  |
|   | Answer: C<br>SiO <sub>2</sub> exists in the form of a giant molecular diamond-like structure, with each silicon atom<br>being tetrahedrally bonded to four oxygen atoms, and each oxygen forming two bonds to<br>silicon. The bonds are covalent in nature. |   |   |          |  |  |  |  |
|   |                                                                                                                                                                                                                                                             |   |   |          |  |  |  |  |

| 8 | What is the order of increasing volality at room temperature?                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |  |  |  |  |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
|   | 1 2,3-dimethylbut-2-ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |  |  |  |  |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 cis-hex-3-ene |  |  |  |  |  |  |
|   | 3 trans-hex-3-ene                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |  |  |  |  |
|   | <b>A</b> 2, 3, 1 <b>C</b> 3, 2, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |  |  |  |  |
|   | <b>B</b> 1, 2, 3 <b>D</b> 1, 3, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |  |  |  |  |  |  |
|   | Ans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wer: A          |  |  |  |  |  |  |
|   | <ul> <li>Answer: A</li> <li>Volatility is inversely proportional to the boiling point and strength of intermolecular forces of attractions.</li> <li>Surface area of contact between molecules is smaller for the branched 2,3-dimethylbut-2-ene as compared to cis-hex-3-ene and trans-hex-3-ene.</li> <li>There is a slight difference in boiling point between cis and trans isomers. Trans-hex-3-ene has zero dipole moment whereas cis-hex-3-ene has overall dipole moment.</li> </ul> |                 |  |  |  |  |  |  |

| 9 | Whi                                                                                         | ch sta | tement can be explained in term     | s of h  | ydrogen bonding?                      |  |  |
|---|---------------------------------------------------------------------------------------------|--------|-------------------------------------|---------|---------------------------------------|--|--|
|   |                                                                                             | 1      | The apparent relative molecula      | r mas   | s of ethanoic acid in benzene is 120. |  |  |
|   |                                                                                             | 2      | $HF_2^-$ is formed when HF is diss  | olved   | in molten NaF.                        |  |  |
|   |                                                                                             | 3      | The boiling point of propanoic a    | icid is | higher than ethanoic acid.            |  |  |
|   | 4 Ice is less dense than water.                                                             |        |                                     |         |                                       |  |  |
|   | Α                                                                                           | 1, 2,  | , 3                                 | С       | 2, 3, 4                               |  |  |
|   | в                                                                                           | 1, 3,  | , 4                                 | D       | 1, 2, 4                               |  |  |
|   | Ans                                                                                         | wer:   | D                                   |         | •                                     |  |  |
|   |                                                                                             |        |                                     |         |                                       |  |  |
|   | Propanoic acid has higher boiling point than ethanoic acid due to the larger electron cloud |        |                                     |         |                                       |  |  |
|   | size                                                                                        | of the | e molecule which will imply that it | has s   | stronger id-id interactions.          |  |  |
|   |                                                                                             |        |                                     |         |                                       |  |  |

| 10 | Elements <b>A</b> and <b>B</b> are both in Period 3. Element <b>A</b> has the smallest atomic radius in Period 3. There are only two elements in Period 3 which have a higher melting point than element <b>B</b> . Elements <b>A</b> and <b>B</b> react together to form compound <b>C</b> .<br>Which compound could be <b>C</b> ? |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|    |                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|    | Answer: B<br>C/ has the smallest atomic radius in Period 3.<br>Mg has the third highest melting point of the elements in Period 3, after Si and A/.<br>Hence, compound C is MgC/ <sub>2</sub> .                                                                                                                                     |  |  |  |  |  |  |

| 11 | Use of the Data Booklet is relevant to this question.                                                             |                                                                                                                                                                                                                                                          |                                             |                                                                                                                                                                                                                                                            |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | The properties of chlorine, bromine (denoted as $X_2$ in their elemental state) and their compounds are compared. |                                                                                                                                                                                                                                                          |                                             |                                                                                                                                                                                                                                                            |  |  |  |
|    | Whi                                                                                                               | ch property is smaller for bromine thar                                                                                                                                                                                                                  | for c                                       | hlorine?                                                                                                                                                                                                                                                   |  |  |  |
|    |                                                                                                                   | 1 pressure to liquefy $X_2(g)$ at the                                                                                                                                                                                                                    | same                                        | temperature                                                                                                                                                                                                                                                |  |  |  |
|    |                                                                                                                   | 2 oxidising power of $X_2$<br>3 first ionisation energy of $X(q)$                                                                                                                                                                                        |                                             |                                                                                                                                                                                                                                                            |  |  |  |
|    |                                                                                                                   |                                                                                                                                                                                                                                                          |                                             |                                                                                                                                                                                                                                                            |  |  |  |
|    | Α                                                                                                                 | 1 and 2                                                                                                                                                                                                                                                  | С                                           | 2 and 3                                                                                                                                                                                                                                                    |  |  |  |
|    | В                                                                                                                 | 1 and 3                                                                                                                                                                                                                                                  | D                                           | 1, 2 and 3                                                                                                                                                                                                                                                 |  |  |  |
|    | Ans                                                                                                               | wer: D                                                                                                                                                                                                                                                   |                                             |                                                                                                                                                                                                                                                            |  |  |  |
|    | Opti<br>of in<br>pres<br>lique                                                                                    | on <b>1</b> is correct. The ease of liquefaction termolecular forces. Gases with static sure to liquefied. $C_{l_2}$ has weaker id-id efy.                                                                                                               | on of g<br>ronge<br>than                    | gases generally depends on the strength<br>er intermolecular forces requires lower<br>Br <sub>2</sub> and thus requires higher pressure to                                                                                                                 |  |  |  |
|    | Opti<br>redu<br>shel<br>elec<br>Opti<br>is 11                                                                     | on <b>2</b> is correct. The oxidising power of $0$ action, each halogen atom gains an electron due to the nucleus for $CI_2$ tron due to the greater electrostatic attention <b>3</b> is correct. The first ionisation energy 140 kJ mol <sup>-1</sup> . | Cl <sub>2</sub> is getron<br>than<br>ractic | greater than that of $Br_2$ . When undergoing<br>and this electron is added to the valence<br>$Br_2$ . Hence it is easier for $CI_2$ to gain the<br>on, hence its greater oxidising power.<br>f $CI(g)$ is 1260 kJ mol <sup>-1</sup> while that of $Br(g)$ |  |  |  |
|    | Г<br>Г                                                                                                            |                                                                                                                                                                                                                                                          |                                             |                                                                                                                                                                                                                                                            |  |  |  |
| 12 | An e<br>elem<br>the e                                                                                             | element in the Period 2 of the Period<br>nent a group higher in the Period 3. Th<br>elements and their compounds.                                                                                                                                        | ic Tal<br>is is k                           | ble often shows similar properties to the<br>nown as a diagonal relationship between                                                                                                                                                                       |  |  |  |
|    | An e                                                                                                              | example of a diagonal relationship is be                                                                                                                                                                                                                 | etwee                                       | n beryllium and aluminium.                                                                                                                                                                                                                                 |  |  |  |
|    | Whi                                                                                                               | ch statement about BeO and $BeCl_2$ is                                                                                                                                                                                                                   | incor                                       | rect?                                                                                                                                                                                                                                                      |  |  |  |
|    | Α                                                                                                                 | BeO is amphoteric in nature but BeC                                                                                                                                                                                                                      | l <sub>2</sub> is a                         | acidic in nature.                                                                                                                                                                                                                                          |  |  |  |
|    | В                                                                                                                 | BeO is predominantly covalent but B                                                                                                                                                                                                                      | eCl₂ i                                      | s predominantly ionic.                                                                                                                                                                                                                                     |  |  |  |
|    | С                                                                                                                 | BeO is insoluble in water but BeCl <sub>2</sub> p                                                                                                                                                                                                        | artial                                      | ly hydrolyses in water.                                                                                                                                                                                                                                    |  |  |  |
|    | D                                                                                                                 | BeO has a giant lattice structure but                                                                                                                                                                                                                    | BeCl                                        | has a simple lattice structure.                                                                                                                                                                                                                            |  |  |  |
|    | Ans                                                                                                               | wer: B                                                                                                                                                                                                                                                   |                                             |                                                                                                                                                                                                                                                            |  |  |  |
|    | All o                                                                                                             | ptions are correct except <b>B</b> .                                                                                                                                                                                                                     |                                             |                                                                                                                                                                                                                                                            |  |  |  |
|    | BeO                                                                                                               | is predominantly <i>ionic</i> but BeCl <sub>2</sub> is predominantly                                                                                                                                                                                     | edom                                        | ninantly <i>covalent</i> .                                                                                                                                                                                                                                 |  |  |  |

| 40 | AP(many theory and have a first addP() is far and to reach a disclosed                                                                                                                                                                                                                                                                                                                                  |                            |                                     |     |                                                |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|-----|------------------------------------------------|--|--|
| 13 | Nitromethane can be used as a fuel additive for motor racing and fockets.                                                                                                                                                                                                                                                                                                                               |                            |                                     |     |                                                |  |  |
|    | $4CH_{3}NO_{2}(g) + 3O_{2}(g) \rightarrow 4CO_{2}(g) + 6H_{2}O(l) + 2N_{2}(g)$                                                                                                                                                                                                                                                                                                                          |                            |                                     |     |                                                |  |  |
|    | Values of standard enthalpy changes of formation are in the table.                                                                                                                                                                                                                                                                                                                                      |                            |                                     |     |                                                |  |  |
|    | compound                                                                                                                                                                                                                                                                                                                                                                                                |                            | compound                            |     | Δ <i>H</i> <sub>f</sub> / kJ mol <sup>−1</sup> |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                         |                            | CH <sub>3</sub> NO <sub>2</sub> (g) |     | –113                                           |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                         |                            | CO <sub>2</sub> (g)                 |     | -394                                           |  |  |
|    | H <sub>2</sub> O( <i>l</i> )                                                                                                                                                                                                                                                                                                                                                                            |                            | $H_2O(l)$                           |     | -286                                           |  |  |
|    | Wha                                                                                                                                                                                                                                                                                                                                                                                                     | t is the enthalpy          | change of this reaction             | on? | _                                              |  |  |
|    | Α                                                                                                                                                                                                                                                                                                                                                                                                       | –3744 kJ mol <sup>_1</sup> | I                                   | С   | –2840 kJ mol <sup>–1</sup>                     |  |  |
|    | в                                                                                                                                                                                                                                                                                                                                                                                                       | +3744 kJ mol-              | 1                                   | D   | +2840 kJ mol <sup>-1</sup>                     |  |  |
|    | Answer: C<br>$\Delta H_{f}^{\theta} = \sum n\Delta H_{f}^{\theta} \text{ (products)} - \sum m\Delta H_{f}^{\theta} \text{ (reactants)}$ $= 4 \Delta H_{f}^{\theta} (CO_{2}) + 6 \Delta H_{f}^{\theta} (H_{2}O) - 4 \Delta H_{f}^{\theta} (CH_{3}NO_{2})$ $= 4 (-394) + 6 (-286) - 4 (-113)$ $= -2840 \text{ kJ mol}^{-1}$ Note that enthalpy change of formation of elements at standard state is zero. |                            |                                     |     |                                                |  |  |

| 14 | Use of the Data Booklet is relevant to this question.                                                                                      |                                        |       |                                           |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------|-------------------------------------------|--|--|--|
|    | Butane is used as a fuel for cooking.                                                                                                      |                                        |       |                                           |  |  |  |
|    | When 0.025 mol of butane was burnt under a vessel containing 250 g of water, it was found that the temperature of the water rose by 50 °C. |                                        |       |                                           |  |  |  |
|    | Whie                                                                                                                                       | ch value for the enthalpy change of co | mbust | tion of butane is given by these results? |  |  |  |
|    | A         −2090 kJ mol <sup>-1</sup> C         −13 500 kJ mol <sup>-1</sup>                                                                |                                        |       |                                           |  |  |  |
|    | в                                                                                                                                          | –2100 kJ mol <sup>-1</sup>             | D     | –13 580 kJ mol <sup>–1</sup>              |  |  |  |

| Answer: A<br>Heat evolved = $mc\Delta T$<br>= (250)(4.18)(50)<br>= 2250 J<br>= 52.25 kJ                                            |
|------------------------------------------------------------------------------------------------------------------------------------|
| $\Delta H_c = (-) \frac{\text{Heat evolved during combustion(in kJ)}}{\text{No. of moles of substance burnt}} \text{ kJ mol}^{-1}$ |
| = -52.25/0.025<br>= -2090 kJ mol <sup>-1</sup>                                                                                     |

| 15 | The<br>sod<br>Whi                                                                                                                                                                                                                                                                                                                                            | The lattice energies of the caesium chloride, caesium fluoride, sodium chloride and sodium fluoride are given below in the options, not necessarily in this order.<br>Which value corresponds to the lattice energy of caesium chloride? |   |                           |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------|--|--|--|--|--|--|
|    | A         −661 kJ mol <sup>-1</sup> C         −780 kJ mol <sup>-1</sup>                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                          |   |                           |  |  |  |  |  |  |
|    | в                                                                                                                                                                                                                                                                                                                                                            | –740 kJ mol <sup>–1</sup>                                                                                                                                                                                                                | D | –918 kJ mol <sup>−1</sup> |  |  |  |  |  |  |
|    | Answer: ARecall that magnitude of lattice energy $\propto \frac{Q_+Q}{r_++r}$ .Since all the cations and anions have the same charge in all the compounds, the<br>difference is in the sum of their ionic radii. Caesium chloride has the largest sum of ionic<br>radii, hence the magnitude of the lattice energy should be the smallest (least exothermic) |                                                                                                                                                                                                                                          |   |                           |  |  |  |  |  |  |

| 16 | For a reaction $2\mathbf{U}(aq) + 3\mathbf{V}(aq) \rightarrow 2\mathbf{W}(aq)$ , the rate equation is rate = $k[\mathbf{U}]^2[\mathbf{V}]$ .                                                     |                                             |             |                                   |       |                 |       |                                              |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------|-----------------------------------|-------|-----------------|-------|----------------------------------------------|--|
|    | reaction         temperature<br>/ °C         initial [U]         initial [V]         initial rate           / mol dm <sup>-3</sup> / mol dm <sup>-3</sup> / mol dm <sup>-3</sup> s <sup>-1</sup> |                                             |             |                                   |       |                 |       | ial rate<br>dm <sup>-3</sup> s <sup>-1</sup> |  |
|    | 1 25 1.0                                                                                                                                                                                         |                                             | 1.0         |                                   | r     |                 |       |                                              |  |
|    |                                                                                                                                                                                                  | 2                                           | 55          | 0.5                               |       | 0.5             |       | q                                            |  |
|    | It is a<br>What                                                                                                                                                                                  | also given that th<br>t is the initial rate | e rate doul | bles for every<br>n 2, <b>q</b> ? | 10 °C | rise in tempera | ture. |                                              |  |
|    | Α                                                                                                                                                                                                | 0.5 <i>r</i>                                | B r         |                                   | C     | 2 <b>r</b>      | D     | 4 <b>r</b>                                   |  |
|    | Ansv                                                                                                                                                                                             | wer: B                                      |             |                                   |       |                 |       |                                              |  |

| At 25 °C, when initial [11] and initial [V] are halved, from rate equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A 20 0, when initial [0] and initial [1] are naived, non-rate equation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pew rate $-(0.5)^2(0.5)r - 0.125r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1000  face = (0.5)(0.5)(-0.125)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| At 55 °C (increase by 30 °C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| At 55 C (increase by 50 C),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $p_{0} = p_{1} + p_{2} + p_{3} + p_{3$ |
| $1000 \text{ for } 1201 \times 2^{-1} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 17 | <ul> <li>A radioactive element has two isotopes, X and Y, with half–lives of 2 min and 6 min respectively.</li> <li>An experiment starts with z times as many atoms of X as of Y. After 6 min, the number of atoms of X and Y are both equal.</li> <li>Given that radioactive decay is a first order reaction, what is the value of z?</li> </ul> |                                                      |                           |                                                            |   |   |   |   |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------|------------------------------------------------------------|---|---|---|---|--|
|    | Α                                                                                                                                                                                                                                                                                                                                                 | 0.5                                                  | В                         | 2                                                          | С | 4 | D | 8 |  |
|    | Let the no. of atoms of <b>Y</b> after 6 min be 1. Since the half-life of <b>Y</b> is 6 min, the no. of atoms of <b>Y</b> at start of experiment will be 2.<br>Since the no. of atoms of <b>X</b> at start of experiment is <i>z</i> times that of <b>Y</b> , the no. of atoms of <b>X</b> at the start will be 2 <i>z</i> .                      |                                                      |                           |                                                            |   |   |   |   |  |
|    | t =<br>X:<br>Y:<br>Since<br>0.25.                                                                                                                                                                                                                                                                                                                 | $\begin{array}{llllllllllllllllllllllllllllllllllll$ | 4 ı<br>0.<br><b>A = B</b> | min 6 min<br>5 <i>z</i> 0.25 <i>z</i><br>1<br>after 6 min, |   |   |   |   |  |

**18** The gas-phrase reaction of hydrogen and nitrogen monoxide produces nitrogen and water.

$$2NO(g) + 2H_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

A series of experiments was carried out in a reaction vessel at constant pressure and the results obtained are given in the table.

| [NO] / mol dm <sup>-3</sup> | [H <sub>2</sub> ] / mol dm <sup>-3</sup> | initial rate / mol dm <sup>-3</sup> s <sup>-1</sup> |
|-----------------------------|------------------------------------------|-----------------------------------------------------|
| 0.250                       | 0.250                                    | 0.212                                               |
| 0.250                       | 0.125                                    | 0.106                                               |
| 0.125                       | 0.125                                    | 0.027                                               |

Which statement about this reaction is correct?

| A | The overall order of the reaction is 3.                         |
|---|-----------------------------------------------------------------|
| В | The reaction is second order with respect to [H <sub>2</sub> ]. |
| С | The reaction is first order with respect to [NO].               |

|    | D                    | The theoret                                                                                                                                            | ical rate equati                                                  | ion for this                                                     | reaction is ra                                 | ate = [H <sub>2</sub> ] <sup>m</sup> [NO           | ] <sup>n</sup> .                                                         |
|----|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------|
|    | Ans                  | wer: A                                                                                                                                                 |                                                                   |                                                                  |                                                |                                                    |                                                                          |
|    | Lool<br>Hen          | Looking at the first two experiments, when $[H_2]$ is halved, the initial rate is halved too.<br>Hence order of reaction with respect to $H_2$ is one. |                                                                   |                                                                  |                                                |                                                    |                                                                          |
|    | Lool<br>rate<br>two. | king at the se<br>increases by                                                                                                                         | econd and third<br>4 times from e                                 | experimer<br>expt 3 to 2.                                        | nts, when [N<br>Hence, orde                    | O] is doubled the of reaction v                    | from expt 3 to 2, the<br>vith respect to NO is                           |
|    | Ove                  | rall order of r                                                                                                                                        | eaction = $1 + 2$                                                 | 2 = 3                                                            |                                                |                                                    |                                                                          |
|    | Opti                 | on D is wron                                                                                                                                           | g as the rate co                                                  | onstant is r                                                     | nissing from                                   | the rate equat                                     | ion.                                                                     |
| 19 | The<br>exar<br>1.0   | gas-phase<br>mple of an ec<br>mol of CO(g)                                                                                                             | reaction of ca<br>quilibrium. The<br>in a 0.4 dm <sup>3</sup> fla | rbon monor<br>reaction w<br>ask and all                          | oxide with h<br>as investigat<br>owing equilit | ydrogen form<br>ted by mixing 2<br>prium to be est | ing methanol is an 2.0 mol of H <sub>2</sub> (g) with ablished at 300 K. |
|    |                      |                                                                                                                                                        |                                                                   | 2H <sub>2</sub> (g)                                              | + CO(g)                                        | <del>,</del> CH                                    | l₃OH(g)                                                                  |
|    |                      |                                                                                                                                                        | initial amount                                                    | 2.0                                                              | 1.0                                            |                                                    | 0                                                                        |
|    | At e                 | auilibrium. 0.                                                                                                                                         | 2 mol of H <sub>2</sub> had                                       | d reacted v                                                      | vith CO.                                       |                                                    |                                                                          |
|    | Wha                  | at is the value                                                                                                                                        | of the equilibr                                                   | ium consta                                                       | ant $K_{\rm a}$ at 300                         | ) K?                                               |                                                                          |
|    | Δ                    | $1.2 \times 10^{-2}$                                                                                                                                   |                                                                   |                                                                  |                                                |                                                    |                                                                          |
|    | B                    | $1.2 \times 10^{-2}$                                                                                                                                   |                                                                   |                                                                  |                                                |                                                    |                                                                          |
|    | C                    | $3.4 \times 10^{-2}$                                                                                                                                   |                                                                   |                                                                  |                                                |                                                    |                                                                          |
|    | D                    | $55 \times 10^{-3}$                                                                                                                                    |                                                                   |                                                                  |                                                |                                                    |                                                                          |
|    | Δns                  |                                                                                                                                                        |                                                                   |                                                                  |                                                |                                                    |                                                                          |
|    |                      | Wer. D                                                                                                                                                 |                                                                   | 2H <sub>2</sub> (g)                                              | + CO(g)                                        | ⇔ CH₃OH(g)                                         |                                                                          |
|    |                      |                                                                                                                                                        | initial moles                                                     | 2.0                                                              | 1.0                                            | 0                                                  |                                                                          |
|    |                      |                                                                                                                                                        | change                                                            | -0.2                                                             | -0.1                                           | +0.1                                               |                                                                          |
|    |                      |                                                                                                                                                        | eqm moles                                                         | 1.8                                                              | 0.9                                            | 0.1                                                |                                                                          |
|    |                      |                                                                                                                                                        | I                                                                 | $X_c = \frac{(\frac{0.1}{0.4})}{(\frac{0.9}{0.4})(\frac{1}{0})}$ | $\frac{)}{(\frac{1}{2})^2} = 5.5 \times 1$     | 0 <sup>-3</sup>                                    |                                                                          |
|    | <b></b> -            |                                                                                                                                                        |                                                                   |                                                                  |                                                |                                                    |                                                                          |
| 20 | The                  | Haber proc                                                                                                                                             | ess involves a                                                    | reversible                                                       | e reaction be                                  | etween hydrog                                      | gen and nitrogen to                                                      |

| 20 | achi | eve lar | ge scale production of ammonia.                                                      |
|----|------|---------|--------------------------------------------------------------------------------------|
|    |      |         | $3H_2(g) + N_2(g) \longrightarrow 2NH_3(g)  \Delta H < 0$                            |
|    | Whi  | ch stat | ements about the Haber process is correct?                                           |
|    |      | 1       | Addition of iron catalyst speeds up the reaction and increases the yield of ammonia. |

|    |                      | 2                           | The pressure used should be as high as possible to increase the yield of                                                                                                  |
|----|----------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                      |                             | ammonia.                                                                                                                                                                  |
|    |                      | 3                           | Increasing the temperature speeds up the reaction but lowers the yield of ammonia.                                                                                        |
|    |                      |                             |                                                                                                                                                                           |
|    | Α                    | 3 only                      | у                                                                                                                                                                         |
|    | В                    | 1 and                       | d 2 only                                                                                                                                                                  |
|    | С                    | 1 and                       | d 3 only                                                                                                                                                                  |
|    | D                    | all of                      | the above                                                                                                                                                                 |
|    | Ans                  | wer: A                      | <b>N</b>                                                                                                                                                                  |
|    | Stat                 | ement<br>same.              | 1 is incorrect. Catalyst will speed up reaction rate but yield of ammonia stays                                                                                           |
|    | Stat<br>pres<br>with | ement<br>sures<br>stand I   | 2 is incorrect. Higher pressure increases yield of ammonia but extremely high will increase risk of explosion. More expensive equipment is also needed to high pressures. |
|    | Stat<br>amn<br>exce  | ement<br>nonia (<br>ess hea | 3 is correct. Increasing temperature speeds up the rate of reaction. Yield of decreases as the backward endothermic reaction is favoured to absorb the at.                |
|    | · _ ·                |                             |                                                                                                                                                                           |
| 21 | The                  | conce                       | ntration-time graph of a reversible reaction is shown below.                                                                                                              |



| D                     | catalyst was added                                                                                                                                                                                                                                           |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ansv                  | wer: C                                                                                                                                                                                                                                                       |
| A is                  | a incorrect. If concentration of reactant was changed, there should be a sharp ease/decrease to either A or B (vertical straight line up or down at time t).                                                                                                 |
| B is<br>B sh          | incorrect. If volume of the reaction vessel was changed, both concentrations of A and hould show a sharp increase/decrease at time t.                                                                                                                        |
| C is<br>so th<br>read | correct. A change in temperature would result in a shift in POE to absorb/release heat<br>ne concentrations of A and B would show gradual changes until a new equilibrium is<br>hed. There will not be sharp changes in concentrations of A and B at time t. |
| D is<br>exte<br>esta  | incorrect. Catalyst will speed up the forward and backward reaction rate to the same<br>nt. However, POE will not change so there should not be a new equilibrium being<br>blished.                                                                          |

22 Three unknown solutions **P**, **Q** and **R** contain a strong monobasic acid, a weak monobasic acid and a strong monoprotic base, but not necessarily in the same order. The concentration and pH of each solution are shown below. Ρ Q R 1.00 mol dm<sup>-3</sup> 0.01 mol dm<sup>-3</sup> 0.001 mol dm<sup>-3</sup> pH = 12.0 pH = 1.8pH = 3.0Which statement is incorrect? **P** contains the strong acid. Α В **Q** contains the strong base. Mixing equal volumes of **P** and **Q** will produce a buffer solution. С Mixing 10 cm<sup>3</sup> of **Q** and 100 cm<sup>3</sup> of **R** will produce a solution of pH 7. D **Answer: A** P and R are acids while Q is the strong base. Strong monoprotic acids will fully ionise so the concentration of acid will be the same as the concentration of hydrogen ions. If **P** was a strong acid: pH = -lg(1.00) = 0Therefore, **P** is not a strong acid and has to be the weak acid. If **R** was a strong acid: pH = -lg(0.001) = 3.0Therefore, **R** is a strong acid. Mixing equal volumes of P and Q will result in a mixture of weak acid and its salt. A buffer solution will be formed.

| Mixing 10 cm <sup>3</sup> of Q and 100 cm <sup>3</sup> of R will result in equimolar amounts of strong acid and |
|-----------------------------------------------------------------------------------------------------------------|
| strong base reacting. Complete neutralisation will result in a solution of pH 7.                                |

| 23 | The value of the ionic product of water, $K_{w}$ , varies with temperature.                                                                                                                                                                       |        |                                     |                                               |                           |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------------------------------|-----------------------------------------------|---------------------------|--|
|    | H₂O(I) <del>→ OH</del> ⁻(ag) + H⁺(ag)                                                                                                                                                                                                             |        |                                     |                                               |                           |  |
|    |                                                                                                                                                                                                                                                   |        |                                     | - ()                                          |                           |  |
|    |                                                                                                                                                                                                                                                   |        | temperature / °C                    | <i>K</i> <sub>w</sub> / mol² dm <sup>−6</sup> | pH                        |  |
|    |                                                                                                                                                                                                                                                   |        | 0                                   | 0.1 × 10 <sup>-14</sup>                       | 7.5                       |  |
|    |                                                                                                                                                                                                                                                   |        | 10                                  | 0.3 × 10 <sup>-14</sup>                       | 7.3                       |  |
|    |                                                                                                                                                                                                                                                   |        | 25                                  | 1.0 × 10 <sup>-14</sup>                       | 7.0                       |  |
|    |                                                                                                                                                                                                                                                   |        | 35                                  | 2.1 × 10 <sup>-14</sup>                       | 6.8                       |  |
|    | Whi                                                                                                                                                                                                                                               | ch sta | tements about the ionis             | sation of water are co                        | prrect?                   |  |
|    |                                                                                                                                                                                                                                                   |        |                                     |                                               |                           |  |
|    |                                                                                                                                                                                                                                                   | 1      | The reaction is endot               | thermic.                                      |                           |  |
|    |                                                                                                                                                                                                                                                   | 2      | At 10 °C, [H <sup>+</sup> ] is less | than 1.0 × 10 <sup>-7</sup> mol               | dm <sup>-3</sup> .        |  |
|    |                                                                                                                                                                                                                                                   | 3      | Water is more acidic                | at 35 °C than at 25 °                         | C as pH is less than 7.0. |  |
|    |                                                                                                                                                                                                                                                   |        |                                     |                                               |                           |  |
|    | Α                                                                                                                                                                                                                                                 | 1 on   | ly                                  |                                               |                           |  |
|    | В                                                                                                                                                                                                                                                 | 1 an   | d 2 only                            |                                               |                           |  |
|    | С                                                                                                                                                                                                                                                 | 3 on   | ly                                  |                                               |                           |  |
|    | D                                                                                                                                                                                                                                                 | all of | the above                           |                                               |                           |  |
|    | Answer: B                                                                                                                                                                                                                                         |        |                                     |                                               |                           |  |
|    | Statement 1 is correct. Ionic product increases with temperature which means that the forward reaction is favoured. This implies that the forward reaction is endothermic to absorb the excess heat.                                              |        |                                     | 5                                             |                           |  |
|    | Statement 2 is correct. At 25 °C, the pH of water is 7 and $[H^+] = 1.0 \times 10^{-7}$ mol dm <sup>-3</sup> . At 10 °C, the ionic product is smaller than at 25 °C, which means POE has shifted left such that $[H^+]$ and $[OH^-]$ are smaller. |        |                                     | )<br>.t                                       |                           |  |
|    | Statement 3 is incorrect. At 35 °C, the POE shifts right which increases [H <sup>+</sup> ] and [OH <sup>-</sup> ] to the same extent. Since [H <sup>+</sup> ] = [OH <sup>-</sup> ], water is still neutral even though pH <7.                     |        |                                     | )                                             |                           |  |

| 24 | Which of the following underlined species is <b>not</b> acting as a Brønsted-Lowry acid? |                                                                                      |  |
|----|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
|    | Α                                                                                        | $\underline{H_2O}(I) + NH_3(aq) \rightarrow NH_4^+(aq) + OH^-(aq)$                   |  |
|    | В                                                                                        | $\underline{HC}{l}(g) + NH_3(g) \to NH_4C{l}(g)$                                     |  |
|    | С                                                                                        | $\underline{HNO_3}(I) + H_2SO_4(I) \rightarrow H_2NO_3^+(I) + HSO_4^-(I)$            |  |
|    | D                                                                                        | $CH_3COO^{-}(aq) + \underline{H_2O}(I) \rightleftharpoons CH_3COOH(aq) + OH^{-}(aq)$ |  |

#### Answer: C

 $\mathsf{HNO}_3(\mathsf{I}) + \mathsf{H}_2\mathsf{SO}_4(\mathsf{I}) \to \mathsf{H}_2\mathsf{NO}_3^+(\mathsf{I}) + \mathsf{HSO}_4^-(\mathsf{I})$ 

 $H_2SO_4(I)$  is the Brønsted-Lowry acid as it donates a proton to  $HNO_3(I)$ .  $HNO_3(I)$  is the Brønsted-Lowry base as it accepts the proton.

| 25 | Which of the following does not explain the wall climbing ability of geckos?                                                                                                                     |                                                                                   |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
|    | Α                                                                                                                                                                                                | Strong covalent bonds form between the geckos' feet and ceilings.                 |  |
|    | В                                                                                                                                                                                                | Geckos' feet contain nanostructures that have high surface area to volume ratio.  |  |
|    | С                                                                                                                                                                                                | Instantaneous dipole-induced dipole interactions support the geckos' body weight. |  |
|    | D                                                                                                                                                                                                | Geckos can move along walls simply by pulling their feet at different angles.     |  |
|    | Answer: A                                                                                                                                                                                        |                                                                                   |  |
|    | Id-id interactions are the forces of attraction that allow the gecko to stick to the walls and ceilings. If covalent bonds were to form, the gecko would be stuck as these bonds are too strong. |                                                                                   |  |



Both are conductors of electricity as all the carbon atoms have p orbitals that can overlap sideways with the p orbitals of neighbouring C atoms. Electrons are delocalised over the entire length of the graphene layer and poly(ethyne) layer.

All the carbon atoms in graphene and poly(ethyne) are sp<sup>2</sup> hybridised.

Graphene has a much higher melting point than poly(ethyne).

Both layers of graphene and layers of poly(ethyne) are held by weak id-id attraction so graphite is soft and slippery and poly(ethyne) is soft.

| 27 | When 1 mol of cocamide DEA is heated with excess aqueous sodium hydroxide, a product                                                                                               |                                                                            |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
|    | mixture was obtained.                                                                                                                                                              |                                                                            |  |  |
|    |                                                                                                                                                                                    |                                                                            |  |  |
|    |                                                                                                                                                                                    | 0                                                                          |  |  |
|    |                                                                                                                                                                                    |                                                                            |  |  |
|    |                                                                                                                                                                                    |                                                                            |  |  |
|    |                                                                                                                                                                                    |                                                                            |  |  |
|    |                                                                                                                                                                                    |                                                                            |  |  |
|    |                                                                                                                                                                                    |                                                                            |  |  |
|    |                                                                                                                                                                                    | OH                                                                         |  |  |
|    |                                                                                                                                                                                    | cocamide DEA                                                               |  |  |
|    |                                                                                                                                                                                    |                                                                            |  |  |
|    | Whi                                                                                                                                                                                | ch statement about the product mixture is correct?                         |  |  |
|    | ••••                                                                                                                                                                               |                                                                            |  |  |
|    | Α                                                                                                                                                                                  | The product mixture exists as an organic layer and an aqueous layer.       |  |  |
|    | В                                                                                                                                                                                  | The organic products are $CH_3(CH_2)_nCOOH$ and $HOCH_2CH_2NHCH_2CH_2OH$ . |  |  |
|    | С                                                                                                                                                                                  | The organic products react completely with 1 mol of dilute sulfuric acid.  |  |  |
|    | D                                                                                                                                                                                  | The product mixture cannot be separated by heating.                        |  |  |
|    | Answer: C                                                                                                                                                                          |                                                                            |  |  |
|    | _                                                                                                                                                                                  |                                                                            |  |  |
|    | Products formed after alkaline hydrolysis of amide: CH <sub>3</sub> (CH <sub>2</sub> ) <sub>n</sub> COO <sup>-</sup> Na <sup>+</sup> and                                           |                                                                            |  |  |
|    | HOCH <sub>2</sub> CH <sub>2</sub> NHCH <sub>2</sub> CH <sub>2</sub> OH are formed in excess NaOH in aqueous medium.                                                                |                                                                            |  |  |
|    | $CH_3(CH_2)_nCOO$ Na <sup>+</sup> forms ion-dipole interactions with water in aqueous medium and<br>each molecule of HOCH_CH_NHCH_CH_OH can form 3 hydrogen bonds with water so it |                                                                            |  |  |
|    | will be soluble in water as well. There will not be an organic layer                                                                                                               |                                                                            |  |  |
|    |                                                                                                                                                                                    |                                                                            |  |  |
|    | The products of alkaline hydrolysis are $CH_3(CH_2)_nCOO^-$ and $HOCH_2CH_2NHCH_2CH_2OH$ .                                                                                         |                                                                            |  |  |
|    | The products will react completely with 1 mol of $H_2SO_2(aq)$ , 1 mol of $H_2SO_2$ will fully                                                                                     |                                                                            |  |  |
|    | dissociate to produce 2 mol of H <sup>+</sup> .                                                                                                                                    |                                                                            |  |  |
|    | $CH_3(CH_2)_nCOO^- + H^+ \rightarrow CH_3(CH_2)_nCOOH$                                                                                                                             |                                                                            |  |  |
|    | $HOCH_2CH_2NHCH_2CH_2OH + H^+ \rightarrow HOCH_2CH_2N^+H_2CH_2CH_2OH$                                                                                                              |                                                                            |  |  |
|    | -                                                                                                                                                                                  |                                                                            |  |  |
|    | I he product mixture can be separated by heating using fractional distillation as the                                                                                              |                                                                            |  |  |
|    | proc                                                                                                                                                                               | iucis nave unterent politity politis.                                      |  |  |



| 29 | A section of nylon-6,6 is shown below.                                                                                                                                                                       |                                                                                                                                                    |   |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
|    |                                                                                                                                                                                                              | -CO(CH <sub>2</sub> ) <sub>4</sub> CONH(CH <sub>2</sub> ) <sub>6</sub> NHCO(CH <sub>2</sub> ) <sub>4</sub> CONH(CH <sub>2</sub> ) <sub>6</sub> NH- |   |  |
|    | Whi                                                                                                                                                                                                          | Which deductions can be made about nylon-6,6?                                                                                                      |   |  |
|    | 1 It is a polyamide.                                                                                                                                                                                         |                                                                                                                                                    |   |  |
|    | 2 It can be made from monomers HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>6</sub> NH <sub>2</sub> and HO <sub>2</sub> C(CH <sub>2</sub> ) <sub>4</sub> NH <sub>2</sub>                                         |                                                                                                                                                    |   |  |
|    | 3 Hydrogen bonding forms between two polymer chains.                                                                                                                                                         |                                                                                                                                                    |   |  |
|    |                                                                                                                                                                                                              |                                                                                                                                                    |   |  |
|    | Α                                                                                                                                                                                                            | 1 on                                                                                                                                               | У |  |
|    | В                                                                                                                                                                                                            | 1 and 3 only                                                                                                                                       |   |  |
|    | С                                                                                                                                                                                                            | 2 and 3 only                                                                                                                                       |   |  |
|    | D                                                                                                                                                                                                            | D all of the above                                                                                                                                 |   |  |
|    | Answer: B                                                                                                                                                                                                    |                                                                                                                                                    |   |  |
|    | Statement 1 is correct. There are multiple -CONH- (amide groups) in the structure shown.<br>Statement 2 is incorrect. The monomers that form the structure are $H_2N(CH_2)_6NH_2$ and $HO_2C(CH_2)_4CO_2H$ . |                                                                                                                                                    |   |  |

| Statement 3 is correct. There is a hydrogen atom bonded to a highly electronegative N |
|---------------------------------------------------------------------------------------|
| atom in the amide linkage, allowing the formation of hydrogen bonds between polymer   |
| chains.                                                                               |

AOA

| 30 | Poly(vinyl chloride) (PVC) and poly(vinyl alcohol) (PVA) are represented by the following |                                                                                                                   |  |  |
|----|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
|    | structures.                                                                               |                                                                                                                   |  |  |
|    |                                                                                           | $ \begin{array}{c c} H & H & H & OH \\ \hline C & C & C & - C \\ \hline H & C \\ H & C \\ PVC & PVA \end{array} $ |  |  |
|    | Whi                                                                                       | ch statement is <b>incorrect</b> ?                                                                                |  |  |
|    | Α                                                                                         | PVC and PVA are both addition polymers.                                                                           |  |  |
|    | В                                                                                         | PVA is water-soluble and is found in eye drops.                                                                   |  |  |
|    | С                                                                                         | PVC is tough and flexible and can be used to make water pipes.                                                    |  |  |
|    | D                                                                                         | PVC is water-soluble and can be used to make glues.                                                               |  |  |
|    | Answer: D                                                                                 |                                                                                                                   |  |  |
|    | PVC                                                                                       | is water-resistant as it cannot form hydrogen bonds with water.                                                   |  |  |