2020	2020 A Level H3 Mathematics (9820/01)			
Qn	Suggested Solution	Remarks		
1i	Apply the AM-GM inequality to yield the following.			
	$\frac{(n-1)x+y}{2} \ge \sqrt[n]{x^{n-1}y}$			
	$n - \sqrt{n}$			
	$\frac{\left((n-1)x+y\right)^n}{x+y} > x^{n-1}y$			
	$\frac{1}{n^n} \ge x y$			
	$\left(\left(n-1\right)x+y\right)^n \ge n^n x^{n-1} y$			
1ii	Let $n = 2$, $x = 1$ and $y = a$ in (i) to get: $(1+a)^2 \ge 2^2 a$.			
	Let $n = 3$, $x = \frac{1}{2}$ and $y = b$ in (i) to get: $(1+b)^3 \ge 3^3 \left(\frac{1}{2}\right)^2 b$.			
	Let $n = 4$, $x = \frac{1}{3}$ and $y = c$ in (i) to get: $(1+c)^4 \ge 4^4 \left(\frac{1}{3}\right)^3 c$.			
	In each case, equality holds only when $x = y$.			
	Hence,			
	$(1+a)^{2}(1+b)^{3}(1+c)^{4} \ge (2^{2}a)\left(3^{3}\left(\frac{1}{2}\right)^{2}b\right)\left(4^{4}\left(\frac{1}{3}\right)^{3}c\right)$			
	$=4^4abc$			
	=256 (:: $abc=1$)			
	with equality only if $a = 1$, $b = \frac{1}{2}$ and $c = \frac{1}{2}$ which is impossible since			
	abc = 1.			
	Therefore, $(1+a)^2 (1+b)^3 (1+c)^4 > 256$.			
2i	Let $y = f(x) = \frac{1}{ax+b}, x \neq -\frac{b}{a}$.			
	$ax+b=\frac{1}{y}$			
	$x = \frac{1}{a} \left(\frac{1}{y} - b \right)$			
	$f^{-1}(x) = \frac{1}{a} \left(\frac{1}{x} - b \right), x \neq 0$			
2ii	$f^{3}(p) = p$			
	$\frac{1}{1}$			
	$\frac{ap+b}{a\left(\frac{ap+b}{a+b\left(ap+b\right)}\right)+b} = b$			
	$a^{2}p^{2} + abp = a + abp + b^{2} - abp - ab^{2}p^{2} - b^{3}p$			
	$(a+b^{2})ap^{2}+b(a+b^{2})p-(a+b^{2})=0$			
	$(a+b^2)(ap^2+bp-1)=0$ (**)			
	$a + b^2 = 0$ or $ap^2 + bp - 1 = 0$			

	Case 1: $a + b^2 = 0$.	
	Then equation (**), and hence equation (*), holds true for all values of p for which $f^3(p)$ exists	
	Hence $f^3(r) = r$ for all $r \in \mathbb{R}$ such that $f^3(r)$ exists	
	Thence, $\Gamma(x) = x$ for all $x \in \mathbb{R}$ such that $\Gamma(x)$ exists.	
	Case 2: $ap^2 + bp - 1 = 0$.	
	Then $p = \frac{1}{ap+b} = f(p)$, i.e. p is a fixed point of f.	
2iii	$Ax_n x_{n+1} + Bx_{n+1} = 1 \qquad \Longrightarrow \qquad x_{n+1} = \frac{1}{Ax_n + B}$	
	From (ii), $f^2(x) = x$ when $b = 0$ for all x such that $f^2(x)$ exists; and	Compare A and B in (iii)
	$f^{3}(x) = x$ when $a + b^{2} = 0$ for all x such that $f^{3}(x)$ exists.	respectively.
	Period 2: Set $A = 1$ and $B = 0$ to get the recurrence relation $x x_{1} = 1$.	
	with the condition that $x_1 \neq -1, 0, 1$.	
	Period 3: Set $A = -1$ and $B = 1$ to get the requirence relation	
	$-x_n x_{n+1} + x_{n+1} = 1$, with the condition that $x_1 \neq 0, 1$.	
3i	Let $Q(n)$ be the statement: $\int_{-\infty}^{t} x^n e^{-x} dx = n! (1 - e^{-t} P_n(t)), n \in \mathbb{Z}_0^+$.	
	LHS of $Q(0) = \int_0^t x^0 e^{-x} dx = \left[-e^{-x}\right]_0^t = 1 - e^{-t}$	
	RHS of $Q(0) = 0! (1 - e^{-t} P_0(t)) = 1 - e^{-t} (\frac{t^0}{0!}) = 1 - e^{-t}$	
	Therefore, $Q(0)$ is true.	
	Assume $O(k)$ is true for some $k \in \mathbb{Z}_{0}^{+}$, i.e. $\int_{0}^{t} x^{k} e^{-x} dx = k! (1 - e^{-t} P_{k}(t))$.	
	$\int_{0}^{t} e^{k+1} e^{-x} dx$	
	Let S of $\mathcal{Q}(k+1) = \int_0^\infty x^2 e^{-x} dx$	
	$= \left[-x^{k+1} e^{-x} \right]_{0}^{1} - \int_{0}^{1} -(k+1) x^{k} e^{-x} dx$	
	$= -t^{k+1}e^{-t} + (k+1)\int_0^t x^k e^{-x} dx$	
	$= -t^{k+1}e^{-t} + (k+1)k!(1 - e^{-t}P_k(t)) $ (by inductive hypothesis)	
	$= -(k+1)! \frac{t^{k+1}e^{-t}}{(k+1)!} + (k+1)!(1-e^{-t}P_k(t))$	
	$= (k+1)! \left[1 - e^{-t} \left(P_k(t) + \frac{t^{k+1}}{(k+1)!} \right) \right]$	
	$= (k+1)! \left[1 - e^{-t} \left(\sum_{i=0}^{k} \frac{t^{i}}{i!} + \frac{t^{k+1}}{(k+1)!} \right) \right]$	
	$= (k+1)! \left[1 - e^{-t} \sum_{i=0}^{k+1} \frac{t^i}{i!} \right] = (k+1)! (1 - e^{-t} P_{k+1}(t)) = \text{RHS of } Q(k+1)$	

	Since $Q(k)$ is true implies that $Q(k+1)$ is true, and $Q(0)$ is true, then by	
	PMI, $Q(n)$ is true for all $n \in \mathbb{Z}_0^+$.	
3ii	For any fixed $n \in \mathbb{Z}_0^+$,	
	$e^{-t}P_{n}(t) = \frac{1+t+\frac{t^{2}}{2!}++\frac{t^{n}}{n!}}{e^{t}}$ $= \frac{1+t+\frac{t^{2}}{2!}++\frac{t^{n}}{n!}}{1+t+\frac{t^{2}}{2!}++\frac{t^{n}}{n!}+}$ $= \frac{\frac{1}{t^{n}}+\frac{1}{t^{n-1}}+\frac{1}{2!t^{n-2}}++\frac{1}{n!}}{\frac{1}{t^{n}}+\frac{1}{t^{n-1}}+\frac{1}{2!t^{n-2}}++\frac{t^{2}}{n!}++\frac{t^{2}}{n!}} \longrightarrow 0.$	
	$\overline{t^{n}} + \overline{t^{n-1}} + 2!t^{n-2} + \dots + n! + (n+1)! + (n+2)! + \dots$	
	$\therefore \int_0^\infty x^n \mathrm{e}^{-x} \mathrm{d}x = \lim_{t \to \infty} \left(\int_0^t x^n \mathrm{e}^{-x} \mathrm{d}x \right) = \lim_{t \to \infty} \left[n! \left(1 - \mathrm{e}^{-t} \mathrm{P}_n\left(t\right) \right) \right] = n!$	
3iii	For all $n \in \mathbb{Z}$ with $n > t > 0$, we have the following results.	
	$\left(1+\frac{t}{n}\right)^{n} = 1 + \binom{n}{1}\left(\frac{t}{n}\right) + \binom{n}{2}\left(\frac{t}{n}\right)^{n} + \dots + \binom{n}{n}\left(\frac{t}{n}\right)^{n}$	
	$n(n-1) t^2 = n! t^n$	
	$= 1 + t + \frac{1}{n^2} + \frac{1}{2!} + \dots + \frac{1}{n^n} + \frac{1}{n!}$	
	$\leq 1 + t + \frac{t^2}{2!} + \dots + \frac{t^n}{n!} = P_n(t)$	
	$\left(1 - \frac{t}{n}\right)^{-n} = 1 + \left(-n\right)\left(-\frac{t}{n}\right) + \frac{(-n)(-n-1)}{2!}\left(-\frac{t}{n}\right)^2 + \dots \left(:: n > t > 0 \Longrightarrow \frac{t}{n} < 1\right)$	Convergence only holds
	$=1+t+\frac{n(n+1)}{n^2}\frac{t^2}{2!}+\ldots+\frac{n(n+1)\ldots(2n-1)}{n^n}\frac{t^n}{n!}+\ldots$	10r $ r < 1$.
	> 1 + t + $\frac{t^2}{2!}$ + $\frac{t^3}{3!}$ + + $\frac{t^n}{n!}$ = $P_n(t)$	
	$\therefore \left(1 + \frac{t}{n}\right)^n \le \mathbf{P}_n\left(t\right) < \left(1 - \frac{t}{n}\right)^{-n}$	
4i	$39x + 23y + 65z = 1872 = 2^4 \times 3^2 \times 13$	
	Hence, $13 (39x+23y+65z)$.	
	Since $13 39x$ and $13 65z$, we must have $13 23y$.	
	Since $gcd(13,23) = 1$, $13 y$. Finally, since y is prime $y = 12$	
4 ii	Finally, since y is prime, $y = 13$. Given $y = 13$, then we have $39x + 65z = 1573$ which yields	
(a)	3x + 5z = 121(*)	
	Taking modulo 5 on both sides of (*) gives	
	$3x \equiv 1 \pmod{5}$, and so $x \equiv x + 5x \equiv 6x \equiv 2 \pmod{5}$.	
	Similarly, taking modulo 3 on both sides of (*) gives	
	$5z \equiv 1 \pmod{3}$, and so $z \equiv 3(3z) + z = 10z \equiv 2 \pmod{3}$.	

4ii	From (a), $3x + 5z = 121$, $x = 5m + 2$ and $z = 3n + 2$ for some $m, n \in \mathbb{Z}$.	
(b)	$\therefore 3(5m+2)+5(3n+2)=121 \Longrightarrow 15(m+n)=105 \Longrightarrow m+n=7$	
	Hence, $ z-x = 3n+2-(5m+2) = 3n-5m = 3(7-m)-5m = 21-8m $.	
	Minimal value of $ z - x $ is 3 when $m = 3$, which in turn gives $n = 4$.	
	Thus, the required solution is $x = 17$, ($y = 13$) and $z = 14$.	
4iii	From (i), if y is prime, then $y = 13$ which leads to $3x + 5z = 121$.	
	From (ii), $(x, z) = (17, 14)$ is a solution to $3x + 5z = 121$.	
	Since $gcd(3,5)=1$, integer solutions to $3x+5z=121$ are	
	$\begin{cases} x = 17 + 5r \\ \text{for } r \in \mathbb{Z}. \end{cases}$	
	z = 14 - 3r	
	When r is even z is even; and when r is odd x is even. It is thus impossible	
	for x and z to be both prime unless one of them is 2.	
	When $x = 2$, $r = -3$ and $z = 23$ which is prime.	
	When $z = 2$, $r = 4$ and $x = 37$ which is prime.	
	Hence, solutions with x, y and z prime are	
	(x, y, z) = (2, 13, 23) or $(x, y, z) = (37, 13, 2)$.	
5a	For $r \neq 0$ $f(r) + 2f(\frac{1}{r}) = 3r$ (1)	
(i)	$\frac{1}{x} = \frac{1}{x}$	
	Since $x \neq 0$, $\frac{1}{x}$ is defined and non-zero as well.	
	Replacing r with $\frac{1}{2}$ in (1) gives $f(\frac{1}{2}) + 2f(r) = \frac{3}{2}$ (2)	
_	$\frac{1}{x} = \frac{1}{x} = \frac{1}$	
5a (ii)	$2 \times (2) - (1):$ $3f(x) = \frac{6}{x} - 3x$	
	Hence, $f(x) = \frac{2}{r} - x$, $x \neq 0$.	
5b	$For x \neq 0, g(x) + g(-x) + g(1) = x \tag{3}$	
	$101x \neq 0, g(x) + g(-x) + g(\frac{1}{x}) = x.$	
	Replacing x with $-x$ in (3) gives $g(-x)+g(x)+g(-\frac{1}{x})=-x$. (4)	
	(3)-(4): $g\left(\frac{1}{x}\right)-g\left(-\frac{1}{x}\right)=2x$	
	Replacing x with $\frac{1}{x}$ gives $g(x)-g(-x)=\frac{2}{x}$ (5)	
	(3)+(5): $2g(x)+g(\frac{1}{x})=x+\frac{2}{x}$ (6)	
	Replacing x with $\frac{1}{x}$ gives $2g\left(\frac{1}{x}\right) + g(x) = \frac{1}{x} + 2x$ (7)	
	$2 \times (6) - (7):$ $3g(x) = \frac{3}{x}$	
	Hence, $g(x) = \frac{1}{x}, x \neq 0$.	

6i	For each $n \ge 1$:
	$x_{n+1}^{2} - x_{n}x_{n+2} = x_{n+1}^{2} - x_{n}(dx_{n+1} - x_{n})$
	$= x_n^2 + x_{n+1}^2 - dx_n x_{n+1} \qquad \qquad$
	We also have the following for each $n \ge 2$:
	$x_{n}^{2} + x_{n+1}^{2} - dx_{n}x_{n+1} = x_{n}^{2} + (dx_{n} - x_{n-1})^{2} - dx_{n}(dx_{n} - x_{n-1})$
	$= x_n^2 + d^2 x_n^2 - 2dx_n x_{n-1} + x_{n-1}^2 - d^2 x_n^2 + dx_{n-1} x_n$
	$=x_{n-1}^{2}+x_{n}^{2}-dx_{n-1}x_{n}$
	Recursively, we have:
	$x_n^2 + x_{n+1}^2 - dx_n x_{n+1}$
	$=x_{n-1}^{2}+x_{n}^{2}-dx_{n-1}x_{n}$
	$=x_{n-2}^{2}+x_{n-1}^{2}-dx_{n-2}x_{n-1}$
	=
	$=x_{1}^{2}+x_{2}^{2}-dx_{1}x_{2}$
	$=x_2^2 - x_1 x_3$ (by (*))
	= D
	<u>Alternative Solution</u> (to show $x_n^2 + x_{n+1}^2 - dx_n x_{n+1} = D$)
	Let $P(n)$ be the statement $x_n^2 + x_{n+1}^2 - dx_n x_{n+1} = D$ for $n \in \mathbb{Z}^+$.
	Since $x_1^2 + x_2^2 - dx_1x_2 = x_2^2 - x_1x_3 = D$, $P(1)$ is true.
	Assume $P(k)$ is true for some $k \in \mathbb{Z}^+$, i.e. $x_k^2 + x_{k+1}^2 - dx_k x_{k+1} = D$.
	LHS of $P(k+1)$
	$= x_{k+1}^{2} + x_{k+2}^{2} - dx_{k+1}x_{k+2}$
	$= x_{k+1}^{2} + x_{k+2}^{2} - (x_{k} + x_{k+2}) x_{k+2} \qquad (\because dx_{n+1} - x_{n} = x_{n+2} \text{ for all } n \in \mathbb{Z}^{+})$
	$=x_{k+1}^{2}-x_{k}x_{k+2}$
	$= x_k^2 + x_{k+1}^2 - dx_k x_{k+1} $ (by (*))
	= D (by inductive hypothesis)
	= RHS of $P(k+1)$
	Since $P(k)$ is true implies that $P(k+1)$ is true and $P(1)$ is true then by
	PMI $P(n)$ is true for all $n \in \mathbb{Z}^+$
	$1 \text{ with } 1 (n) \text{ is true for all } n \in \mathbb{Z}$
	By (*) and $P(n)$, we have $x_{n+1}^2 - x_n x_{n+2} = x_n^2 + x_{n+1}^2 - dx_n x_{n+1} = D$.
6 ii	Suppose $x_m = 0$ for some $m \in \mathbb{Z}^+$, then by (i),
	$D = x_{m+1}^{2} - x_{m} x_{m+2} = x_{m+1}^{2},$
<i>(</i>	which shows that <i>D</i> is a perfect square.
6111	<u>Case 1</u> : $x_m = 0$ for some $m \in \mathbb{Z}^+$.
	Then by (ii), D is a perfect square.

	<u>Case 2</u> : $x_n \neq 0$ for all $n \in \mathbb{Z}^+$. (Equivalently, $x_n^2 \ge 1$ for all $n \in \mathbb{Z}^+$.)	
	Since there exist positive and negative terms, then $\exists k \in \mathbb{Z}^+$ such that x_k	
	and x_{k+1} are of opposite signs, so that $x_k x_{k+1} < 0$.	
	$D = x_k^2 + x_{k+1}^2 - dx_k x_{k+1}$	
	$\geq 1 + 1 + d\left(-x_k x_{k+1}\right)$	
	$\geq d+2$ (:: $-x_k x_{k+1} \geq 1$ and $d > 0$)	
Giv	By cases 1 and 2, D is a perfect square or $D \ge d+2$.	From (iii) the equality
UIV	A $(3,5)$ -sequence satisfies	D = d + 2 holds when
	$\int 3x_{n+1} - x_n = x_{n+2}, \ n \ge 1$	$x_k x_{k+1} = -1$.
	$(x_2^2 - x_1 x_3 = 5)$	Use this hint to see that
	A possible sequence of five consecutive terms having both positive and	we can set $x_1 = -1$ and
	negative terms is -1, 1, 4, 11, 29.	$x_2 = 1$.
7i	$X = \{1, 2,, m\}, \qquad Y = \{1, 2,, n\}, \qquad f : X \to Y$	
	Number of different functions mapping X to Y is n^m .	
711	For $n \ge m$, number of one-to-one functions is	
	$n(n-1)(n-2)(n-m+1) = \frac{n!}{(n-m)!}.$	
7iii	For $m \ge n$, and for $r = 1, 2,, n$, let A_r be the set of functions $f: X \to Y$	
	such that $r \notin \text{Im}(f)$, i.e. $\forall x \in X$, $f(x) \neq r$.	
	Hence, the number of onto functions is given by $ (A_1 \cup A_2 \cup \cup A_n)' $.	
	$\left \left(\bigcup_{i=1}^{n} A_{i} \right)' \right = n^{m} - \sum_{i} \left A_{i} \right + \sum_{i \neq j} \left A_{i} \cap A_{j} \right + \dots + \left(-1 \right)^{n-1} \sum_{k} \left \bigcap_{i \neq k} A_{i} \right $	
	$= \binom{n}{0} n^{m} - \binom{n}{1} (n-1)^{m} + \binom{n}{2} (n-2)^{m} + \dots + (-1)^{n-1} \binom{n}{n-1} 1^{m}$	Note: sum from $i = 0$ to
	$=\sum_{i=0}^{n} \left(-1\right)^{i} \binom{n}{i} \left(n-i\right)^{m}$	same. $t = n$ of $t = n - 1$ is the
7iv	For $m = n = 5$ and for $r = 1, 2, 3, 4, 5$, let B_r be the set of one-to-one	
	functions $f: X \to Y$ such that $f(r) = r$.	
	Number of one-to-one functions that map no element to itself	
	$=\left(\bigcup_{r=1}^{5}B_{r}\right)'$	
	$=5!-\sum_{i}\left B_{i}\right +\sum_{i\neq j}\left B_{i}\cap B_{j}\right -\sum_{\substack{i\neq j,i\neq k,\\j\neq k}}\left B_{i}\cap B_{j}\cap B_{k}\right +\sum_{i=1}^{5}\left \bigcap_{k\neq i}B_{k}\right -\left \bigcap_{i=1}^{5}B_{i}\right $	
	$=5! - {\binom{5}{1}}4! + {\binom{5}{2}}3! - {\binom{5}{3}}2! + {\binom{5}{4}}1! - 1$	
	= 44	

and contains the point with position vector \mathbf{x} , then it must also contain the point with position vector $-\mathbf{x}$. An ellipse is convex – if A and B are points in an ellipse, then the line segment AB lies in the ellipse.	
An ellipse is convex – if A and B are points in an ellipse, then the line segment AB lies in the ellipse.	
An ellipse is convex – if A and B are points in an ellipse, then the line segment AB lies in the ellipse.	
segment <i>AD</i> nes in the empse.	
(2a)	
Since F contains points with position vectors $-\mathbf{x}$ and $\mathbf{y} = \mathbf{x} + \begin{pmatrix} 2b \end{pmatrix}$, then it	
must contain the midpoint given by position vector $\begin{pmatrix} a \\ b \end{pmatrix}$.	
8b Let G be an ellipse with area at least 4.	
By translating parts of G to fit into the 2 by 2 square given by $0 \le x \le 2$	
and $0 \le y \le 2$ as described in the question, there must be an overlap	
(otherwise, G cannot have an area at least 4). Let A be a common point in this overlap.	
Let (p,q) and (r,s) be different points in G that are translated to A, then	
$\binom{p}{+}\binom{2m_1}{=}\binom{r}{+}\binom{2m_2}{2m_2}$	
$(q)^{\prime}(2n_1)^{\prime}(s)^{\prime}(2n_2)^{\prime}$	
for some $m_1, m_2, n_1, n_2 \in \mathbb{Z}$ with $(m_1, n_1) \neq (m_2, n_2)$.	
Let $\mathbf{x} = \begin{pmatrix} p \\ q \end{pmatrix}$ and $\mathbf{y} = \begin{pmatrix} r \\ s \end{pmatrix} = \mathbf{x} + \begin{pmatrix} 2(m_1 - m_2) \\ 2(n_1 - n_2) \end{pmatrix}$.	
By (a), the point $(m_1 - m_2, n_1 - n_2)$ lies in G and as required, this point has	
integer coordinates that are not both 0.	
8b Suppose on the contrary that there is no such point $(mp - nu, n)$ in C,	
(ii) i.e. for all $m, n \in \mathbb{Z}$, $-2\sqrt{\frac{p}{\pi}} < n < 2\sqrt{\frac{p}{\pi}}$, with $(m, n) \neq (0, 0)$,	
$\left(mp-nu\right)^2+n^2>\frac{4p}{\pi}.$	
$p^{2}m^{2} + u^{2}n^{2} - 2upnm + n^{2} - \frac{4p}{\pi} > 0$	
$p^{2}m^{2} - 2upnm + (u^{2} + 1)n^{2} - \frac{4p}{\pi} > 0$	
Since this is true for all <i>m</i> , the discriminant	
$4u^{2}p^{2}n^{2}-4p^{2}\left[\left(u^{2}+1\right)n^{2}-\frac{4p}{\pi}\right]<0.$	
$4p^2\left(\frac{4p}{\pi}-n^2\right)<0$	
$\frac{4p}{\pi} - n^2 < 0$	
$n < -2\sqrt{\frac{p}{\pi}} \text{ or } n > 2\sqrt{\frac{p}{\pi}} \qquad (\rightarrow \leftarrow)$	

	Alternative	
	Let <i>T</i> be a <i>linear transformation</i> with matrix $T = \begin{pmatrix} p & -u \\ 0 & 1 \end{pmatrix}$.	
	Then det $(T) = p \neq 0$ so T^{-1} exists and has determinant det $(T^{-1}) = \frac{1}{p} > 0$.	
	Let <i>E</i> be defined as $E = T^{-1}(C)$. Then <i>E</i> has equation	
	$(px-uy)^2 + y^2 = \frac{4p}{\pi}$ and is an ellipse also centred on the origin.	
	Area of $E = \det(T^{-1}) \times (\text{Area of } C) = \frac{1}{p} \times \pi \left(2\sqrt{\frac{p}{\pi}}\right)^2 = 4$.	
	By (b(i)), E contains a point $(m,n) \neq (0,0)$ with $m,n \in \mathbb{Z}$.	
	Now by transforming E back to C, via T, the point (m, n) in E is mapped	
	to $(mp - nu, n)$, which is not the origin, in C.	
8c	Let $p, u \in \mathbb{Z}^+$ and <i>C</i> be the circle centred on the origin with radius $2\sqrt{\frac{p}{\pi}}$.	
	From (b(ii)), $(mp - nu, n) \neq (0, 0)$ lies in C. Let the integers $x = mp - nu$	
	and $y = n$, so we get	
	$0 < x^{2} + y^{2} < \left(2\sqrt{\frac{p}{\pi}}\right)^{2} = \frac{4p}{\pi}. \qquad(*)$	
	Since $u^2 + 1 = kp$ for some $k \in \mathbb{Z}^+$,	
	$x^2 + y^2 = \left(mp - nu\right)^2 + n^2$	
	$=m^2p^2-2mpnu+n^2\left(u^2+1\right)$	
	$= p(m^2p - 2mnu + n^2k).$	
	By (*), $0 < p(m^2 p - 2mnu + n^2 k) < \frac{4p}{\pi} < 2p$, which gives	
	$0 < m^2 p - 2mnu + n^2 k < 2.$	
	$\therefore m^2 p - 2mnu + n^2 k = 1$	
	Hence, $x^2 + y^2 = p(m^2 p - 2mnu + n^2 k) = p$.	