
2020 A Level H3 Mathematics (9820/01) 
Qn Suggested Solution Remarks 
1i Apply the AM-GM inequality to yield the following. 
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1ii Let 2n  , 1x   and y a  in (i) to get:  2 21 2a a  . 

Let 3n  , 1
2

x   and y b  in (i) to get:    2
3 3 11 3

2
b b  . 

Let 4n  , 1
3

x   and y c  in (i) to get:    3
4 4 11 4

3
c c  . 

 
In each case, equality holds only when x y . 
 
Hence,  
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with equality only if 1a  , 1
2

b   and 1
3

c   which is impossible since 

1abc  . 
 

Therefore,      2 3 4
1 1 1 256a b c    . 
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Case 1: 2 0a b  . 
Then equation (**), and hence equation (*), holds true for all values of p 
for which  3f p  exists. 

Hence,  3f x x  for all x  such that  3f x  exists. 

 
Case 2: 2 1 0ap bp   . 

Then  1 fp p
ap b

 


, i.e. p is a fixed point of f. 

2iii 
1 1 1

11n n n n
n

Ax x Bx x
Ax B     


 

From (ii),  2f x x  when 0b   for all x such that  2f x  exists; and 

 3f x x  when 2 0a b   for all x such that  3f x  exists. 

 
Period 2: Set 1A   and 0B   to get the recurrence relation 1 1n nx x   , 

with the condition that 1 1,0,1x   . 

 
Period 3: Set 1A    and 1B   to get the recurrence relation 

1 1 1n n nx x x    , with the condition that 1 0,1x  . 

 
 
Compare A and B in (iii) 
to a and b in (ii) 
respectively. 
 
 
 

3i Let  Q n  be the statement:   
0

e d ! 1 e P
t n x t

nx x n t   , 0n  . 
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Therefore,  0Q  is true. 

 

Assume  Q k  is true for some 0k  , i.e.   
0

e d ! 1 e P
t k x t

kx x k t   . 
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Since  Q k  is true implies that  1Q k   is true, and  0Q  is true, then by 

PMI,  Q n  is true for all 0n  . 

3ii For any fixed 0n  ,  
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3iii For all n  with 0n t  , we have the following results. 
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Convergence only holds 
for 1r  . 

4i 4 239 23 65 1872 2 3 13x y z       

Hence,  13 | 39 23 65x y z  . 

Since 13 | 39x  and 13 | 65z , we must have 13 | 23y . 

Since  gcd 13,23 1 , 13 | y . 

Finally, since y is prime, 13y  . 

 

4ii 
(a) 

Given 13y  , then we have 39 65 1573x z   which yields  
 3 5 121x z  . (*)         
Taking modulo 5 on both sides of (*) gives 

 3 1 mod 5x  , and so  5 6 2 mod 5x x x x    . 

Similarly, taking modulo 3 on both sides of (*) gives 
 5 1 mod3z  , and so    3 3 10 2 mod3z z z z    . 

 



4ii 
(b) 

From (a), 3 5 121x z  , 5 2x m   and 3 2z n   for some ,m n . 

     3 5 2 5 3 2 121 15 105 7m n m n m n            

Hence,    3 2 5 2 3 5 3 7 5 21 8z x n m n m m m m            . 

 
Minimal value of z x  is 3 when 3m  , which in turn gives 4n  . 

Thus, the required solution is 17x  , ( 13y  ) and 14z  . 

 

4iii From (i), if y is prime, then 13y   which leads to 3 5 121x z  . 

From (ii),    , 17,14x z   is a solution to 3 5 121x z  . 

 
Since  gcd 3,5 1 , integer solutions to 3 5 121x z   are  

17 5
for 

14 3

x r
r

z r

 
  
 . 

 
When r is even, z is even; and when r is odd, x is even. It is thus impossible 
for x and z to be both prime unless one of them is 2. 
When 2x  , 3r    and 23z   which is prime. 
When 2z  , 4r   and 37x   which is prime. 
  
Hence, solutions with x, y and z prime are  
       , , 2,13,23 or , , 37,13, 2x y z x y z  . 

 

5a 
(i) 

For 0x  ,    1f 2f 3x x
x

  .  1          

Since 0x  , 1
x

 is defined and non-zero as well. 

Replacing x  with 1
x

 in (1) gives    1 3f 2f x
x x
  .  2           

 

5a 
(ii) 

      62 2 1 : 3f 3x x
x

     

Hence,   2f x x
x

  , 0x  . 

 

5b 
For 0x  ,      1g g gx x x

x
    .  3         

Replacing x  with x  in (3) gives      1g g gx x x
x

      .  4  

       1 13 4 : g g 2x
x x

     

Replacing x  with 1
x

 gives     2g gx x
x

   .  5           

       1 23 5 : 2g gx x
x x

      6           

Replacing x  with 1
x

 gives    1 12g g 2x x
x x
   .  7           

      32 6 7 : 3g x
x

    

Hence,   1g , 0x x
x

  . 

 



6i For each 1n  : 

 
 

2 2
1 2 1 1

2 2
1 1 *

n n n n n n n

n n n n

x x x x x dx x

x x dx x

   

 

   

          
 

 
We also have the following for each 2n  : 
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Recursively, we have: 
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Alternative Solution (to show 2 2

1 1n n n nx x dx x D    ) 

Let  P n  be the statement 2 2
1 1n n n nx x dx x D     for n  . 

Since 2 2 2
1 2 1 2 2 1 3x x dx x x x x D     ,  1P  is true. 

 
Assume  P k  is true for some k  , i.e. 2 2

1 1k k k kx x dx x D    . 
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Since  P k  is true implies that  1P k   is true, and  1P  is true, then by 

PMI,  P n  is true for all n  . 

 
By (*) and  P n , we have 2 2 2

1 2 1 1n n n n n n nx x x x x dx x D        . 

 

6ii Suppose 0mx   for some m  , then by (i),  
2 2

1 2 1m m m mD x x x x     , 

which shows that D is a perfect square.  

 

6iii Case 1: 0mx   for some m  . 

Then by (ii), D is a perfect square. 

 



Case 2: 0nx   for all n  . (Equivalently, 2 1nx   for all n  .)  

Since there exist positive and negative terms, then k    such that kx  

and 1kx   are of opposite signs, so that 1 0k kx x   . 
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By cases 1 and 2, D is a perfect square or 2D d  . 

6iv A  3,5 -sequence  satisfies  

1 2

2
2 1 3

3 , 1

5

n n nx x x n

x x x

   


 
. 

A possible sequence of five consecutive terms having both positive and 
negative terms is 1, 1, 4, 11, 29 . 

From (iii), the equality 
2D d   holds when 

1 1k kx x    . 

Use this hint to see that 
we can set 1 1x    and 

2 1x  . 

7i    1,2,..., , 1,2,..., , f :X m Y n X Y    

Number of different functions mapping X to Y is mn . 

 

7ii For n m , number of one-to-one functions is  

      
!1 2 ... 1

!
nn n n n m

n m
    


. 

 

7iii For m n , and for 1,2,...,r n , let rA  be the set of functions f : X Y  

such that  Im fr , i.e. x X  ,  f x r . 

Hence, the number of onto functions is given by  1 2 ... nA A A    . 
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Note: sum from 0i   to 
i n  or 1i n   is the 
same. 

7iv For 5m n   and for 1, 2,3,4,5r  , let rB  be the set of one-to-one 

functions f : X Y  such that  f r r . 

Number of one-to-one functions that map no element to itself 
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8a An ellipse is symmetrical about its centre. Since F is centred on the origin 
and contains the point with position vector x, then it must also contain the 
point with position vector x . 
 
An ellipse is convex – if A and B are points in an ellipse, then the line 
segment AB lies in the ellipse. 

Since F contains points with position vectors x  and 
2

2

a

b

 
   

 
y x , then it 

must contain the midpoint given by position vector 
a

b

 
 
 

. 

 

8b 
(i) 

Let G be an ellipse with area at least 4.  
 
By translating parts of G to fit into the 2 by 2 square given by 0 2x   
and 0 2y   as described in the question, there must be an overlap 
(otherwise, G cannot have an area at least 4). Let A be a common point in 
this overlap. 
 
Let  ,p q  and  ,r s  be different points in G that are translated to A, then  

1 2

1 2

2 2

2 2

m mp r

q n s n

      
        

      
, 

for some 1 2 1 2, , ,m m n n   with    1 1 2 2, ,m n m n . 

 

Let 
p

q

 
  
 

x  and 
 
 

1 2

1 2

2

2

m mr

s n n

  
          

y x . 

By (a), the point  1 2 1 2,m m n n   lies in G and as required, this point has 

integer coordinates that are not both 0.  

 

8b 
(ii) 

Suppose on the contrary that there is no such point  ,mp nu n  in C, 

i.e. for all ,m n , 2 2
π π
p p

n   , with    , 0,0m n  , 

 2 2 4
π
p

mp nu n   . 
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4
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p
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Since this is true for all m, the discriminant 

 2 2 2 2 2 2 4
4 4 1 0

π
p
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Alternative 

Let T be a linear transformation with matrix 
0 1

p u
T

 
  
 

.  

Then  det 0T p   so 1T   exists and has determinant  1 1det 0T
p

   . 

 
Let E  be defined as  1E T C . Then E has equation 

 2 2 4
π
p

px uy y    and is an ellipse also centred on the origin. 

Area of E    
2

1 1det Area of π 2 4
π
p

T C
p

  
     

 
. 

By (b(i)), E contains a point    , 0,0m n   with ,m n . 

Now by transforming E back to C, via T, the point  ,m n  in E is mapped 

to  ,mp nu n , which is not the origin, in C. 

8c 
Let ,p u   and C be the circle centred on the origin with radius 2

π
p

. 

From (b(ii)),    , 0,0mp nu n   lies in C. Let the integers x mp nu   

and y n , so we get  

 

2

2 2 4
0 2

π π
p p

x y
 

    
 

.  *        

Since 2 1u kp   for some k  ,  

 
 

 

22 2 2

2 2 2 2

2 2

2 1

2 .

x y mp nu n

m p mpnu n u

p m p mnu n k

   

   

  

 

 

By (*),  2 2 4
0 2 2

π
p

p m p mnu n k p     , which gives 

2 20 2 2m p mnu n k    . 
2 22 1m p mnu n k     

 

Hence,  2 2 2 22x y p m p mnu n k p     . 

 

 


