2020 A Level H3 Mathematics (9820/01)

Qn

Suggested Solution

Remarks

1i

Apply the AM-GM inequality to yield the following.

(n—l)x+y Zm
((n—l)x+y)n

n

((n —l)x + y)n >n"x"y

> xn—ly

1ii

Let n=2, x=1 and y=a in (i) to get: (1+a)2222a.

Let n=3, xzé and y = b in (i) to get: (1+b)3233(

Let n=4, x:% and y =c¢ in (i) to get: (1+C)4 244(

In each case, equality holds only when x=y.

Hence,
(1+a) (1+5) (1+¢)’ Z(Zza)(33 (%)2 bj{&(%)g cj
=4*abc
=256 (" abc =1)
with equality only if a=1, b :%
abc=1.

Therefore, (1+a)’ (1+5) (1+¢)" >256.
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and ¢ :% which is impossible since

2i

Lety:f(x):axl_i_b, x;t—%.

ax+b=1
Y

le(L_bj
a\y

f’l(x) %(%—b), x#0

2ii

f*(p)=p
1

=p

ap+b
a(a+b(ap+b)}rb
2.2 _ 2 2 2 3
a’p +abp=a+abp+b-—abp—ab”p - -b'p
(a+b2)ap2+b(a+b2)p—(a+b2)=0
(a+b2)(ap2+bp—1):0 ——————————
a+b’>=0 or  ap’+bp-1=0




Case 1: a+b’ =0.
Then equation (**), and hence equation (*), holds true for all values of p

for which *(p) exists.
Hence, f° (x) =x forall xR such that f’ (x) exists.

Case2: ap” +bp—1=0.

Then p = ap%b =f(p), i.e. pisa fixed point of f.

2iii 1
Ax x, ,+Bx,, =1 = X, = Ix +B
From (ii), f* (x) =x when b=0 for all x such that f*(x) exists; and Compare 4 an.(.i B in (iii)
, , , _ to a and b in (ii)
f°(x)=x when a+b”> =0 forall x such that *(x) exists. respectively.
Period 2: Set 4 =1 and B =0 to get the recurrence relation x x, , =1,
with the condition that x, #—1,0,1.
Period 3: Set A =-1 and B =1 to get the recurrence relation
—-x,x,,, +x,,, =1, with the condition that x, #0,1.
3i

Let O(n) be the statement: .[Ot x"e " dr=nl(1-¢"P, (t)), neZl;.

e"x]to =l-¢”
tO
RHS of 0(0)=0!(1-¢ P, (¢))=1-¢" (Wj =l-e”

Therefore, Q(0) is true.

LHS of Q(O) = J-Ot x'edx = [—

Assume Q(k) is true for some k € Zj, i.e. L: x'e dx = k!(l —e'P, (t)) :

LHS of Q(k+1)= [ x*'e™ dx

= [_x"“e‘x]; —J-Ot—(k+1)xke_" dx
= tk“e’+(k+1)rx"e*"dx
=—fle” (k+1)k'(1 e 'P, (1))

-+ (k+1)! (1-e7P, (1))

(by inductive hypothesis)

:—(k+1)!’

=(k+1)!

=(k+1)!

=(k+1)!

I-e t,—l}:(kﬂ)'(l ¢'P,,, (1)) =RHS of Q(k+1)




Since Q(k) is true implies that Q(k +1) is true, and Q(0) is true, then by
PMLI, Q(n) is true for all neZj.

3ii

For any fixed neZj,

2 n
1+t+%+ +L
e'P (1)= -
e
2 n
1+t+t2'+ +L
- 2 n
1+t+%+ +t +...
L
_ ("t 21" n! N
2 =
1,1 LSRR PR A

AT n! " (n+1)! (n+2)!+

I x'e” dx—llm(joxe dx)—hm[n'(l e’P())J:n!

t— t—00

3iii | Forall neZ with n>¢ >0, we have the following results.
n 2 n
(1+1) :1+(n](1)+(nj(i) +...+(nj(i)
n 1)\n 2 )\n n)\n
_ n(n-1) 2 n!t"
=147+ % 2—+ 7%
t* t"
<1+t+2'+ Sk P (¢)
(1—%) :1+(—n)( n) (n)( )( ;) +... ('.'n>t>0:>%<1) Convergence only holds
for |r|<1.
n(n+1) 2 (n+1)...(2n—1) £
=147+ Ty et - T
n* 2! n n!
£t t"
>li4 5457+ P, (1)
t\ t\"
S|1+=| <P 1-=
( +n) ”(t)<( n)
4i | 39x+23y+652=1872=2"x3"x13
Hence, 13[(39x+23y+65z).
Since 13|39x and 13|65z, we must have 13|23y.
Since ged(13,23)=1,13|y.
Finally, since y is prime, y=13.
4ii | Given y =13, then we have 39x+ 65z =1573 which yields
() 3x+5z=121. ———mm (*)

Taking modulo 5 on both sides of (*) gives
3x=1(mod5), and so x=x+5x=6x=2(mod5).
Similarly, taking modulo 3 on both sides of (*) gives
5z=1 (m0d3) ,and so z = 3(3Z)+Z =10z=2 (m0d3).




4ii
(b)

From (a), 3x+5z=121, x=5m+2 and z=3n+2 forsome m,ne7Z.
23(5m+2)+5(3n+2)=121=15(m+n)=105=>m+n=17

Hence, z—x| =‘3n+2—(5m+2)‘:|3n—5m| =‘3(7—m)—5m‘=|21—8m|.

Minimal value of |z—x| i1s 3 when m =3, which in turn gives n=4.

Thus, the required solutionis x =17, (y=13)and z=14.

4iii

From (i), if y is prime, then y =13 which leads to 3x+5z =121.
From (ii), (x,z)=(17,14) is a solution to 3x+5z =121.

Since ged(3,5)=1, integer solutions to 3x+5z =121 are
x=17+5r
z=14-3r

forreZ.

When r is even, z is even; and when r is odd, x is even. It is thus impossible
for x and z to be both prime unless one of them is 2.

When x=2, r=-3 and z =23 which is prime.

When z=2, r=4 and x =37 which is prime.

Hence, solutions with x, y and z prime are
(x,»,2)=(2,13,23) or (x,»,2)=(37,13,2).

@

Forx#0, f(x)+2f(1):3x. —————————— (1)

X
. 1.
Since x#0, < 1s defined and non-zero as well.

. . l . . l 3
Replacing x with . in (1) gives f(x)+2f(x)— . (2)

5a
(i)

2x(2)—=(1): 3f(x)==-3x

Hence, f(x)z%—x, x#0.

5b

Forx#0, g(x)+g(—x)+g(%):x, __________ (3)
Replacing x with —x in (3) gives g(—x)+g(x)+g(——) =—x. ———(4)
(3)-(4): g(%)—g(—%) ~2x

Replacing x with % gives g(x)—g(—x)=%. —————————— (5)

(3)+(5): zg(x)+g(1):x+2 —————————— (6)

x x
. U 1 _rs
Replacing x with < gives 2g(;)+g(x)— +2x. (7)

2x(6)=(7): 3g(x)=2




6i | Foreach n>1:
2 . 2
xn+l - xnxn+2 - xn+l - xn (dxn+l - xn )
2 2
= xn + xn+1 - dxnan __________ (*)
We also have the following for each n>2:
an + xn+12 - dxn'an = an + (dxn - xn—l )2 - dxn (dxn - xn—l)
=x’+d’x’-2dxx,  +x, > —d’x’ +dx, x,
= xn—lz + xn2 - dxn—lxn

Recursively, we have:

xn2 + xrl-*—l2 _dxnxn+l

= xn—lz + xn2 - dxn—l‘xn

= xn—22 + xn—12 - dxn—an—l

=x +x,” —dxx,

2

=X, TXX (by (*))

Alternative Solution (to show x’+x, > —dx x  =D)

Let P(n) be the statement x,” +x,,* —dx,x,,, =D for neZ".

Since x” +x,” —dxx, =x," —x,x; =D, P(1) is true.

Assume P(k) is true for some ke Z",ie. x,” +x,,° —dx,x,, =D.

LHS of P(k+1)

2 2
=X T Xy A%,
=X X, (X + X)X wdx,, —x =x,, forallneZ"
k+1 k+2 k k+2 k+2 : n+l n n+2
2
=X T X2
2 2

=X X, —dax, (by (*))

=D (by inductive hypothesis)

=RHS of P(k+1)

Since P(k) is true implies that P(k+1) is true, and P(1) is true, then by

PMI, P(n) is true forall neZ".

By (*) and P(n), wehave x,,°—xx,.,=x"+x, —dxx, =D.
6ii | Suppose x, =0 for some meZ", then by (i),

2 2
D = xm+l _xm'xm+2 = xm+l >

which shows that D is a perfect square.

6iii | Case 1: x, =0 forsome meZ".

Then by (ii), D is a perfect square.




Case 2: x, #0 forall neZ". (Equivalently, x> >1 forall neZ".)
Since there exist positive and negative terms, then 3k € Z" such that x,
and x,,, are of opposite signs, so that x,x,,, <0.
D=x.+x. —dxx,
>1+1+d(—x,x,,,)

>d+2 (" —x,x,,, =1 and d >0)

By cases 1 and 2, D is a perfect square or D>d +2.

6iv | A (3,5)-sequence satisfies From (ii1), the equality
D =d +2 holds when
3xn+l_'xn:xn#—Z’nZl =—1
5 . XX =1
X, = XXy =5 Use this hint to see that
A possible sequence of five consecutive terms having both positive and we can set x, =—1 and
negative terms is —1, 1, 4, 11, 29. v =1
2 - .
T X ={1,2,..,m}, Y ={1,2,...,n}, f:X—>Y
Number of different functions mapping Xto Yis n" .
7ii | For n>m , number of one-to-one functions is
]
n(n-1)(n=2)..(n-m+1)=—"1-——.
(1=1)n=2).fn=m+1)= 2
7iii | For m>n,and for r=1,2,...,n, let A be the set of functions f: X > Y
such that r ¢ Im(f), i.e. Vxe X, f(x)=r.
Hence, the number of onto functions is given by ‘(Al U4, U...UA4, )' .
Jall=n" S|4+ S|4 A A |+ (-1)" A.‘
‘(iu_) =Sl Elanafes () Eln 4
n n m n m n— n
=( jn’" —[ j(n—l) +( j(n—2) +..4(-1) 1( Jl’"
0 1 2 n—1 Note: sum from i =0 to
n (n . i=nori=n—1 isthe
:Z(_l) (J(”") same.
i=0 l
Tiv

For m=n=35 and for r =1,2,3,4,5, let B, be the set of one-to-one
functions f: X — Y such that f(r)=r.
Number of one-to-one functions that map no element to itself

00)

5
=51->|B|+X[BNB|- X \Bl.ﬂBjﬂBk\Jrz‘kr}Bk —(51131.‘
i i*] i#],izk, i=1 1A% =
J#k

e

=44




8a | An ellipse is symmetrical about its centre. Since F is centred on the origin
and contains the point with position vector X, then it must also contain the
point with position vector —x
An ellipse is convex — if 4 and B are points in an ellipse, then the line
segment AB lies in the ellipse.
2a
Since F contains points with position vectors —x and y = x+ (%], then it
a
must contain the midpoint given by position vector (bj .
8b | Let G be an ellipse with area at least 4.
@
By translating parts of G to fit into the 2 by 2 square given by 0 < x <2
and 0 < y <2 as described in the question, there must be an overlap
(otherwise, G cannot have an area at least 4). Let 4 be a common point in
this overlap.
Let (p,q) and (r,s) be different points in G that are translated to 4, then
P 2m, r 2m,
+ =l |+ ,
q 2n, s 2n,
for some my,m,,n,,n, € Z with (m,,n,)#(m,,n,).
r 2(m,—m
LetX:(pJ andy:( J=x+ ( : 2) .
q s 2 (n1 —n, )
By (a), the point (m, —m,,n, —n,) lies in G and as required, this point has
integer coordinates that are not both 0.
8b | Suppose on the contrary that there is no such point (mp —nu,n) in C,
(i)

i.e.forall mneZ, —2\/7<n<2\/7 with (m,n)#(0,0),

(mp— nu) +n? >7

p*m* +u*n® = 2upnm+ n* —4719 >0

p*m* —2upnm + (u2 + l)n2 —4?1) >0

Since this is true for all m, the discriminant

2.2 2 20 (,,2 2_4_P
4u-p°n”—4p {(u +1)n p. <0.

4p2(4?p—n2j<0

4—p—nz<0
T

n<—2\/Z or n>2\/E (—«)
T T




Alternative

—u
Let T be a linear transformation with matrix T = (p . ]

Then det(7)=p#0 so T exists and has determinant det(T”) = % >0.

Let E be definedas E=T"'(C). Then E has equation

(px— uy)2 +y° = 4Tp and is an ellipse also centred on the origin.

2
Area of E :det(T’l)x(Area ofC):%xn(%/%] =4,

By (b(i)), E contains a point (m,n)#(0,0) with m,neZ.
Now by transforming E back to C, via T, the point (m,n) in E is mapped

to (mp —nu,n) , which is not the origin, in C.

8c

Let p,u € Z" and C be the circle centred on the origin with radius 2\/% .

From (b(ii)), (mp —nu,n)#(0,0) lies in C. Let the integers x = mp —nu

and y=n, so we get

2
0<x2+y2<{2 EJ _Ap (*)

Since u” +1=kp for some k€ Z",
X'+t = (mp—nu)2 +n’
=m’p® —2mpnu +n’ (u2 +1)

= p(mzp —2mnu +n2k).

By (*), 0< p(mzp —2mnu + nzk) < 4Tp <2p, which gives

0<m’p—2mnu+n’k<2.

somip=2mnu+n'k =1

Hence, x° + )" :p(mzp—2mnu+n2k) =p.




