•								
Answers	to	Prelim	Fram	H2	Phys	ics	Paper 3	ł
AII01010			LAGIN					,

1	(a)	The principle of conservation of momentum states that the total momentum of a system of bodies is constant provided <u>no resultant external</u> force acts on the system.	B1
	(b)	The total momentum of the two-nuclei system is non-zero.	B1
		Thus, if one of the nuclei is at rest, then the other nucleus must possess a non-zero momentum (i.e. it is moving). Hence the two nuclei cannot be at rest simultaneously.	B1
	(c)	Taking right to be positive,	
		By conservation of momentum, $3mv - 2mv = 3mv_t + 2mv_d$	
		$v = 3v_t + 2v_d$ after collision	C1
		relative speed of approach = relative speed of separation $2v = v_d - v_t$	C1
		Solving simultaneously for v_t and v_{d} ,	A1 for
		$V_d = 1.4V$	both correct
		$v_t = -0.6v$ (i.e. tritium nucleus is travelling leftward)	answers
		Marker's comments: There were answers that did not treat momentum as a vector. Answers should never be left in fraction form.	
	(d)	Let F_{avg} be the average force exerted by the deuterium nucleus on the tritium nucleus,	
		$\boldsymbol{F} = \Delta \boldsymbol{p}_{tritium}$	
		$t_{avg} = t$	C1
		$=\frac{3M(-0.0V-V)}{t}$	
		$=-\frac{4.8mv}{t}$ (negative sign indicates it points to the left)	
		Magnitude of the average force = $\frac{4.8mv}{t}$	A1
		Marker's comments: The magnitude of the average force should be the same for either deuterium or tritium nucleus. There were mistakes in using the wrong mass or wrong change in velocity. The final numerical value should be shown and not left in fraction form.	

2	(a)	Loss in GPE = mgh	
		= 70.0(9.81)(1.50) = 1030 J	A1
	(b)	kinetic energy of man = $\frac{1}{2}mv^2$	
		$=\frac{1}{2}(70.0)(2.00)^2 = 140 \text{ J}$	A1
	(c)(i)	The perpendicular distance between the line of action of the weight and the pivot is zero.	B1
	(c)(ii)	The man will fall a further distance equal to the extension of the spring, x before coming to a stop.	
		Assuming no loss in energy to the surroundings,	M1
		By conservation of energy,	
		loss in k.e. + loss in g.p.e. = gain in e.p.e	M1
		$(1030 + 140) + 70x = \frac{1}{2} kx^2$	
		$(1030 + 140) + 70x = \frac{1}{2}(10000)x^2$	
		Solving: <i>x</i> = 0.556 m	M1
		$\sin\theta = \frac{x}{2.40}$ $\theta = \sin^{-1}\left(\frac{0.557}{2.40}\right)$	M1
		$= 13.4^{\circ}$ (to 3 s.f.)	A0
		Marker's comments: The board is NOT in rotational equilibrium, i.e. sum of clockwise moments is NOT equal to sum of anti-clockwise moments.	
	(c)(iii)	F = kx = (10000) (2.40 sin 13.4°) = 5560 N	A1
	(c)(iv)	The board is in translational equilibrium so net force acting on the diving board is zero.	
		$N = W_{board} + W_{man} + W_{spring}$ = 300 + 70 (9.81) + 5560	C1
		= 6550 N (3 s.f.)	A1
		Marker's comments: Students should attempt to provide explanation for their working and not simply show the arithmetic to arrive at the answer.	

3	(a)	The gravitational field strength at a point is the gravitational force exerted per unit mass placed at that point.	B1
	(b)	Gravitational force on the satellite provides the centripetal force for the circular motion of the satellite. $\frac{GMm}{r^2} = mr\omega^2 = mr\left(\frac{2\pi}{T}\right)^2$	C1
		$r^{3} = \frac{GM}{4\pi^{2}}T^{2}$ $= \frac{(6.67 \times 10^{-11})(6.0 \times 10^{24})}{4\pi^{2}}(94 \times 60)^{2}$	C1
		$r = 6.9 \times 10^6 \text{ m}$	A1
	(c)(i)	From $\frac{GMm}{r^2} = mr\omega^2 = mr\left(\frac{2\pi}{T}\right)^2$ $r^3\omega^2 = \text{constant or } \frac{r^3}{T^2} = \text{constant}$ $\frac{\left(6.9 \times 10^6\right)^3}{(94)^2} = \frac{r^3}{(150)^2}$ $r = 9.42 \times 10^6 \text{ m}$ $v = r\omega$ $= \left(9.42 \times 10^6\right) \left(\frac{2\pi}{150 \times 60}\right)$ $= 6600 \text{ m s}^{-1} \text{ (to 2 s.f.)}$	M1 M1 M1 A0
	(c)(ii)	Gravitational potential energy $U = -\frac{GMm}{r}$ Change in gravitational potential energy $= U_{final} - U_{initial}$	
		$= -GMm \left(\frac{1}{r_{final}} - \frac{1}{r_{initial}}\right)$ = - (6.67 × 10 ⁻¹¹) (6.0 × 10 ²⁴) (1200) $\left(\frac{1}{9.4 \times 10^{6}} - \frac{1}{6.9 \times 10^{6}}\right)$ = 1.9 × 10 ¹⁰ J	C1 A1

4	(a)	An ideal gas obeys the equation of state $PV = nRT$ at all temperatures T , volume V , pressure P and number of moles n .						
	(b)		work done on gas / J	heat supplied o gas / J	increase in internal energy of gas / J			
		A to B	+360	0	+360 (&)			
		B to C	0	+670	+670 (&)			
		C to D	-810 (&)	0	-810			
		D to A	0 (@)	-220 (@)	-220 (#)			
		&: first, second and third line correct #: −220 correct in right hand column @: other two figures correct in bottom row						
	(c)	the gas molecules bounce off the receding piston at lower speeds there is a decrease in kinetic energy of the molecules						
5	(a)(i)	out of the page						
	(a)(ii)	magnetic force provides centripetal force:						
		$Bev = mv^2/r$						
	(b)(i)	gain in kinetic energy = $\frac{1}{2}mv^2 = eVOR$ work done = $eEd = \frac{1}{2}mv^2$						
	(b)(ii)	[use $v = Ber / m$ and $\frac{1}{2}mv^2 = eV$ to obtain]						
		$r^2 = 2Vm / eB^2 \text{ OR } r = [2Vm / eB^2]^{1/2}$						
		correct subs	stitution for <i>V</i> , <i>m</i> , <i>e</i> a	and <i>B</i> ²		C1		
		<i>r</i> = 1.6 × 10	⁻² m			A1		
	(c)	the force ac	ting on the electron	is always perpendicula	ar to its direction of	B1		
		motion no work is done on the electron (thus no change in its kinetic energy or speed)						
6	(a)	$V_{r.m.s.} = \sqrt{\frac{2^2(0.002) + 1^2(0.002)}{0.010}} = 1.0 \text{ V}$						
		Steady voltage of 1.0 V will produce the same heating effect as $V_{r.m.s.}$ of 1.0 V.						
		Marker's co value of the	mments: Common r mean square voltag	nistakes like without ta ge was observed.	king the square root			

(b)	Transmission of electrical energy at high voltage means that the current is low according to $P = IV$.	B1
	Power loss through joule heating (I^2R) is hence lowered as less electrical energy is dissipated as heat in the cables of resistance <i>R</i> .	B1
	Marker's comments: no mention of power loss as heat dissipation was very common among the answers given by candidates.	
(c)(i)	$\frac{V_s}{V_p} = \frac{N_s}{N_p}$ $V_c = 71 \times 6.5 \times 10^{-3} = 0.46 \text{ V}$	A1
(c)(ii)	$0 \xrightarrow{P/W}_{0.080} \xrightarrow{10}_{0.020} \xrightarrow{0.10}_{0.040} \frac{t/s}{0.040}$	
	Correct shape: $0.080 \sin^2 [(2\pi f)t]$. Correct labelling of values: peak power and period.	B1 B1
	Marker's comments: Most answers given was a sine curve instead of sine square curve.	
(c)(iii)	1. In the forward biased direction, the diode has no resistance. Current flows downwards through resistor <i>R</i> .	B1
	In the reverse blased direction, diode has infinite resistance. There is no current flowing through resistor <i>R</i> .	В1
(c)(iii)	2. In the <u>forward biased direction</u> , there is a <u>half-wave sinusoidal voltage</u> across resistor R , having the same frequency as that of the input voltage. In the reverse biased direction, there is no voltage across resistor R .	B1
	Marker's comments: No mention of why there was a current in one direction and no current in the other direction.	

7	(a)	92 protons and 92 electrons	B1
		143 neutrons (in the nucleus)	B1
	(b)(i)	α -particle travels short distance in air	B1
		Marker's comments: Majority of candidates did not state the effect of	
		Interaction of alpha particles with air.	
	(I)(II)	very small proportion in backwards direction / large angles	B1
		majority pass through with no /small deflections	B1
		either most of mass is in very small volume (nucleus) and is charged or	B1
		Modernia com is emply space	
		the observations.	
	(c)	I = Q/t = nq/t	
		$n / t = (1.5 \times 10^{-12}) / (2 \times 1.60 \times 10^{-19})$	C1
		$n/t = 4.7 \times 10^6 \mathrm{s}^{-1}$	A1
		Marker's comments: Power of ten was wrongly guoted.	
•	(-)(!)4		D 4
8	(a)(i)1.	number of oscillations per unit time	B1
	(a)(i)2	n ²	Δ1
	(u)(i)2.		,,,,
	(a)(ii)	tister and the second to	
		$V = \text{distance} / \text{time} = n\lambda / t$	M1
		$V = \text{distance / time = } n\lambda / t$	M1
		$v = \text{distance / time } = n\lambda / t$ $n / t = f$, hence $v = f\lambda$	M1 A1
		$v = \text{distance / time } = n\lambda / t$ $n / t = f$, hence $v = f\lambda$	M1 A1
	(b)	$v = \text{distance / time} = n\lambda / t$ $n / t = f, \text{ hence } v = f\lambda$ 1 period, $T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$	M1 A1 C1
	(b)	$v = \text{distance / time} = n\lambda / t$ $n / t = f$, hence $v = f\lambda$ 1 period, $T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$ $f = 1 / T = 1 / (6.0 \times 10^{-3}) = 170 \text{ Hz}$	M1 A1 C1 A1
	(b)	$V = \text{distance / time } = n\lambda / t$ $n / t = f$, hence $v = f\lambda$ 1 period, $T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$ $f = 1 / T = 1 / (6.0 \times 10^{-3}) = 170 \text{ Hz}$	M1 A1 C1 A1
	(b) (c)(i)	$v = \text{distance / time } = n\lambda / t$ $n / t = f$, hence $v = f\lambda$ 1 period, $T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$ $f = 1 / T = 1 / (6.0 \times 10^{-3}) = 170 \text{ Hz}$ Sources emitting waves with a constant phase difference.	M1 A1 C1 A1 B1
	(b) (c)(i)	$v = \text{distance / time } = n\lambda / t$ $n / t = f$, hence $v = f\lambda$ 1 period, $T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$ $f = 1 / T = 1 / (6.0 \times 10^{-3}) = 170 \text{ Hz}$ Sources emitting waves with a constant phase difference.	M1 A1 C1 A1 B1
	(b) (c)(i) (c)(ii)	$v = \text{distance / time} = n\lambda / t$ $n / t = f, \text{ hence } v = f\lambda$ $1 \text{ period}, T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$ $f = 1 / T = 1 / (6.0 \times 10^{-3}) = 170 \text{ Hz}$ Sources emitting waves with a constant phase difference. $f = v / \lambda$	M1 A1 C1 A1 B1
	(b) (c)(i) (c)(ii)	$V = \text{distance / time} = n\lambda / t$ $n / t = f, \text{ hence } v = f\lambda$ $1 \text{ period, } T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$ $f = 1 / T = 1 / (6.0 \times 10^{-3}) = 170 \text{ Hz}$ Sources emitting waves with a constant phase difference. $f = v / \lambda$ $f = (3.00 \times 10^8) / (6.0 \times 10^{-2})$	M1 A1 C1 A1 B1 C1
	(b) (c)(i) (c)(ii)	$V = \text{distance / time} = n\lambda / t$ $n / t = f, \text{ hence } v = f\lambda$ $1 \text{ period}, T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$ $f = 1 / T = 1 / (6.0 \times 10^{-3}) = 170 \text{ Hz}$ Sources emitting waves with a constant phase difference. $f = v / \lambda$ $f = (3.00 \times 10^8) / (6.0 \times 10^{-2})$ $= 5.0 \times 10^9 \text{ Hz}$	M1 A1 C1 A1 B1 C1 A1
	(b) (c)(i) (c)(ii)	$V = \text{distance / time} = n\lambda / t$ $n / t = f, \text{ hence } v = f\lambda$ $1 \text{ period, } T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$ $f = 1 / T = 1 / (6.0 \times 10^{-3}) = 170 \text{ Hz}$ Sources emitting waves with a constant phase difference. $f = v / \lambda$ $f = (3.00 \times 10^8) / (6.0 \times 10^{-2})$ $= 5.0 \times 10^9 \text{ Hz}$ Path difference = 2.1 (integer number of wavelengthe)	M1 A1 C1 A1 B1 C1 A1 M1
	(b) (c)(i) (c)(ii) (c)(iii)	$V = \text{distance / time} = n\lambda / t$ $n / t = f, \text{ hence } v = f\lambda$ $1 \text{ period, } T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$ $f = 1 / T = 1 / (6.0 \times 10^{-3}) = 170 \text{ Hz}$ Sources emitting waves with a constant phase difference. $f = v / \lambda$ $f = (3.00 \times 10^8) / (6.0 \times 10^{-2})$ $= 5.0 \times 10^9 \text{ Hz}$ path difference = 3λ (integer number of wavelengths) hence no phase difference between the waves arriving at X	M1 A1 C1 A1 B1 C1 A1 M1 M1
	(b) (c)(i) (c)(ii) (c)(iii)	$V = \text{distance / time} = n\lambda / t$ $n / t = f, \text{ hence } v = f\lambda$ $1 \text{ period, } T = 3 \times 2.0 \text{ ms} = 6.0 \text{ ms}$ $f = 1 / T = 1 / (6.0 \times 10^{-3}) = 170 \text{ Hz}$ Sources emitting waves with a constant phase difference. $f = v / \lambda$ $f = (3.00 \times 10^8) / (6.0 \times 10^{-2})$ $= 5.0 \times 10^9 \text{ Hz}$ path difference = 3λ (integer number of wavelengths) hence no phase difference between the waves arriving at X bence constructive interference occurs \rightarrow maximum intensity	M1 A1 C1 A1 B1 C1 A1 M1 M1 A1
	(b) (c)(i) (c)(ii) (c)(iii)	v = distance / time = $n\lambda/t$ $n/t = f$, hence v = $f\lambda$ 1 period, T = 3 × 2.0 ms = 6.0 ms $f = 1/T = 1/(6.0 × 10^{-3}) = 170$ Hz Sources emitting waves with a constant phase difference. $f = v/\lambda$ $f = (3.00 × 10^8) / (6.0 × 10^{-2})$ $= 5.0 × 10^9$ Hz path difference = 3λ (integer number of wavelengths) hence no phase difference between the waves arriving at X hence constructive interference occurs → maximum intensity	M1 A1 C1 A1 B1 C1 A1 M1 M1 A1
	(b) (c)(i) (c)(ii) (c)(iii) (c)(iv)	V = distance / time = nλ / t n / t = f, hence v = fλ 1 period, T = 3 × 2.0 ms = 6.0 ms f = 1 / T = 1 / (6.0 × 10 ⁻³) = 170 Hz Sources emitting waves with a constant phase difference. $f = v / \lambda$ f = (3.00 × 10 ⁸) / (6.0 × 10 ⁻²) = 5.0 × 10 ⁹ Hz path difference = 3λ (integer number of wavelengths) hence no phase difference between the waves arriving at X hence constructive interference occurs → maximum intensity decrease in the distance between adjacent maxima / minima	M1 A1 C1 A1 B1 C1 A1 M1 M1 A1 B1

(d)(i)						
(4)(1)		order, <i>n</i>	angle for red maximum / °	angle for green maximum / °	B4	
		0	0	0		
		1	23.6	19.0		
		2	53.0	40.5		
		3	Nil	77.2		
		4	Nil	Nil		
	Each c (no cre	correct row 1 ma edit for blank)	ark. (using $d \sin \theta_n = n\lambda$))	1	
(d)(ii)	two ov	verlapping inter	ference patterns as re	ed and green light ha	ve	
	brightn the tw sharp/i	ness of each line o slits) and th narrow	e/band <u>decreases</u> (since ne pattern of lines/ban	eless light passes throug ds are <u>fuzzy</u> instead	gh B1 of	
	Any tv	vo from:			B2	
	 red bands wider than green bands red bands (longer wavelength) wider apart than green bands 					
	 equally spaced fringes within each band 					
	•	missing orders effects	s as the intensities ar	e reduced by diffraction	on	
	e.g., in	dividual double	slits pattern for red (upp	per) and green light:		
		created by supe light waves from	erposition of a Intensity In the two slits	due to spreading out of light wa as they pass through each slit	aves	
	1		Position or Bereen 23	3.6 53.0		
			Position on Screen 19.0	0 40.5 77.2		

9	(a)	discrete quantity / packet / quantum of energy of electromagnetic radiation energy of photon = Planck constant × frequency					
	(b)	- existence of threshold frequency for incident light					
		- rate of emission of electrons is proportional to intensity of incident light					
		- max. kinetic energy of electron dependent on frequency of incident light					
		- max. kinetic energy independent of intensity of incident light	B1				
		(any three, 1 each, max 3)					
	(c)	either $E = hc/\lambda$ or $\Phi = hc/\lambda_0$	C1				
		$= hc/(450 \text{ nm}) \qquad \qquad \Rightarrow 3.5 \text{ eV} = hc/\lambda_0$	M1				
		$= 4.4 \times 10^{-19} \text{ J or } 2.8 \text{ eV} \qquad \Rightarrow \lambda_0 = 355 \text{ nm}$					
		as 2.6 eV < 3.5 eV, \Rightarrow no emission as 355 nm < 450 nm, \Rightarrow no emission	AI				
	OR	or $ \Phi = hf_0 $	C1				
		\Rightarrow 3.5 eV = hf_0					
		$\Rightarrow f_0 = 8.45 \times 10^{14} \text{ Hz}$	IM 1				
		$450 \text{ nm} \rightarrow 6.67 \times 10^{14} \text{ Hz}$	A1				
	(d)(i)	as 0.07×10 Hz < 0.45×10 Hz \Rightarrow no emission					
	(u)(i)	stable (state)	ы				
	(d)(ii)	excitation promotes an electron to a higher energy level.	B1				
		atom.	B1				
	(e)	electrons occupy <u>discrete</u> energy levels / difference in energy levels are discrete.	B1				
		energy of photon is proportional to frequency ($E = hf$)	B1				
		atom/electron can be excited only when energy of photon exactly matches the difference in energy levels (1 to 1 interaction / all energy of photon absorbed)	B1				

2023			
	(f)	<u>Four</u> lines drawn.	M1
		Correct spacings:	A1
		2 -	
		³	
		$\mathbf{V}_{\mathbf{r}} = \mathbf{V}_{\mathbf{r}} + \mathbf{V}_{\mathbf{r}}$	
		Ш П І	
		(since the energy levels are drawn to scale, the spacings III, II and I should	
	(a)(i)	Δx decreases and Δn increases	D1
	(9)(1)		
	(g)(II)	link between momentum <i>p</i> and kinetic energy $E_{\rm K}$: $\frac{p^2}{2m} = E_{\rm K}$	B1
		increased uncertainty in momentum implies increased uncertainty in kinetic	B1
		chergy	
	(g)(iii)	For very small orbits the uncertainty in the kinetic energy becomes large	B1
	l	enough (to make the total energy positive) that the electron will escape	