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On | Solution

1) Forn=1: i(f(X)g(X)) =1'(x)g(x) +f(x)g'(x)
Forn=2: % (f(x)g(x))= di [d‘i (f(x)g(x))]
_ di(f’(x)g(x) H(0)g'(0))
~ £"(x)g(x) + F'(0)g/(x)
(g (x) + £(0)g"(x)

= 1"(x)g(x) + 2 '(x)g'(x) + f(x)g"(x)

(i) | Let f(x)=sin"' x and g(x) =y, then

@ f'(x)= Jlixz and g'(x) = %

(sin‘l x)% e

\/l—x2

%(ysinlx)ex —> ysin” x=¢e" +c¢
Given y=1 when x=1, (1)(sin‘1(l)):e] +c=>c=sin" (1)—e:g—e
e"‘#%—e
sin”' x

y:
(i) | d*y dy
(b) dxz—(ZIHHX)E—y:X

d'{_z(smx]dy_y_x
dx cosx /dx

d’y

2

(cosx) +2(—sinx)%+(—cosx)y:xcosx

d!

2

(ycosx)=xcosx

d . .
—(ycosx) :Ixcasx dx :xs1nx—_[51nx dx
dx -
= XSINX+COSX+cC
ycosx:Ixsinx+cosx+c dx
:(—xcosx+jcosx dx)+sinx+cx
= —Xxcosx+2sinx+cx+d
—xcosx+2smx+cx+d cx+d
y= =—x+2tan x+
COS X COS X

where ¢ and d are arbitrary constants.
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2(1)

L..=T+T+k=T +k+1
T..,—T =k+1fork>1

n

n—1
I,-T=) (L.-T)

k=1

]

I —1

R

(k+1)

k=1

n—1 |
1+ (k+1)=1+2+..+n= ”(”2“) (AP)
k=1

L

(S.R.) Mathematical Induction Proof is possible as well

(ii)

Tm’:r — Ta];:r +Z;—1?;:-—1

1,1,+1,.,1,,

_a(a+1) b(b+1)+a(a—l) b(b-1)
2 2 2 2

~ab(a+1)(b+1)+ab(a-1)(b-1)

N 4

:%b(ab+a+b+1+ab—a—b+l)

:a—b(23b+2): ab(ab+1)
4 2

=T, (verified)

(iii)

3 possible cases for n:
3k (3k+1)

If n 1s a multiple of 3, 7, = 1s a multiple of 3 since k and 3k +1 are of

opposite parities.

(3k+1)(3k+2):9k(k+1)

2 2
since k and k£ +1 are of opposite parities.

If n=3k+1, T = +1=1 (mod9)

If n=3k+2, T, = (3k+2)2(3k+3) = 3(k+1)2(3k +2) 1s a multiple of 3

since k+1 and 3k +2 are of opposite parities.

~. T,=0or1 (mod3) for all positive integers n.

(Alternative)
=1, I,=T+T,+1(1)=3, ,=T+T,+1(2)=1+3+2=6.

3 possible cases for n:
If n 1s a multiple of 3,
I, =T,
=T, +T,T,., (using (ii))
=67, +37,_, =3(2T, +7,_,) =0 (mod 3)

(continued next page)
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2(iii)

(continued)
If n=3k+1,

Ly =Ty + T, + 3k
(using given recurrence relation)
=0+1+0 (mod3)
(using results derived for 7, and 7, =1)
=1 (mod3)

It n=3k+2,

Iy, =15 + 1, +(3k)(2)
(using given recurrence relation )
=0+3+0 (mod3)

(using results derived for 7;, and 7, = 3)
=0 (mod3)

(iv)

n(n+1)
2

81, +1= 8{ }+1 =4n’ +4n+1= (2m+1):i which is a perfect square.

(V)

(4};)2 +(87, +1)=16T,* + 8T +1= (4T, +1)2
Hence, (\/87; +1, 4T , 4T + 1) 1s the Pythagorean Triple required.

3(i)

RS P
_l—grzf_1 l-p p—1

o

1s finite.

1
When p >1, J — dn =
/

= 1
Hence ZT converges for p>1.
n=1 n

When p =1, J

o

1 o . . = 1.
—dn= [111 ”]1 1s not finite. Hence Z—p diverges for p=1.
1 n n=1 n

1 Eads |
When 0< p <1, J dn = 1S not finite,
. n’ l-p

- -1

1-p a0 1
since 1— p >0 and thus ke > o0 as n — oo. Hence Z— diverges for 0< p<1.

7

1-p = n'

When p <0, the function f is not monotonically increasing and hence the integral test
cannot be applied.

o

However, since —p > 0, Z

n=1

in"’ Eil“” and hence ii diverges for

P
n=1 n=I1 n=1 n

1
n’
p<0.

1

Combining all results, we have Z — converges for p >1 and diverges otherwise.

f
n=1 1
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3(ii
(i1) 0< f < n4 :LE for n>1.
4n" +1 4n” 4n
Since v 1 I 1 converges (with p = 3)
n=l1 4”3 4 n=1 H3 g p j
Z f converges by comparison test.
= 4n" +1
(11r) J‘ Y oon 1 4n
— dn=— — dn
1 4” ‘l'l 4‘,1] (2n“) _|_1
= _ltan‘] (Zn)_m _E_Lian (2)
4 l, 8 4
which 1s finite. Hence 24 f 1 converges by integral test.
n +

n=1

(Usage of GC for approximate answer is accepted)

(V) | (2n° +2n+1)(2n° —2n+1)
=(2n* +1+2n)(2n* +1-2n)
— (2?12 Jr'l)2 —(23@)2

=4n" +4n° +1-4n’

— 4n +1 (verified)

a0

S " _jimYy
dn*+1 k== dnt 41

n=I1 n=lI

n
foo — (2n2 +;1;»»,,-+1)(2.-«:2 _2n +1)
( | \
:1imlz l _ : :
koo 445 an +(n—1)" n’+(n+1) )
L[ 1
=lm—| 1- 5 (using MOD)
e dl (k1)
_1
4

4(i) |Let x=0, y=0,
f(0+0)=f(0)+f(0)
£(0)=2f(0)
~.£(0)=0

(ii) | Consider for any positive integer n,
f(n)=f(1+1+---+1)
=f(1)+f(1)+---+f(1)=nf(1)=n
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A(iii)

Let the positive rational number be £ with both p and g positive integers. Since p

q
and ¢ are real,

r=r0-()

( 3\

=f| £+ +£ _f[£]+.._+f[£]_qf(£]
q 91 \4 q) q

' R
\_ ¢ of these terms ) g of these terms

Dividing throughout by ¢g, we obtain f {EJ _P (shown)
q9) 4

(1v)

h—0 h—0

limf(h) =0

h—0

leth=x-k,
limf(x)z limf(h+k)

x—k h—s0

=lim| f(k)+f(h)|=f(k)+limf (h)="f (k)

h—0 h—0

limf (4) _(ﬁmh){mf(}m =(0)(1)=0

Since limf (x)=f(k), fis a continuous function.

x—k

S(1)
(a)

There are three types of flowers, R, S, T.
Twelve flowers are to be selected.

[f there are no other restrictions, we can consider this to be a problem involving 3
distinct boxes (type of flowers), 12 1dentical objects (flower).

Therefore, this can be done 1n (123_'_ _31_1) = (124 ] =91 ways.

(b)

Remove two of each type of flower.

This reduces to the problem involving 3 distinct boxes (type of flower), 6 1dentical
objects (flowers).

Therefore, this can be done 1n (6+§ _1] = [g] =28 ways.

(ii)
(a)

A sequence of twelve flowers 1s to be formed, with the 3 types of flowers

[f there are no other restrictions, the number of ways this can be done 1s
37 =531441.

(b)

By Inclusion-Exclusion Principle,

Required number of ways = 3" _(;) 2%+ (f) -1 =519156




Qn | Solution
S(iii) | This problem can be modelled as distributing 10 1dentical objects into 3 1dentical

boxes with at least 1 object in each box.
No of ways = P(10,3)=8.

(iv) | Once the rose and tulip are put into 2 different vases, all the vases are now distinct.
By putting one sunflower into the remaining vase, all 3 vases are now filled (and
distinct), so the problem becomes that of distributing 9 1dentical objects into 3 distinct
boxes.

Therefore, this can be done in (9 +§’ - 1) = (121) =55 ways.

6(a) | (Method 1)

Suppose 2p, p, - p, +1 1s a perfect square, then

2p,ps- p, +1=m> for some integer m.
Since 2p, p, - p, +1 is odd, therefore m* is odd, which implies m is odd.

Rearranging 2p, p, - p, +1=m” we have
2p,ps- Py =m’ —1=(m+1)(m—1)

Since m 1s odd, both m+1 and m —1 are even and hence the RHS 1s a multiple of 4.
However, the LHS has only one factor of 2 as all other primes are odd. Thus the LHS
1s not a multiple of 4 and a contradiction ensues.

(Method 2)
Let ke N,then M, =2p,p,- p, +1 can be written in the form

M, =2Q2r+1)+1=4r+3,
for some positive integer r, since p,,..., p, are all odd primes, and thus the product

p, -+ p, remain odd.

On the other hand, if M, is a perfect square, i.e. M, =¢°, for some positive integer
g, then each perfect square 1s only of the form 4r or 4r +1, and not of the form 4r + 3.

To prove this, we consider two cases:
Case 1: g is even, i.e., ¢ =2n, for some neZ", then clearly M, =(2n)* =4n".

Case 2: ¢ is odd, i.e., g =2n+1, forsome neZ", then M, =4(n° +n)+1.
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6(b)

By the binomial expansion theorem, we have

P _ P P p-1 P p-2_.2 P p-1 p
(x+y)’ =x +(1 )x y+(2]x y +”'+£p—1] +y
We can show that 1f £ 1s an integer, 1<k < p, then

[P) (p-D(p-2)..(p—k+1)
k)= P k

=0 (mod p), and this 1s because that p 1s prime

(p-N(p=2)Ap-k+1) . [p) 7
k! k '

P | p- P p22 P p-1 _
(1 )x y+(2]x h% +.‘.+(p_1]xy =( (mod p)

(x+y)’ =x" +(f)xﬂ1y+(§]x”‘?yz +...+(p )xy“” + y”

ensures gcd(k/,p)=1, and so

Statement A:

Consider the first p+1 terms of the sequence modulo p.

By pigeonhole principle, at least two of these terms must be congruent to each other
modulo p. In other words, there are two positive integers a, b satisfying
0<a<b< p+1 such that

77..7="77..7 (mod p)

a digits b digits
Taking the difference, we obtain
77...700...0 =0 (mod p)

(b—a) a

However, since
77..700..0=77...Tx10° =77...Tx 2% x 5%,

(b—a) a (b—a) (b—a)
and since p 1s relatively prime to both 2 and 5, we must have
77...7T =0 (mod p).

(b—a) digits

i.e. the (b—a)'™ term is divisible by p.

Statement B:
Suppose the ¢ term is divisible by p. Consider the ¢, 2¢®, 3c™, ... terms of the
sequence. Since these are of the form

77.77T7..7+-- 77..7
¢ digits ¢ digits ¢ digits
they are all multiples of 77...7 and hence divisible by p. Thus, there are infinitely
¢ digits
many terms 1n the sequence which are divisible by p.
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7(a)
(1)
"
Let € be angle B,_,OPF,,, , which 1s fixed. Let ¢ be the variable angle O0<a <@,
corresponding to the position of B,. Then d(P,_, F,) = 2sin% and
. O0-«a
d(P, B, )=2sin , SO
. a . -«
d(P,_,R)+d(P,P, )= 2[51n5+sm 5 )
= 2xzsin€cos[5—ﬁ]
4 2 4
.6 [{}: 6’)
=4sin—cos| ——
4 2 4

Since sing 1S a constant, this 1s maximized when cos[j - i} =1 1.e. when o = g

Hence the required distance 1s maximum when £, lies on the midpoint of the arc.
(i1) | Considering each set of 3 consecutive points P,_, P, P, for k=1,2,...,n-1, §,

1s maximized when

d(P,R)=d(R,P)=...=d(P,,P)

When this is true, then S, =nxd (P, B)=n|2sin— |=2nsin—

i 4n 4n

(iii)

When n — o, the length § — g the length of the quadrant.

. .M W
So Im2nsin—=—

N—30 4”

o 4dn . 0w
Iim —sin—=1
n—o qr 4”

. T
S1n —
lim — 47 — 1

n—»0 TT

4n

SIN X

So letting x = T we get llm =1.

4n 0 x
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7(b) | Consider
- cos(x+h)—cosx
h—0 h
+h)+ +h)—
—2sin (x ) * sin (x ) *
= lim 2 2
h—0 h
. [ h) _h
—2sin| x+— [sin —
. 2 2
=lim
h—0 h
-
- P\ | s
= lim —Sin[x+] X 2
h—0 2 h
| 2
= [—Sin(x-l- O)](l) = —sin x
8(a) | Since a|(2b+1), 2b+1=ka for some integer k.

M) | 1<ged(a,b) <ged(ka,b) = ged(2b+1,b) = ged (1,6) =1
Therefore ged(a,b)=1 i.e. a and b are coprime.
Alternatively, since b|(2a+1), 2a+1=kb for some integer k.
1<gcd(a,b)<gcd(a,kb)=ged(a,2a+1)=ged(a,1)=1
Therefore ged(a,b)=1 i.e. a and b are coprime.

(1) | Since a|2b+1 and a|2a, we have a|(2a+2b+1).
Likewise, b|2a+2b+1.

Since a and b are coprime, ab|(2a+2b+1).
(iii) | Since 2a+1 1s a multiple of b, and 2a +1 1s odd, b must be odd. Likewise a must
be odd by a similar argument

(iv) | a°<ab<2a+2b+1<2a+22a+1)+1=6a+3

(V) | Using GC, the only possible integer solutions for a* <6a+3 is a=1,3 or 5

If a=1, 2a+1=3 so b|3. Thisresults in b=1 or b =3.
Since a <b, b#1. A quick verification verifies that(a,b)

(L,3) is a valid solution

to the problem.

If a=3, 2a+1=7 so b|7. Thisresultsin b=1orb=7.
Since a <b, b#1. A quick verification verifies that (a,b)=(3,7) is a valid solution

to the problem.

If a=5, 2a+1=11so0 b|11l. Thisresultsin b=1orb=11.
Since a <b, b#1. Also, since 51 2(11)+1, (a,b)=(5,11) is not a solution to the

problem.

Hence the possible solutions to (a,b) are (1,3), (3,7).




Qn | Solution
3(b) I
(1) PPy Pra P
(ii) (m m m‘) (”‘1 m m) n
pm) =m—| — 4 = | b -
a b c ab ac bc) abc
o abc—(ab+ac+bc)+(a+b+c)-1
B abc
S
(iii) _ - -
;ﬁ(n)_n{ﬁ’] lj[pz IJ...{pﬂ 1]
P % P
(iv) | @(2° x5x7*x11> x47%)

=(2°x5%x7* 11 x 472)6]&](%}[%][%]

= 7830936960




