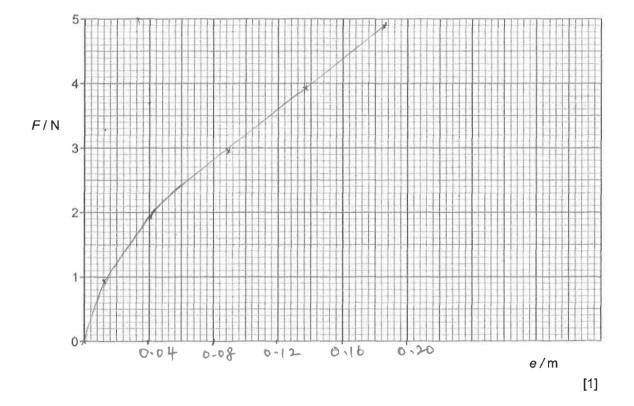
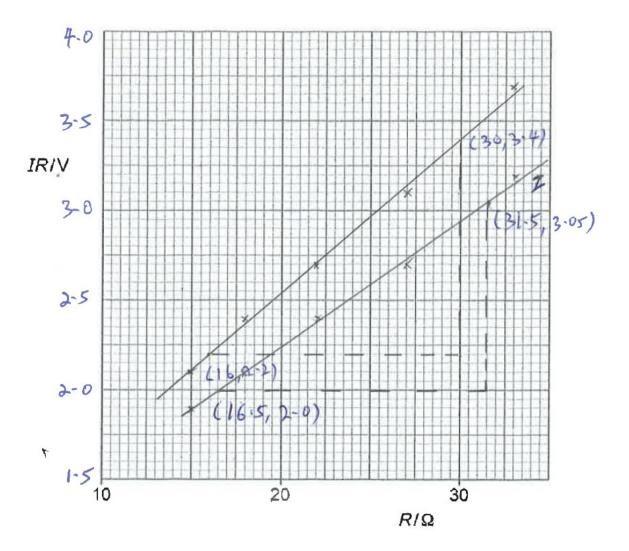

Answers to 2023 JC2 Preliminary Examination Paper 4 (H2 Physics)

Suggested Solutions

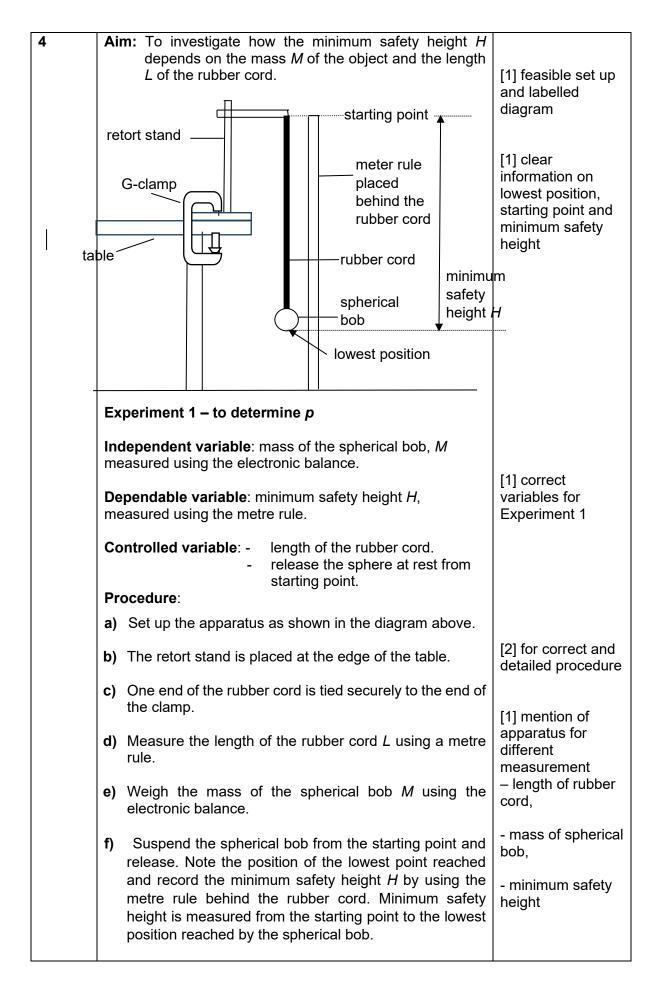

No.SolutionRemark1(a) $x = \frac{15.0 + 15.0}{2} = 15.0 \text{ cm}$ [1] - for correct measurement - 1 d.p in cm - repeatPeriod $T = \frac{20.8 + 20.7}{2 \times 20} = 1.04 \text{ s}$ [1] - 1 or 2 d.p in - repeat - T in 3 s.f. or depending on and t_2 $t \ge 20.0 \text{ s}$ 1(b) x/cm NTime for NPeriod $T's^4$ [1] - headings an	timing 4 s.f.
measurement - 1 d.p in cm - repeat [1] - 1 or 2 d.p in - repeat [1] - 1 or 2 d.p in - repeat - 7 in 3 s.f. or depending on and t_2 $t \ge 20.0$ s 1(b) x/cm N Time for N Period T^4/s^4 [1] - beadings an	timing 4 s.f.
Period $T = \frac{20.8 + 20.7}{2 \times 20} = 1.04$ s $\begin{bmatrix} - \text{ repeat} \\ [1] \\ - 1 \text{ or } 2 \text{ d.p in} \\ - \text{ repeat} \\ - T \text{ in } 3 \text{ s.f. or} \\ \text{ depending on} \\ \text{ and } t_2 \\ t \ge 20.0 \text{ s} \end{bmatrix}$ 1(b) $\boxed{x/\text{cm} \text{N} \text{Time for N} \text{Period} T^4/\text{s}^4} [1] \\ - \text{ beadings an} \end{bmatrix}$	4 s.f.
Period $T = \frac{20.8 + 20.7}{2 \times 20} = 1.04$ s [1] - 1 or 2 d.p in - repeat - T in 3 s.f. or depending on and t_2 $t \ge 20.0$ s 1(b) x/cm N Time for N Period T^4/s^4 [1] - beadings an	4 s.f.
Period $T = \frac{1.04 \text{ s}}{2 \times 20} = 1.04 \text{ s}$ - 1 or 2 d.p in - repeat - T in 3 s.f. or depending on and t_2 $t \ge 20.0 \text{ s}$ 1(b) X/cm N Time for N Period T^4/s^4 [1] - beadings an	4 s.f.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 s.f.
1(b) x/cm N Time for N Period T^4/s^4 [1] b beadings and t	
depending on and t_2 $t \ge 20.0$ s 1(b) x/cm N Time for N Period T^4/s^4 [1] - beadings an	
1(b) x/cm N Time for N Period T^4/s^4 [1] x/cm = beadings an	
x/cm N Time for N Period T^4/s^4 [1]	
headings an	
oscillation T/s - 6 sets of dat	
t_1/s t_2/s	la
11.0 25 24.2 24.1 0.966 0.871 [1] - d.p. of raw d	lata
13.0 25 25.1 25.2 1.01 1.04 - $t \ge 20.0$ s	
15.0 20 20.8 20.7 1.04 1.17 [1] s.f. of proc	cessed data
17.0 20 21.4 21.6 1.08 1.36	
19.0 20 22.1 22.2 1.11 1.52 [1] correct cal allow 1 slip	iculation,
21.0 20 22.9 22.8 1.14 1.69 Den't accent	x = 0 cm. This
will not be conset of data.	
1(c)Refer to attached graph.[1] axes: units	s, scale
[1] plotted poi to half of sma	
[1] best fit line	9
1(c)Given $T^4 = Px + Q$ Graph of T^4 vs x is plotted, where P is the gradient and Q is the y-intercept.[1] - Big triangle - substitution coordinates - linearisation	-

Gradient= $\frac{1.67 - 0.89}{20.8 - 11.4} = 0.0830$	[1] <i>P</i> calculated correctly with units
$P = 0.0830 \text{ s}^{4} \text{ cm}^{-1}$ Substitute (20.8,1.67) into the equation, 1.67 = (0.0830)(20.8) + Q $Q = -0.0564 \text{ s}^{4}$	[1] Q calculated correctly with units

[Total: 12]


No.	Solution				Remarks
2(a)(i)				[1] correct measurements	
	$L_0 = \frac{7.5 + 7.5}{2} = 7.5 \text{ cm}$			with unit and d.p	
2(a)(ii)	Volume $V = (1.9 \times 10^{-3})(1.9 \times 10^{-3})(2 \times 7.5 \times 10^{-2})$			[1] ans	
_((())(())	$= 5.42 \times 10^{-7} \text{ m}^3$				
2(b)(i)	$L = \frac{8.8 + 8.8}{2}$	$\frac{3}{-88}$ cm			[1]
	2				- both e and F calculated
	Extension e	= 8.8 – 7.5 =	= 1.3 cm = 0	.013 m	correctly
	Force <i>F</i> = 10	00×10 ⁻³ × 9.8	81 = 0.981 N	١	- repeat measurement for L
					- answer for <i>F</i> in 2 or 3 sig.
					fig
2(b)(ii)		1 /	- 1		[1]
	<i>m</i> /kg	<i>L/</i> m	e/m	<i>F</i> /N	- headings and units
	0.000	0.075	0.000	0.000	- 6 sets of data (award full
	0.100	0.088	0.013	0.981	credit if m = 0.000 kg not included in the table)
	0.200	0.116	0.041	1.96	
	0.300	0.165	0.090	2.94	[1] - d.p. of raw data
	0.400	0.212	0.137	3.92	- <i>m</i> in 3 d.p
	0.500	0.261	0.186	4.91	- s.f of processed data
					[1] correct calculation, allow 1 slip
2(b)(iii)	Refer to atta	ched graph			[1]
_(~)()		graph.			- plotted points accurate to half of smallest division
					- best fit curve / line
2(b)(iv)	When the ex	Ų	extension e		
	is $L_0 = 0.075$	m and force	[1] correct calculation		
	Energy stored				
	= area under the graph = $\frac{1}{2}(0.013)(0.981) + \frac{(0.981+1.96)(0.028)}{2}$			No marks awarded if best fit	
				curve / line does not pass through origin	
	$+\frac{(1.96+2.7)}{2}$	7)(0.034)			
	2 = 0.127 J				
2(b)(v)	Energy store		olume		
	$=\frac{0.127}{5.41\times10^{-7}}$				[1] correct colculation
				[1] correct calculation	
	$= 2.35 \times 10^{5}$	J m⁻₃			

No.	Solution	Remarks			
3(a)	$D_{\rm Y} = \frac{4.5 + 4}{2}$	[1] - correct measurement for D _Y . Accept 4.0 cm to 5.0 cm			
	Diameter <i>d</i> _Y	- repeat [1] - correct measurement for <i>d</i> _Y . Accept 0.25 mm to 0.35 mm - repeat			
3(b)(i)	There are 13	3 turns on cardbo	ard tube Y.		
	$L_{\rm Y} = 13 \times 2 \times 2$ = 13 × D = 13 × 4 = 184 cm	[1] sub [1] ans			
3(b)(ii)	$L_{Y} = 13\pi D_{Y}$ $\frac{\Delta L_{Y}}{L_{Y}} = \frac{\Delta D_{Y}}{D_{Y}}$ $\frac{\Delta L_{Y}}{L_{Y}} \times 100\%$ Hence perce	[1] for correct percentage uncertainty (1 or 2 s.f.)			
3(c)	$R = 15 \Omega$ $I = 140.6 \times 10^{-3} \text{ A}$				[1] - correct <i>R</i> - correct <i>I</i> with d.p
3(d)				1	[1]
	R /Ω	I/A	IR/V	4	- headings and units
	15	0.1406	2.1		- 5 sets of data
	18	0.1329	2.4		[1]
	22	0.1227	2.7		- d.p, units of raw data
	27	0.1148	3.1		- s.f of processed
	33	0.1128	3.7	J	data
					[1] correct calculation


0(.)					[[4]
3(e)	Gradient= $\frac{3.4}{30}$ G = 0.0857 A	[1] - points plotted correctly			
	0 - 0.0007 A	- best fit line drawn			
	Substitute (3				
	3.4 = (0.0857	,			[1] - value of G
	<i>H</i> = 0.829 V				calculated
	, Н 0.8	329			correctly (with or without unit)
	$X_{\rm Y} = \frac{H}{G} = \frac{0.829}{0.0857} = 9.67 \ \Omega$				[1] value of X _Y calculated correctly in 2 or 3 sig. fig
3(f)(i)	$D_{\rm Z} = \frac{4.5 + 4.5}{2}$	[1] - correct measurement for D_Z - Accept 4.0 cm to 5.0 cm - (repeat)			
	Diameter $d_z = \frac{0.20 + 0.20}{2} = 0.20 \text{ mm} (0.15 \text{ to } 0.25 \text{ mm})$				- correct measurement for d_z - Accept 0.15 mm to 0.25 mm - (repeat)
	$L_{\rm Z} = \frac{3L_{\rm Y}}{4} = \frac{3(184)}{4} = 138 {\rm cm}$				- correct calculation
3(f)(ii)			[1	[4]
	R /Ω	I/A	IR/V	-	[1]
	15	0.1258	1.9	-	- headings and units
	18	0.1165	2.1	-	
	22	0.1079	2.4	-	- 5 sets of data
	27	0.1001	2.7 3.2	-	- d.p, units of raw
	33	0.0972	3.2		data
					- s.f of processed data

Gradient=
$$\frac{3.05 - 2.0}{31.5 - 16.5} = 0.0700$$

 $G = 0.0700 \text{ A}$
Substitute (31.5,3.05) into the equation,
 $3.05 = (0.0700)(31.5) + H$
 $H = 0.845 \text{ V}$
 $X_z = \frac{H}{G} = \frac{0.845}{0.0700} = 12.1 \Omega$
[1] value for X_z
calculated
correctly

3(f)(iii)	Difference: The calculated value is 12.1 Ω and the measured value is 21.6 Ω . Measured value is higher than	[1] for difference
	the calculated value. Reason: Due to the contact resistance of crocodile clip.	[1] for difference and reason
	······································	
3(g)(i)	Given $X = \frac{kL}{d^2} \implies k = \frac{Xd^2}{L}$	[1] correct calculation of
	First value of <i>k</i> (for wire Y)	value of both <i>k</i> .
	$k_{\rm Y} = \frac{9.67(0.30 \times 10^{-3})^2}{1.84} = 4.73 \times 10^{-7} \Omega {\rm m}$	
	Second value of <i>k</i> (for wire Z)	
	$k_{\rm Z} = \frac{12.1(0.20 \times 10^{-3})^2}{1.38} = 3.51 \times 10^{-7} \Omega{\rm m}$	
3(g)(ii)	Percentage difference = $\frac{(4.73 - 3.51) \times 10^{-7}}{3.51 \times 10^{-7}} \times 100\% = 35\%$	[1] valid evaluation based on comparing
	The percentage difference of 35% between the two k values are higher than the percentage uncertainties of $L_{\rm Y}$ at 4.4%.	percentage difference with percentage
	As such, the result of my experiment does not support the suggested relationship.	uncertainties of $L_{\rm Y}$
3(h)(i)	From the equation $B = CnI$, magnetic flux density <i>B</i> at each end of the tube depends on <i>n</i> , number of turns of wire per unit length.	
	Since tube Y has greater number of turns of wire per unit length than tube Z, tube Y has greater magnetic flux density at its ends.	[1] explanation
3(h)(ii)		
	cardboard tube	[1] Diagram to show - battery connected directly across the coil - compass placed beside on end of the tube
	Fig. 1	

	Fig. 2	
1.	Set up the circuit as shown in Fig. 1 for both tube Y and Z.	[1] - Distance
2.	The needle of the compass points due north when there is no current flowing in the coil.	between compase and coil Y and Z must be constant
3.	Count the number of turns of wires, <i>N</i> and measure the length of the tube <i>l</i> and determine $n = \frac{N}{l}$.	- Tube Y and Z arranged in East- West direction
4.	The deflection of the needle of the compass as shown in Fig. 2 gives the direction of the resultant magnetic flux density due to the Earth magnetic flux density and the magnetic flux density at the end of the tube.	
5.	Measure the angle of deflection using a protractor. The angle of deflection of the compass needle is used to determine the relative field strength.	[1] compare angle of deflection to determine the relative field
6.	By comparing the angle of deflection of compass needle for both tube Y and Z will conclude whether tube Y or tube Z has a greater magnetic flux density at its end.	strength

g)	Repeat (f) at least two times to get an average value of the minimum safety height <i>H</i> .	
h)	Repeat (e) to (g) using spherical bobs of different mass and same length of the rubber cord to get five additional readings of <i>M</i> and <i>H</i> .	
i)	Based on the equation $H = k M^p L^q$, we get $\lg H = p \lg M + \lg (kL^q)$. Plot a graph of $\lg H$ against $\lg M$, where <i>p</i> is the gradient.	[1] correct graph plotted
E	xperiment 2 – to determine <i>q</i>	
	dependent variable : length of the rubber cord <i>L</i> , easured using metre rule.	
	ependable variable : minimum safety height <i>H</i> , easured using the metre rule behind the rubber cord.	[1] correct variable for Experiment 2
C	ontrolled variable: - mass of the spherical bob. - release the sphere at rest from starting point.	
j)	Repeat (e) to (g) using rubber cord of different length and same mass of spherical bob to get six readings of <i>L</i> and <i>H</i> .	
k)	Based on the equation $H = k M^p L^q$, we get $\lg H = q \lg L + \lg(kM^p)$. Plot a graph of $\lg H$ agains $\lg L$, where q is the gradient.	[1] correct graph plotted
P	recautions for accuracy:	
1.	Conduct preliminary experiments by using the longest rubber cord and heaviest spherical bob so as to obtain a workable range for <i>H</i> .	[2] any 2
2.	Release the spherical bob with no downward velocity. Do not exert any force vertically or horizontally on the sphere upon release of the spherical bob.	
3.	The retort stand is placed at the edge of the table because the extension of the rubber cord can be longer than the height of the retort stand.	
4.	Measure the unstretched length of the rubber cord before releasing the spherical bob of different mass to ensure that the same length of the rubber cord is used for all spherical bobs.	

Precautions for safety:	
 Use the G-clamp to clamp the base of the retort stand to stabilize it and prevent the retort stand from toppling. 	[1] any 1
2. Place the retort stand at a higher level e.g. on a table so that the spherical bob will not hit the ground (this may cause hazard to others) after the rubber cord has fully extended.	

Apparatus List

Odd Number Bench

Question 1

- Retort stand
- Boss
- Clamp
- Split cork
- Pendulum made from strings and two slotted masses
- Stopwatch
- 30 cm ruler

Question 2

- Retort stand
- Boss head
- Clamp
- 3 x 100 g slotted masses
- Rubber band with dimensions of its cross section written on a card
- 100 g mass hanger
- Four 100 g slotted masses
- 30 cm rule

Even Number bench

Question 3

- Cardboard tube Y, with wire wrapped around it
- Cardboard tube Z, with wire wrapped around it
- Switch
- 1.5 V dry cell in holder
- 0 400 mA multimeter
- $0 400 \Omega$ multimeter
- One each of the following labelled resistors: 15 Ω , 18 Ω , 22 Ω , 27 Ω , 33 Ω
- Six connecting wires
- 30 cm ruler
- Micrometer screwgauge (one per 2 candidates)