Annotati	ons used in marking	
BOD - Be	enefit of doubt	
ECF - Er	ror carried forward	
POT - Po	wers of ten error	
TE - Trar	nsfer error	
CE - Calo	culation error	
XP - Wro	ng physics	
ENG - G	enerally bad english, phrasing and expression	
PP - P00	r presentation of answers	Markar's Depart
(a)(i)	Suggested Answer	This part was generally well
(a)(i)		done
		Some students omitted one
	Nor.	of the forces and were unable
	$\checkmark W_c$	to get full credit.
	Legend:	
	N – normal contact force	
	T - tension of string	
	$W_C - \text{weight of block A}$	
	Forces correctly labelled (ruler should be used)	
	Correct direction indicated	
(-)(!!)	(I longer in length than component of W_c along slope)	
(a)(II)	Taking mass B as the system $m a T = m a$	I his question was answered
	$m_B g - I = m_B a$	understood the
	$(8.3 \times 9.81) - 54 = 8.3a$	concepts. These students
	a = 3.30 m s ²	obtained full credit.
	Taking mass A as the system	
	$T - m_A g \sin 50^\circ = m_A a$	The rest attempted to
	$54 - (m_A \times 9.81 \sin 50^\circ) = m_A \times 3.30$	calculate based on the entire
	$m_{A} = 4.99 \mathrm{kg}$	system but failed due to the
	= 5.0 kg (2 s.f.) (shown)	lack of data.
		Others were confused with
		the resolution of the forces
(b)(i)	Force on block A = gradient	Most errors on this part are
	-2.00 - (-10.00)	due to the wrong exponent.
	$=\frac{1}{3.00\times10^{-3}}$	
	= 2670 N (3 s.f.)	
	Force on block A = – Force on block C	Most students did not
	= - 2670 N	account for N3L in this part
		and hence failed to obtain full
		credit.

(b)(ii)	D.		The vast majority of students
	$V_A = \frac{\mu_A}{m_A}$		were successful in this part.
	-2.00		
	$=\frac{100}{5.0}$		
	$= -0.40 \text{ m s}^{-1}$		A number of students forgot
			to express the answer in
			appropriate s.f.
(b)(iii)	Total momentum conserved:	$\boldsymbol{p}_i = \boldsymbol{p}_f$	Students who understood the
	$\boldsymbol{\rho}_i = \boldsymbol{\rho}_{fA} + \boldsymbol{\rho}_{fC}$		this question, obtaining full
	$p_{fC} = p_i - p_{fA} = -10.00 - (-2.$	00) = -8.00 N s	credit.
	10^{-1} 8.00^{-1} 0.80^{-1}		Students who faltered in this
	$v_c = -\frac{10}{10} = -0.80 \text{ m/s}$		question, usually were
			confused with the directions
			of the momentum.
			Some students who used the
			SUVAT approach to obtain
			velocity values were
			successful.
	Total KE before collision = $\frac{1}{2}m_{e}$	₄ <i>u</i> ²	Most students were familiar
	2	-10.00	KE/relative speed
	$=\frac{1}{2}(5)$	$(-10.00)(-10.00)^2$	approaches in determining
	=10 J		whether the collision was
	Total KE after collision = $\frac{1}{2}[n]$	$m_A v_A^2 + m_C v_C^2$]	elastic.
	_ ¹ [/F	$(0, 0, 0, 0)^2 + (10)(-0, 80)^2$	
	$-\frac{1}{2}$		
	= 3.6	J	
	<u>OR</u>		
	relative speed of approach	$= U_A - U_C$	
		= 2.0 m s ⁻¹	
	relative speed of separation	$= V_{\rm C} - V_{\rm A}$	
		= 0.80 - 0.40	
		$= 0.40 \text{ m s}^{-1}$	
	Since total KE is not conserve	ed, the collision is not elastic.	
	Since relative speed of appro	ach is not equal to the	
	relative speed of separation, t	the collision is not elastic.	
	· _ /		

Q2		
(a)	Electric potential at a point in an electric field is defined as	Most students only obtained
	the work done per unit positive charge by an external	1 out of 2 marks.
	agent in bringing a small test charge from infinity to that	Wrong terms used include
	point,	"work done" instead of "work
		done per unit charge", and
		"stationary charge" even
		though the charge is being
		moved.
		Essential terms that were left
		out include "external agent"
		and "positive".
	without producing any acceleration.	This was left out by some
(b)	1	This part was well apswored
(6)	$V \propto \frac{1}{r}$	This part was well answered.
	1	
	$\frac{V_2}{100} = \frac{0.050}{0.000}$	
	400 0.200	
	$V_2 = 100 \mathrm{V}$	
	$E \propto \frac{1}{2}$	This part was well answered.
	r^2	
	$E_2 \qquad \left(0.050 \right)^2$	
	$\frac{1}{8000} = \left(\frac{1}{0.200}\right)$	
	$E_2 = 500 \mathrm{NC}^{-1}$	
(c)(i)1	Refer to sketches	
	$-R < r < R$: Horizontal line $V_{\text{inside}} = +400 \text{ V}$	This part was well answered.
	• (<i>r</i> < – <i>R</i>) and (<i>r</i> > <i>R</i>): Curve V = +	This part was well answered.
	$\circ V_{0.050m} = +400 \text{ V}$	A few students did not sketch
	$V_{0.000m} = \pm 100 \text{ V}$	the graph to pass through the
		points at ± 0.1 m and ± 0.2 m.
		Some answers did not
		include range from -0.2 m to
		0.2 m.
(c)(i)2	$0 < r < R$: Horizontal line $E_{inside} = 0$	This part was well answered.
	 (- R < r < 0) and (R > r > 0) : Curve & direction 	Wrong answers included
	• (When $r = +, E = +$) (When $r = -, E = -$)	taking the wrong direction of
	• $E_{0.050m} = \pm 8000 \text{ N C}^{-1}$	<i>E</i> as positive, not sketching
	$E_{0.200m} = \pm 500 \text{ N C}^{-1}$	the graph to pass through the points at ± 0.1 m and ± 0.2 m
		points at ± 0.1111 and ± 0.2111 .
		Some answers did not
		0.2 m
		0.2 111.

(c)(ii)1	 - R < r < R : V_{inside} = + 300 V (horizontal line) (r < - R) and (r > R) : Curve V = + (r < - R) and (r > R) : horizontal line at V_{0.200m} = 0 	This was very poorly answered even for students who had full marks for (c)(i). Students need to consider the graph for sphere A, and then determine the <u>scalar</u>
		sum of graphs for sphere A and sphere B.
(c)(ii)2	• Between $E_{0.050m}$ and $E_{0.200m}$: Curve & direction $\circ (r = +, E = +) (r = -, E = -)$ $\circ E_{0.050m} = \pm 8000 \text{ N C}^{-1}$ $\circ E_{0.200m} = \pm 500 \text{ N C}^{-1} (r = +, E = +) (r = -, E = -)$ • $E_{\text{inside}} = 0$ $E_{\text{beyond } 0.200m} = 0$	This was very poorly answered even for students who had full marks for (c)(i) where some of the graphs drawn clearly did not apply the equations for <i>V</i> and <i>E</i> . Students need to consider the graph for sphere B, and then determine the <u>vector</u> <u>sum</u> of graphs for sphere A and sphere B.

3					
(a)	First Law of Thermodynamics states that the increase in internal energy of a system				A number of students incorrectly stated "change" in their answers.
	is the sun done on t	n of the <u>heat s</u> he system.	supplied to the	e system and the <u>work</u>	
(b)	$q_{to} = (2.2)$	6×10 ⁶)(5.0)			
	$\Delta V = \left(\frac{5}{0.5}\right)$	$\frac{0}{98} - \frac{5.0}{1000})$			Some students are still not finding change of quantities the right way.
	<i>w_{on}</i> = -(1	$.01 \times 10^5)(\frac{5.0}{0.59})$	$\frac{10}{98} - \frac{5.00}{1000})$		A number of students found work done by the system instead.
	$\Delta U = q_{to}$ -	⊦W _{on}			
	=1.05	5×10 ⁷ J (3 s.f.)		
(c)(i)	As the product of <i>p</i> and <i>V</i> at state C is greater than the product of <i>p</i> and <i>V</i> at state D, $\frac{OR}{\Delta U} = q_{to} + w_{on}$				This part was well answered.
	Since <i>q</i> _{to}	is 0 and won is	s negative due	e to expansion,	_
(c)(ii)	State C I	s at a higher t	emperature.		This part was well answered
	of cycle	supplied to gas / J	on gas / J	internal energy of gas / J	
	A to B	0	300	300	
	B to C	2580	- 740	1840	
	C to D	0	- 440	- 440	
	D to A	-1700	0	- 1700	
Q4					
(a)(i)	Taking th	e direction of	displacement	as positive,	This part was very badly
	$F_R = m_{\xi}$	g – T			not show this step at all.
	<i>ma</i> = <i>m</i> ę	g-k(d+x)			Candidates need to be aware
					that show questions requires
					the student to clearly
					concepts.
	Since kd	= mg			Most students incorrectly
	ma = -kx				started with this step which
	$a = -\frac{k}{k}x$	•			understanding of the
	m				problem.

(a)(ii)	Negative sign of expression shows that acceleration acts	A number of students did not
	in the opposite direction of the displacement.	refer to the equation and
	Since <u>k and m are constants</u> , <u>acceleration is directly</u>	simply stated the conditions
	proportional to displacement.	for SHM.
(a)(III)	$a = -\frac{\kappa}{m}x$	well done.
	$\omega^2 = \frac{k}{m}$	
	$(2\pi f)^2 = \frac{1.2}{50 \times 10^{-3}}$	
	f = 0.780 Hz (3 s.f.)	
(a)(iv)	A / arbitrary units	Some students
		misunderstood the question and drew a totally irrelevant damping curve.
		Some students were careless with the shape of the graph.
	0.78	
	Correct shape, left side must be higher than right side, not	
	symmetrical, cannot start from origin	
	Peak slightly to the left of 0.78 Hz	
(b)(i)	$k_2 = 2k$	This part was badly done.
	$^{2} 2k$	Many students were unaware
	$\omega^{-} = \frac{1}{m}$	this is a series spring
	$(2\pi f)^2 - \frac{2.4}{2}$	situation.
	$(2\pi r)^{-1} = 50 \times 10^{-3}$	
	<i>f</i> = 1.10 Hz (3 s.f.)	
(b)(ii)		Many students failed to show that amplitude is decreasing exponentially with time.
	longer must start from x_0 at $t = 0$	
	Amplitude is decreasing exponentially with time	
<u> </u>		

Q5		
(a)(i)	It is a quantum of electromagnetic radiation energy	This part of the question was
	it is a <u>quantum</u> of <u>electromagnetic radiation</u> energy.	well answered
	The energy of a photon C is by where b is the Dispels's	Como studente did not
	The energy of a photon <i>E</i> is <u>nr</u> , where <u>n is the Planck s</u>	Some students dia not
	<u>constant</u> and <u>r is the frequency</u> of the electromagnetic	mention this point.
	radiation.	
(a)(ii)	$F = h \frac{C}{d}$	This part of the question was
	$- \lambda$	well answered.
	3.00×10^{-34} 3.00 × 10 ⁸	
	$= 0.03 \times 10^{-9}$	Most students were able to
	$=5.10 \times 10^{-19}$ J	apply the photon energy
	$5 + 0 = 40^{-19}$	apply the photon energy
	$=\frac{5.10\times10^{-19}}{1.00\times10^{-19}}$	equation.
	1.60×10 ¹³	
	= 3.188 eV	Intermediate value should be
		given to at least 4 s.f.
	= 3.19 eV (3 s.f.) (shown)	
(a)(iii)1		This part of the question was
	E _v / eV	well answered by students
	5.0	who understood the
		concepts.
	Na Fe	
		Main errors were due to the
		lines not being parallel or
	59	neglecting to include the
	0 f/x10 ¹⁴ Hz	vertical intercepts.
	0 5.0 15.0	
	······································	Some students skipped the
		entire segment altogether.
	-2.40	5 5
	-4.50	
	-5.0	
	Parallel lines drawn	
	Correct labeling on x-axis (5.9,10.9)	
	Correct labeling on y-axis (-2.46,-4.50)	
(a)(iii)2	Gradient – no change because the gradient is the Planck's	This part was well answered
	constant and not dependent on the intensity of light	by most of the students who
	Vertical intercept – no change because the vertical	attempted. The rest skipped
	intercept is work function is dependent on the metal and	the part.
	not dependent on the intensity of light	
(b)(i)	13.6 eV	Most students were able to
	Electron energy level difference between lowest energy	state the energy level.
	state to 0 eV	
		Somo wrong onowers
		some wrong answers
		energy between levels.

(b)(ii)	The highest energy level is 0 eV.	Students were generally able
	OR	to state one of the correct
	The electrostatic force between the electron and nucleus	reasons
	is attractive.	
	OR	
	Positive work done by external force to ionise the hyrogen	
	atom.	
(b)(iii)	Only photons with energy equal to the energy difference	Most students were unable to
	between the energy levels will be absorbed.	obtain full credit for this part.
	The electrons in the lower energy state will absorb the	
	photons and get excited to a higher energy level. Photons	Often they missed one of the
	not absorbed will continue to travel to screen.	main points of the answer,
	Excited electrons will return to lower energy level by	especially the last segment.
	emitting photons in all directions, resulting in dark lines at	
	these wavelengths as the photons is much smaller in	
Q6		
(a)(i)	A stationary wave is formed when two progressive waves	Most answers included
	of the same type	"progressive".
	of equal amplitude, equal frequency (or wavelength) and	Wrong answers were
	same speed, meet when they travel in opposite directions.	"velocity" instead of "speed",
		and leaving out amplitude.
(a)(ii)1	For fundamental frequency, length of string $L = \frac{\lambda}{2}$	
	Consider length of string <i>L</i> , and speed of each progressive	Some students only
	wave,	calculated the length of
	$v = f \lambda$	string, but not the wavelength
	405 = (622) 2L	of progressive wave.
	$L = 0.326 \mathrm{m} (3 \mathrm{s.f.})$	
(a)(ii)2	$V = \omega_{1} \sqrt{x_{1}^{2} - x^{2}}$	This part was not well
		answered.
	$V_{max} = \omega X_0$	
	$= 2\pi (622) 3.3 \times 10^{-3}$	
	$= 12.9 \mathrm{ms^{-1}} (3 \mathrm{s.f.})$	
	= 12.9 m s ⁻¹ (3 s.f.)	
(a)(iii)1	<u> </u>	Instead of area of a
	$r = \frac{1}{2\pi r^2}$	hemisphere, equations of
	200	area of sphere, and volume
	$= \frac{1}{2\pi(10.0)^2}$	of sphere were given.
	$= 0.318 \text{ W m}^{-2} (3 \text{ sf})$	

(a)(ii)	Possible reasons (any 2): Explanation in blue (NOT part of the answers)	
	 If the 2 identical loudspeakers are far apart, the path difference between the 2 waves is significant and their amplitudes are significantly different at all points (except the mid point/middle section). As amplitude of each wave decreases with distance travelled from the source, the resultant amplitudes are non-zero at every point between the loudspeakers (hence nodes are NOT formed) except at the mid point. Waves reflections from surfaces will superpose with the 2 waves from the loudspeakers. Nodes and antinodes are NOT formed. There is an obstacle between the 2 loudspeakers, and the 2 waves are unable to meet. Nodes and antinodes are NOT formed. Air in the medium is not stationary (e.g. if wind is blowing from one speaker to another, one wave has a smaller, and one has a larger frequency than the original frequency). Nodes and antinodes are NOT formed. 	As the 2 loudspeakers are identical, the 2 progressive waves must have the same amplitude, speed and frequency (and phase). Some wrong answers include suggesting that the waves have different amplitudes.
	Additional Notes:	
	 The 2 identical loudspeakers can be any distance apart except large distance (refer to 1). 	
	• If the distance between the 2 loudspeakers <i>L</i> is less than half a wavelength where at most only 1 node and 1 antinode are formed. As the node and antinode are $\frac{\lambda}{4}$ apart, wavelength is 4 <i>L</i> .	
	• If only 1 loudspeaker is used. The loudspeaker is placed at one open end (a pressure node) to produce a progressive wave. The second progressive wave is produced as a reflected wave at the other end. The length of tube <i>L</i> must be $\circ L = \frac{(2n+1)\lambda}{2} \text{ where } n = 0, 1, 2, \text{ (for a closed end),}$	
	or $L = \frac{n\lambda}{2}$ where n = 0,1, 2, 3, an open end).	

(b)(i)	pupil retina	Answers with wrong physics included using the double slit formula.
		A
	For single slit diffraction, at the 1 st minima $m = 1$, $\sin \theta = \frac{m \lambda}{b}$ (1)	Answers with wrong physics included using the diffraction grating equation formula.
	For small angle approximation,	
	$\sin \theta \approx \tan \theta$ (2)	
	$\tan\theta = \sin\theta$	
	$\tan\theta = \frac{\lambda}{b}$	
	$\frac{w/2}{L} = \frac{\lambda}{b}$	
	$\frac{4.80 \times 10^{-6} / 2}{17.0 \times 10^{-3}} = \frac{\lambda}{3.0 \times 10^{-3}}$	
	$\lambda = 4.24 \times 10^{-7} \mathrm{m}$	
	= 424 nm (3 s.f.)	
	OR	
	Pythagoras Theorem can be used to derive equation for θ	
(b)(ii)1	Two images are just resolved	The terms much he include
	Two images are <u>just resolved</u>	"just" as this is the minimum condition for the 2 images to
		be distinguishable.
		Wrong terms used were "differentiate" and
		"distinguish" instead of "resolved".
	when the <u>central maximum of one image falls on the first</u>	
	IT distance between the eye and poster is decreased,	
	will be further opert and oppose as 2 images. As the 2	
	images are resolved, the 2 objects are distinguishable.	

(b)(ii)2		
	$\theta \qquad \theta$	
	retina	
	poster	
	Applying Rayleigh Criterion, for minimum wavelength	
	$\theta_{P} = \frac{\lambda_{\min}}{1}$ (1)	
	$b = 280 \times 10^{-9}$	
	$=\frac{380\times10}{3.00\times10^{-3}}$	
	$= 1.27 \times 10^{-4}$ rad (3 s.f.)	
(b)(ii)3	By geometry and small angle approximation, for minimum	Most correct answers
	distance between 2 adjacent pixels,	provided calculations for both
	$\theta_{\text{min}} = \frac{d_{\text{min}}}{2}$	the vertical and horizontal
	^o min D	distances between adjacent
		Students only need to identify
		the minimum angle is due to
		the smaller distance and
		smallest wavelength of blue.
	$d_{\min} = \frac{72 \times 10^{2} \text{ m}}{710}$	
	$\theta_{\min} = \frac{1}{D}$	
	(72×10^{-2})	
	710	
	= 1.5	
	$= 6.761 \times 10^{-4} \text{ rad}$	
	Since $\theta_{min} > 2.91 \times 10^{-4}$ rad, the observer can distinguish	
	between any two adjacent blue pixels of the smaller	
	distance and smallest wavelength of blue.	
(b)(ii)4	Slit width increases, angular resolution decreases, hence	
	minimum distance increases.	

Q7		
(a)(i)	$B_{\rm C} = 7.5 \times 10^{-3} {\rm T}$	This part was well answered.
(a)(ii)	$B = \frac{\mu_0 NI}{M}$	This part was well answered.
	2r	
	$7.5 \times 10^{-3} = \frac{\mu_0(300)(2.0)}{2(0.050)}$	
	$\mu_0 = 1.25 \times 10^{-6} \text{ H m}^{-1}$	
(b)(i)	The magnitude of the induced e.m.f. in a conductor is	Many students got this
	directly proportional to the rate of change of magnetic flux	definition wrong. Students
	linkage experienced by the conductor.	need to put in more effort to
		remember the key definitions.
(b)(ii)	0.024 – 0.036 m	This part was well answered.
(b)(iii)	The gradient of the graph is the maximum.	A number of students did not
		base their answer from the
		graph and simple applied
		reference to the question
	As coil Q is moved at a steady speed, the rate of change	
	of magnetic flux linkage is the greatest. Hence induced	
	e.m.f. is maximum.	
(b)(iv)	When coil Q is moved to the right, the magnetic flux will	Similarly, this part was not
	decrease.	answerd well as many
		students simply applied Lenz
		law without clear explanation
		of the decrease in magnetic
		effect that is induced to
		oppose this decrease.
	By Lenz's law, an induced current caused by an induced	
	e.m.f. in coil Q will flow in the same direction as the current	
	in coil P to create a magnetic field to the left.	
(b)(v)1	<i>B</i> at 0.040 m = 3.6×10^{-3} T	Many students did not
	$\Delta B = 3.6 \times 10^{-3} - 7.5 \times 10^{-3}$	Include the negative sign in
	$= -3.9 \times 10^{-3}$ T	change should be indicated
		unless the question specified
		for magnitude.
(b)(v)2	$d\phi$	This part was well answered.
	$\mathcal{E}_{ave} = -\frac{1}{dt}$	
	$=-\frac{dNBA\cos\theta}{dNBA\cos\theta}$	
	dt	
	$=-NA\frac{dB}{dB}$	
	dt	
	$= -\frac{(5000)(1.5 \times 10^{-4})(-3.9 \times 10^{-3})}{}$	
	0.25	
	= 1.17 × 10 ⁻² V	

(c)(i)	Value of an alternating current that is equal to <u>the steady</u> <u>direct current</u> that would <u>dissipate heat at the same</u> <u>average rate in a given resistor</u> .	Many students got this definition wrong. Students need to put in more effort to remember the key definitions.
(c)(ii)1	V/V 240 -240 P/W 40 -240 -240 -240 -240 -240 -240 -240 -	This part was well answered. Some incorrect graphs include sinusoidal and modulus functions.
	$P_0 = 2P_{ave}$ = 2(20) = 40 W	
	Correct shape for 2 complete cycles	
(c)(ii)2	$\frac{V_{0 S}}{V_{0 P}} = \frac{N_{S}}{N_{P}}$ $\frac{V_{0 S}}{240} = \frac{1}{50}$ $V_{0 S} = 4.8 V$ 4.8	This part was well answered.
	$v_{\text{r.m.s. S}} = \frac{1}{\sqrt{2}}$	
	= 3.39 V (3 s.f.)	
(c)(iii)	diode V _{in} a.c. supply	 This part was not well answered. Circuit drawings did not follow what the question specified. Common mistakes include: wrong diode symbol use of battery or d.c. source no indication of V_{in} and V_{out}
	Labelled circuit diagram with correct symbols showing V_{in} .	
	V_{out} , a.c. supply and diode.	
(c)(iv)	$V_{\text{r.m.s. half-wave}} = \frac{4.8}{2}$ = 2.4 V	Many students did not know how to find the $V_{r.m.s.}$ for a half-wave rectified source.