Physics Notes (RP) - EOY

<u>Topics</u>

1)	Measurements	<i>2-</i> 4
2)	Kinematics	5-6
3)	Scalars & Vectors	7-8
4)	Dynamics 1	
5)	<i>Dynamics 2</i>	11-13
6)	Work, Energy & Power	14-15
7)	EM Spectrum	16-17
8)	Waves	18-19
9)	Sound	20
10)	Pressure	21-22
11)	Kinetic Model of Matter	23-24
12)	Temperature	25-26
13)	Thermal Properties of Matter	26-27

Measurements

1.1 Accuracy vs. Precision

ACCURACY	PRECISION
Closeness to the actual value	Reproducibility
Based on a measurement's true value	Not based on a measurement's true value
Can be derived from one reading	Has to be derived from multiple readings

- Measurement is usually recorded to smallest half division of smallest scale of instrument (e.g. thermometer, measuring cylinder)
- When measurements involve intervals, record to smallest division (e.g. metre rule, protractor)

1.2 Units

SI DERIVED UNITS			
Quantity	Common units	Derived unit	
Volume	m ³	m ³	
Density	kg m ⁻³	kg m ⁻³	
Acceleration	m s ⁻²	m s ⁻²	
<mark>Force</mark>	kg m s ⁻²	<mark>Newton (N)</mark>	
Work done	kg m ² s ⁻²	Joule (J)	

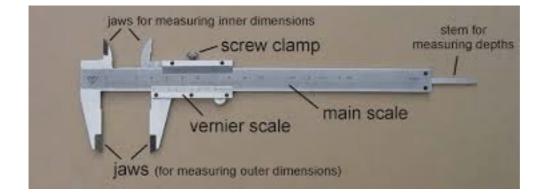
SI PREFIXES				
Prefix	Symbol	Multiply by		
giga-	G	x1,000,000,000		
mega-	М	x1,000,000		
kilo-	k	x1,000		
deci-	d	÷10		
centi-	С	÷100		
milli-	m	÷1,000		
micro-	u	÷1,000,000		
nano-	n	÷1,000,000,000		

<u>1.3 S.F & D.P</u>

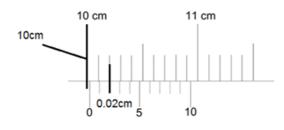
Addition & Subtraction – least decimal place of a term

e.g. 0.04529 + 0.0028 = 0.0481 (actual: 0.04809) 5 d.p + 4 d.p = 4 dp

Multiplication & Division – least significant figure of a term


e.g. 0.93 ÷ 0.07837 = 12 (actual: 11.86678576) 2 s.f ÷ 4 s.f = 2 s.f

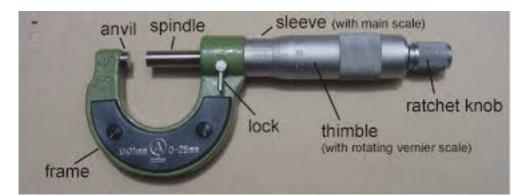
Combined – find d.p first, then overall s.f


e.g. $\frac{14.991-14.98}{14.991} = \frac{0.01}{14.991} = 0.0007 (1. s. f)$

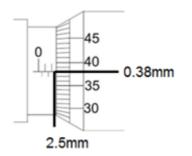
1.4 Measuring Instruments

Vernier Calipers

Correct to 0.01cm



10cm + 0.02cm = 10.02cm


- When no object is being measured
 - Lower jaw slightly to left negative zero error
 - Lower jaw slightly to right positive zero error

Observed reading – Zero error = Corrected reading e.g. 2.64cm – (-0.02cm) = 2.66cm

Micrometer Screw Gauge

- Place object between anvil & spindle
- Turn ratchet until <mark>2-3 clicks</mark> heard
 - correct pressure
 - o any further turning results in inaccurate reading
- Smallest division = 0.01mm
- Every horizontal interval is 0.5mm

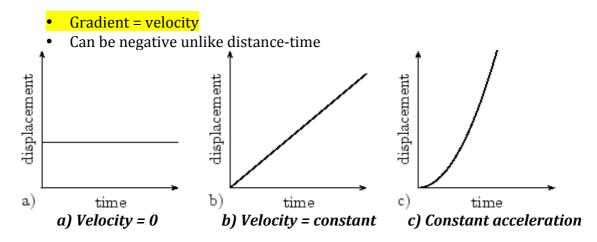
2.5mm + 0.38mm = 2.88mm

- When no object is being measured
 - Reading < 0 or <mark>0 cannot be seen</mark> Negative zero error
 - Reading > 0 Positive zero error
- Same method to obtain corrected reading as vernier calipers

1.5 Types of measurement errors

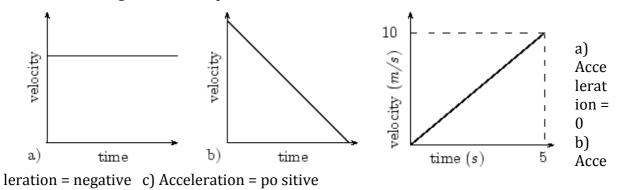
Systematic	Random	
> or < true value by <mark>fixed amount</mark>	readings <mark>scattered</mark> about a <mark>mean value</mark> ;	
	equal chance of (+) & (-)	
e.g. not accounting for <mark>zero error</mark> ,	e.g. fluctuation in <mark>count-rate</mark> of radioactive	
not accounting for background radiation	decay, variation in <mark>diameter</mark> of a piece of	
when measuring activity of radioactive	wire	
source		
can be <mark>eliminated</mark>	can only be <mark>reduced</mark>	
eliminated only if <mark>source of error is known</mark> ,	reduced by <mark>repeating measurement</mark> &	
not by repeating measurements & averaging	ing averaging, plotting graph & line of best fit	

Kinematics


2.1 Definitions & Equations

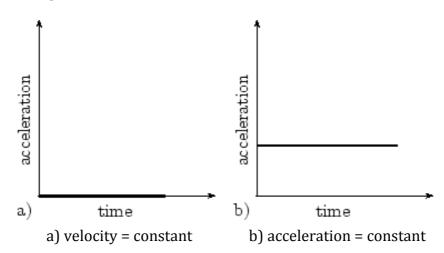
 $V=u+at \quad \begin{array}{ll} v = \mbox{ final velocity } u = \mbox{ initial velocity } u = \mbox{ initial velocity } t = \mbox{ time taken } \\ V^2=u^2+2as \quad \begin{array}{ll} v = \mbox{ final velocity } u = \mbox{ initial speed } & a = \mbox{ acceleration } \\ s = \mbox{ displacement } \\ t = \mbox{ time taken } \\ m = \mbox{ displacement } \\ m = \mbox{ initial speed } \\ m = \mbox{ displacement } \\ t = \mbox{ time taken } \\ m = \mbox{ displacement } \\ m = \mbox{ displaceme$

QUANTITY DEFINITION		SYMBOL	
Displacement		Distance moved in a <mark>specified direction</mark> from a	S
		<mark>reference point</mark>	
Sp	eed	Distance travelled / time taken	v
Velocity	Instantaneous	Rate of change of displacement with respect to	
		time (found by drawing <mark>tangent</mark> on <mark>s-t</mark> graphs)	
	Average	Change in displacement / time taken	Vave
Acceleration	Instantaneous	Rate of change of velocity with respect to time	
	Average	<mark>Total</mark> change in velocity / <mark>total</mark> time taken	a _{ave}


2.2 Graphs

Displacement-time graphs

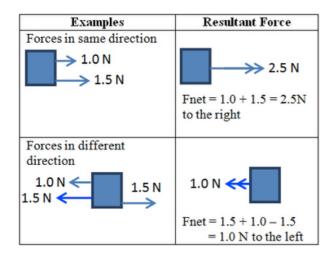
Velocity-time graphs


- Gradient = acceleration
- Area = change in displacement
- Can be negative unlike speed-time

In all cases, because gradient = constant, acceleration = constant

Acceleration-time graphs

- Area = change in velocity
- Can be negative


2.3 Sign conventions

- For displacement
 - taken with respect to a reference point
 - e.g. starting point of motion
 - o if, e.g., displacement to right is positive, then to left is negative
- For velocity
 - Fix a direction of motion as positive
 - e.g. in vertical motion
 - if downward motion is fixed as positive, then up is negative
 - Same case for acceleration

Scalars & Vectors

SCALARS	VECTORS	
quantities that are fully described by a magnitude alone	quantities that are fully described by both a magnitude and a <mark>direction</mark> (remember using the letters V&S)	
e.g. distance, speed, time mass, area, volume, energy, work done, and power	e.g. displacement, velocity, acceleration, force, <mark>weight</mark> and momentum	

3.1 Addition of Vectors

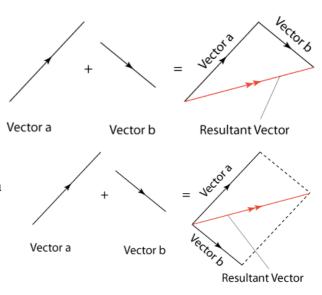
1. Vector Triangle Method

- Connect the tail of V2 to the head of V1
- Everything is to scale (i.e. angles, lengths)
- Resultant V joins tail of 1 to head of 2

2. Parallelogram Method

- 2 V's represented by sides of a parallelogram
- Resultant V is diagonal

Subtraction of vectors

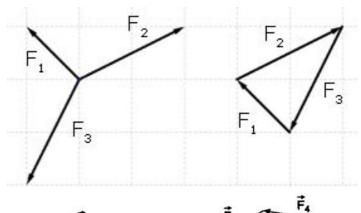

• Flip the head & tail of the vector being subtracted

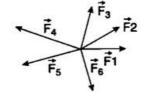
Addition of more than 2 vectors

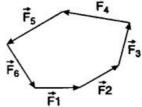
- Use a vector polygon
- Similar to vector triangle

- If both forces in same direction, then $F_r = F_1 + F_2$
- If two forces in opposite direction, then $F_r = F_1 F_2$ or $F_2 F_1$, depending on the direction
- Hence the addition of two forces (F₁ > F₂) is:

$F_1 - F_2 \leq F_r \leq F_1 + F_2$




Forces in Equilibrium


• When 3 coplanar forces acting on a point are in equilibrium

Same for polygon of forces

- can be represented in by adjacent sides of triangle
- when drawn in a vector triangle, the forces form a closed triangle

(a) Concurrent coplanar forces

(b) Polygon of force vectors

3.3 Vector Resolution

- Any vector can be resolved into any two perpendicular directions
 - Perpendicular components
 - e.g. horizontal & vertical components
- Component of vector = influence of vector in a given direction
- Perpendicular components are independent of each other
- e.g. 📢

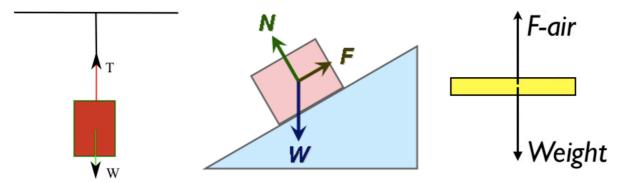
•

Using trigonometry,

 $\sin 37^\circ = F_y / 5$ $F_y = 5 \sin 37^\circ = 3.01$ N

 $\cos 37^\circ = F_x / 5$ $F_x = 5 \cos 37^\circ = 3.99$ N

- When object is in equilibrium
 - Sum of all vertical components of forces = 0
 - \circ Sum of all horizontal components of forces = 0


Dynamics 1

4.1 Different Types of Forces

FORCE	DESCRIPTION	
Weight (W)	 Gravitational force exerted by Earth on an object 	
Friction (F)	• When <mark>2 surfaces in contact</mark> , exert force on <mark>each other</mark>	
	 Component parallel to surfaces is friction 	
	 Acts in a direction so as to resist relative / tendency 	
	<mark>of motion</mark> between the surfaces	
Normal Contact Force (N)	 Perpendicular component of contact force 	
	Acts outwards from surfaces	
Air resistance	 Resistive force exerted by air on object moving 	
	through it	
	 Increases as speed increases 	
	• <mark>0</mark> when object <mark>at rest</mark>	
Tension (T)	 Pulling force acting in a string / rod 	
Magnetic Force (F _B)	 Forces exerted by magnets on magnetic materials 	
	 Like iron or nickel 	
	Originates from moving charges	
Electric Force (F _E)	 Forces exerted by electric charges on each other 	

4.2 Free Body Diagrams

- Forces acting on an object usually drawn as arrows
- Originate from point of action
- Length of arrows represents magnitude of force

4.3 Resultant Force

• Resultant force (F_r) = Vector sum of all forces acting on object

4.4 Newton's Laws of Motion

Newton's First Law

An <mark>object at rest</mark> will <mark>remain at rest</mark>, while an <mark>object in motion</mark> will <mark>continue in motion</mark> at constant velocity when without resultant force acting on it.

- Known as Law of Inertia
 - Implies that every body has inertia
 - A measure of its resistance to change in state of motion
 - Measure by mass (kg)

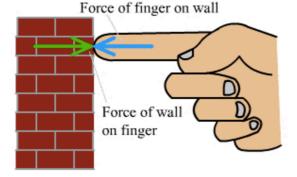
Newton's Second Law

The rate of change of momentum (mass \cdot v) of a body is directly proportional to resultant force acting on it.

The direction of resultant force is in the direction of the change in momentum.

Resultant Force = $\frac{Change in (mass x v)}{time}$

= mass x $\frac{\text{change in velocity}}{\text{time}}$


= mass x acceleration

Hence, $F_{resultant} = ma$

Newton's Third Law

If object <mark>A exerts a force on object B</mark>, then object B <mark>exerts an equal but opposite force</mark> on object A.

To every action there is an equal and opposite reaction.

- Force exerted by finger on wall is equal and opposite in direction to force exerted by wall on finger
- However, not all equal and opposite forces are an action-reaction pair (e.g. Weight & NCF)
- Action-reaction pair must satisfy these conditions
 - equal in magnitude
 - act in opposite directions
 - o act on different bodies
 - o same type / nature

4.5 Static & Kinetic Friction

- Friction can occur even when the objects are not moving relative to each other
- e.g. exerting a small force on a heavy box
 - Initially, when force applied is small, box still stationary
 - Static friction = applied force
 - When increase applied force
 - Static friction is overcome, box moves
 - Hence static friction is a limiting value
- Kinetic friction = when objects are moving relative to each other
 - Constant regardless the object's velocity
- Factors that affect friction:
 - Nature of surfaces in contact
 - How tightly the surfaces are pressed together
- However, not affected by area of surfaces in contact
- Friction as useful force (e.g. walking, holding an object, braking)
- Friction as nuisance (e.g. loss in useful energy, generate heat, wear & tear)
- To reduce friction \rightarrow 1. Ball Bearings 2. Lubricants 3. Air layer

4.6 Air Resistance & Terminal Velocity

- Higher velocity of object = More air resistance
- Air resistance also affected by shape & size of object
- When air resistance not negligible
 - Terminal velocity reached when air resistance increases to equal weight of object and velocity stops increasing

4.7 Mass & Weight

W = mg

where $g = \frac{9.81}{1000}$ N kg⁻¹ is the gravitational field strength on Earth (1.6 on Moon)

By extension, gravitational field strength, $g = \frac{weight}{mass}$

• acceleration of free-fall = gravitational field strength

Devices to Measure Mass & Weight

- Mass \rightarrow Balance scale
 - Any change in gravitational field strength affects both pans equally
 - When balance achieved, unknown & standard masses equal
- Weight \rightarrow Spring balance
 - Extension of spring proportional to gravitational pull on object
 - i.e. weight

Dynamics 2

5.1 Moment of a Force

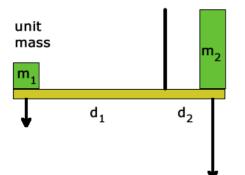
- Moment = turning effect of a force, e.g. NCF or applied force
- Direction = clockwise or anticlockwise

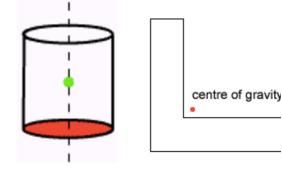
Moment = Magnitude of force x Perpendicular distance

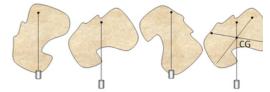
- Perpendicular distance is from the point to the line of action of the force
- Forces without a perpendicular distance passing through the pivot / point do not contribute to any moment
- Differences between moment & work
 - Moment is a very different physical quantity from work / energy even though same units (N m)
 - Moment is a vector, work & energy are scalars

5.2 Principle of Moments

- For a body in equilibrium
 - \circ Sum of all moments of all external forces about any axis / pivot = 0


Sum of clockwise moments = Sum of anticlockwise moments


5.3 Centre of Gravity

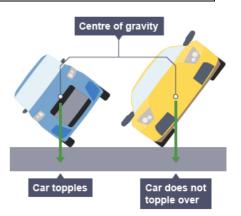

- Centre of gravity = Point at which the whole weight of object appears to act
- In uniform gravitational field, centre of gravity = centre of mass
- However, CG need not be located on object

- Hang laminar on one end and draw vertical line
- Repeat for another end
- Intersection of 2 lines = CG

- Determining CG of 2 unknown objects
- In uniform gravitational field g
- CW moment about pivot due to M₂ = Anti-CW moment about pivot due to M₁

$$M_2 \ g \ d_2 = M_1 \ g \ d_1 M_2 \ d_2 = M_1 \ d_1$$

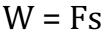
5.4 Equilibrium & Stability

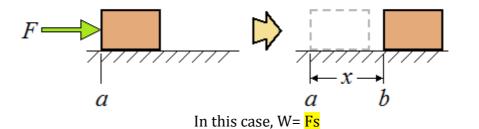

An object is in equilibrium if it is in

- 1. Translational equilibrium, i.e. resultant force = 0
- Rotational equilibrium, i.e. resultant moment = 0

<mark>Stable</mark> Equilibrium	 When tilted by very small angle from original position and released Returns to original position 	Stable equilibrium
<mark>Neutral</mark> Equilibrium	 When tilted by any angle from original position and released Stays at new position Only for round objects e.g. spheres & cylinders 	Neutral equilibrium
<mark>Unstable</mark> Equilibrium	 When tilted by arbitrarily small angle from original position and released Topples to new position 	Unstable equilibrium

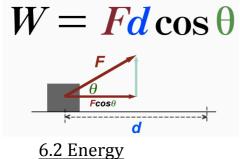
Stability & CG


- Types of equilibrium can also be seen from movement of CG
- For stable & unstable equilibrium, when CG is outside pivot point, topple



Work, Energy & Power

<u>6.1 Work</u>


- Work is only done if an object displaces while a force is applied
 - With some component of the applied force along direction of displacement

For friction *f*, W = -fs

For displacement \perp direction of applied force, W = Fs = F(0) = 0

For displacement at an angle, W = Fs = Fcos θ s = Fs cos θ

FORM OF ENERGY	EXAMPLES
Chemical Energy(a form of potential E related to the structural arrangement of atoms / molecules)NuclearEnergy(Energy released from atomic nucleus)	 Fuels, e.g. oil, wood, coal Electric cells, food & explosives Radioactive decay Nuclear reaction (fusion, fission)
Radiant Energy (Energy of <mark>electro-magnetic</mark> waves)	 Nuclear weapons, nuclear reactors Radiometry – measurement of EM radiation – visible light, radio waves, X-rays, γ-rays Solar energy Heating & lighting
Electrical Energy	 Energy associated with current in circuits & electric appliances Power station

d

FORM OF ENERGY	EXAMPLES		
Internal / <mark>Thermal</mark> Energy	• Thermal energy of a system, e.g. a gas in		
(Sum of kinetic & potential energy of <mark>molecules</mark>)	container, a solution in test tube		
Mechanical Energy	1. E_k – all objects in motion		
(PE & KE present in components of <mark>mechanical system</mark>)	2. E _p -		
1. Kinetic (E _k)	a. Waterfall, raised object		
2. Potential (E _p)	b. Charged capacitors		
a. Gravitational E _p	c. Compressed or stretched <mark>springs</mark> , bent		
b. Electric E _p	springboard		
c. Elastic E_p			

Kinetic Energy

Gravitational Potential Energy

$$E_k = \frac{1}{2} mv^2$$

 $E_p = mgh$

 Depends on zero potential energy level
 h = Height over 0-PEI

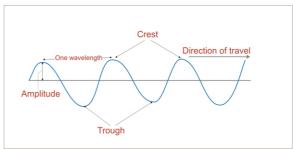
6.3 Energy Conversion & Conservation

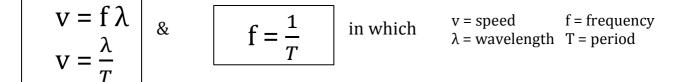
Principle of Conservation of Energy

Energy <mark>cannot be created or destroyed</mark>. It can be <mark>transformed or transferred</mark> but the <mark>total amount</mark> in any isolated system must remain constant.

<u>6.4 Power</u>

• Power = rate of doing work / rate of energy converted

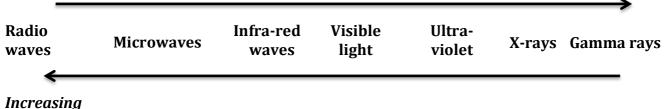

Efficiency


Efficiency =
$$rac{Energy\ converted\ to\ useful\ output}{Total\ energy\ input}$$

EM Spectrum

7.1 Properties of Electromagnetic Waves

- Transverse
- Transfer energy from one place to another
- Travel through vacuum at same speed
 - \circ 3 x 10⁸ m s⁻¹
 - Speed of light
- All follow the wave equation of:



7.2 Effects of Absorbing Electromagnetic Waves

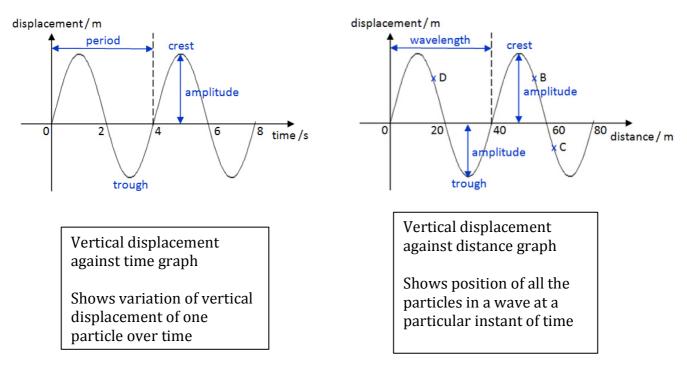
- All EM waves carry energy
- An object that absorbs EM waves will increase in energy, e.g.
 - By becoming hotter (microwave), or
 - By getting ionized (produce free electrons)
- If a body absorbs high-energy EM waves (e.g. UV, X-ray, gamma ray)
 - o Electrons may damage living cells & tissues
 - This effect is used in cancer treatment

7.3 The Electromagnetic Spectrum

wavelengths

EM WAVE	Wavelength/m	Sources	Detectors	Uses
Radio wave	10 ⁻¹ to 10 ⁵	Electronic devices	Aerials of TV & radio transmitters	 Radio telescope Radar communication
Microwave	10 ⁻³ to 10 ⁻¹	Electronic devices	Valve circuit arranged as microwave receiver	 Radar communication Microwave oven Analysis of molecular structures
Infra-red	10 ⁻⁷ to 10 ⁻³	 Warm bodies The Sun 	 Blackened thermometer Thermo- couples Special photographic film 	 TV remote control Household electrical appliances Intruder alarms Night vision Satellite footage of weather
Visible Light	10-7	Hot bodiesThe SunLasers	EyesPhotographic film	 Optical fibres Medical uses (e.g.endoscopy) Telecommunications
Ultra-violet	10 ⁻⁸ to 10 ⁻⁷	LampsThe Sun	DyesPhotocells	 Sun beds Fluorescent tubes Sterilisation Forensics
X-ray	10 ⁻¹³ to 10 ⁻⁸	• X-ray tubes	 Photographic film Fluorescent screens 	 Hospital use Fault detection Airport security Crystallography
Gamma ray	10 ⁻¹⁴ to 10 ⁻¹⁰	 Cosmic rays Radioactive substances 	 Geiger-Müller counters Photographic film 	 Sterilisation of medical equipment Cancer treatment Checking of welds

Waves

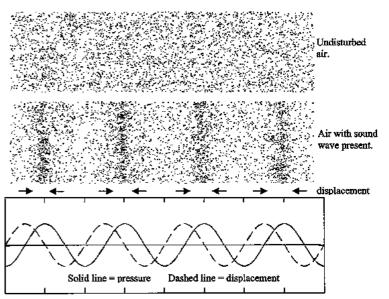

8.1 Progressive Waves

- Wave is a disturbance through a medium from one location to another
 - \circ $\;$ Transfers energy from one point to another without transporting matter $\;$
 - \circ $\,$ Mechanical waves require medium through which they propagate $\,$
 - \circ $\;$ Electromagnetic waves do not require any medium
- Particles of a wave do not move with the propagation of the wave
 - Only vibrate about their equilibrium positions with different phases within 1 wavelength

8.2 Definitions

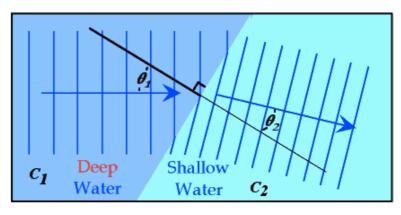
TERM	DEFINITION	UNIT
Displacement	Distance of the oscillating particle in a wave from its equilibrium position	m
Amplitude	Maximum displacement of oscillating particle from equilibrium position	m
Period	Time taken to complete 1 oscillation	T / s
Frequency	No. of oscillations made by wave per unit time	f / Hz (s-1)
Wavelength	Distance between corresponding points in successive wavefronts	λ / m

8.3 Graphs



8.4 Transverse & Longitudinal Waves

- Transverse wave
 - $\circ~$ Wave in which particles of the medium move perpendicularly to the direction of travel of the wave
 - $\circ~$ e.g. EM waves, pulses in ropes & springs
- Longitudinal wave
 - Wave in which particles of the medium move parallel to the direction of travel of the wave
 - o e.g. Sound, longitudinal pulses in springs


8.5 Sound Waves

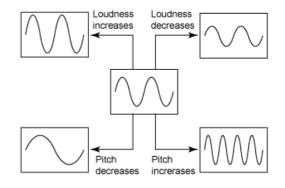
- Particles of a sound wave oscillate about their equilibrium positions in a direction parallel to direction o motion of the wave
- Produce a series of high and low pressure regions known as compressions and rarefactions
- Point where displacement = 0
 - Is the point of compression / rarefaction
 - Point where arrows meet $\rightarrow C$
 - Point where arrows go away \rightarrow R
- Point where pressure = highest \rightarrow C
- Point where pressure = lowest $\rightarrow R$

8.6 Water Waves

- Water waves undergo refraction when its speed changes
- When refraction occurs,
 - Speed changes
 - Wavelength changes
 - Frequency stays constant
- Water waves travel fast in deep water than shallow water
- From deep to shallow
 - Speed decreases
 - Wavelength decreases
 - Frequency stays constant
- Vice versa

Sound

9.1 Medium

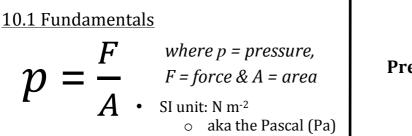

- Wave speed depends only on the medium
- Wave travels faster in denser mediums
 - \circ i.e. $V_{solid} > V_{liquid} > V_{gas}$

9.2 Pitch & Loudness

- Loudness depends on amplitude

 ↑ amplitude = ↑ volume
- Pitch depends on frequency

 frequency = pitch


9.3 Range of audible frequencies

- Range of audible frequencies for an average human
 - \circ 20 Hz 20 kHz
- Range decreases as one gets older
 - Ears lose sensitivity to extreme ends of frequency range

9.4 Ultrasound

- Ultrasound = sounds above upper hearing limit of 20 kHz
- Infrasound = sounds below upper hearing limit of 20 Hz
- Applications of ultrasound
 - Ultrasonic cleaning
 - Can reach internal areas which are inaccessibly using other cleaning means
 - Provides "push" required to break the mechanical bonds that hold minute particles to surfaces

Pressure

For a gas,

Pressure x Volume = Constant pV = constant

(Boyle's Law)

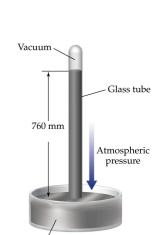
10.2 Pressure in Fluids

- Fluid = liquid / gas
- The greater the depth in a fluid, the more pressure exerted

```
Pressure due to a liquid column,
\mathbf{p} = \mathbf{h}\rho \mathbf{g}
```

 $h = height \qquad \rho = density \\ g = gravitational field strength$

- Pressure at one depth in a liquid acts equally in all directions
 - When water bag poked, water squirts out from all directions at not just downwards
- Liquids find their own level
 - To achieve pressure equilibrium
 - Cancels any resultant force created by a pressure difference


10.3 Atmospheric Pressure

- Atmosphere exerts a pressure caused by the weight of the thick layer of air above the Earth's surface
- At sea level, around 10⁵ Pa
- Measured with a barometer
- Total pressure acting at a depth (h) below the liquid's surface = atmospheric pressure + hρg

10.4 Pressure Measurement

Mercury Barometer

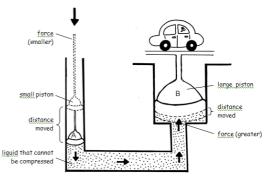
- Makes use of the height of a liquid column
- Made with a glass tube which is filled to the top with mercury
- Inverted in a trough of mercury
- Mercury level drop until 760mm above mercury level in trough
- ATP = 760 mm Hg (at sea level) ≈ 100 kPa
- Height of mercury column does not depend on diameter / angle of tube

Mercury

Water Barometer

- Works on the same principle
- However, needs a much longer glass tube
 - Water has much lower density than mercury
- ATP >10m of water

Manometer


- Consists of a U-tube filled with liquid

 Usually mercury, water or oil
- Measures gas pressure through pressure difference between atmosphere and the gas
- One arm of U-tube connected to gas supply, the other arm exposed to atmosphere
- Either Gas Pressure + Liquid Pressure = ATP
- Or Gas Pressure = Liquid Pressure + ATP
- Oil is often used
 - As it is less dense, it makes manometer more sensitive (for same pressure difference, oil registers greatest height)
- Manometer can be used in cleanrooms
 - To ensure pressure inside a room is slightly higher than outside to repel dust from outside

atmospheric pressure (P_{atm})

10.5 Hydraulic Systems

- Work by using liquids under pressure
- Uses the properties of liquids which are:
 - o Incompressible
 - If pressure applied to enclosed liquid, the pressure is transmitted uniformly to all parts of liquid
- Hydraulic system must not contain any air bubbles to maintain efficiency of system as no applied force will be used to compress air bubbles

atmospheric pressure (P_{otm})

as pressu

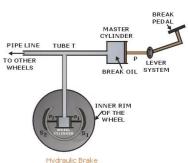
 $\begin{aligned} P_{\rm gas} > P_{\rm atm} \\ P_{\rm ras} = P_{\rm atm} + h \end{aligned}$

mercury

mercur

gas

 $P_{\rm gas} < P_{\rm stm}$


 $P_{\rm gas} = P_{\rm atm} - h$

 (P_{abs})

 $p_A = p_B$ $F_A/A_A = F_B/A_B$ $F_B = F_A(A_B/A_A)$ Since $A_B > A_A$, it follows that $F_B > F_A$.

Hydraulic Brakes

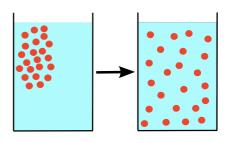
- Brake pedal pressed → piston of master cylinder applies pressure on brake fluid and this pressure is transmitted via a system of pipes to each cylinder at the wheels
- Cylinder at wheels cause pair of pistons to push outwards onto a pair of friction pads (brake shoe) which in turn press against the surface of the brake discs or brake drums
- Frictional forces between these brake components cause the vehicle to slow down and stop
- When brake pedal released, spring restores the brake shoes to their original positions

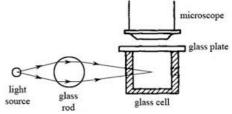
Kinetic Model of Matter

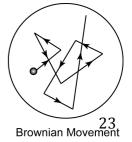
- Kinetic Model of Matter states that
 - All matter made up of very large number of particles
 - That are in a state of continuous random motion
 - Higher temperature = Greater average KE of particles

11.1 States of Matter

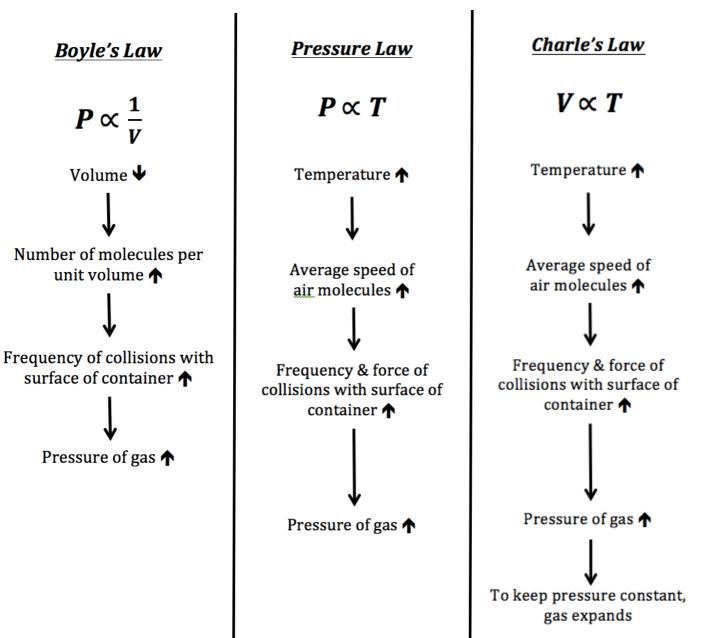
	Solid	Liquid	Gas
Arrangements of particles	Regular	Less regular	No fixed position
Distance between particles	Very small	Slightly larger than in solid Very large	
Intermolecular forces	Very strong	Slightly weaker than in solid	Negligible
Motion of molecules	Vibrate about fixed position	Vibrations & random movements throughout but particles cling along together	On top of vibrational motion, particles can move about freely.
Shape	Fixed shape	No fixed shape; takes shape of containerNo fixed shape; take shape of container	
Volume	Fixed volume	Fixed volume	No fixed volume as gases are compressible


11.2 Evidence of Kinetic Model


Diffusion


• Movement of particles from a region of higher concentration to a region of lower concentration

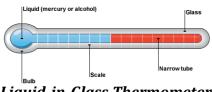
Brownian Motion


- Smoke enclosed in illuminated transparent container
- Microscope focused on smoke particles
- Smoke particles barely visible, appear as minute specks of light moving around in random & erratic motion
- Smoke particles are bombarded by air molecules
- Smaller smoke particles = More rapid movement
- **Brownian Motion** = haphazard movement of microscopic particles suspended in a fluid due to the uneven bombardment of suspended particles by the fluid's molecules

<u>11.3 Gas Laws</u>

Temperature

12.1 Temperature & Heat

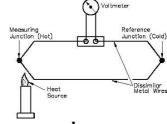

- Temperature = measure of how hot / cold an object is
- Heat = amount of thermal energy transferred from a hotter to a colder region
 - Describes the process of energy transfer
 - Once transferred, energy ceases to be heat
 - Energy becomes part of total energy of the molecules of the molecules / system (internal energy)
- Matter contains molecular KE & PE, but not heat
- Internal Energy = Combination of total KE & PE of the molecules
 - Includes translational KE of jostling atoms
 - Rotational & vibrational KE of molecules
 - KE due to internal movement of atoms within molecules
 - PE due to forces between molecules
- Rise in temperature = Increase in average KE of particles

12.2 Thermometers

• Thermometric property = Physical property of a thermometric substance that varies continuously

THERMOMETRIC PROPERTY	THERMOMETER	
Volume of fixed mass of liquid	Liquid-in-glass	
Resistance of piece of metal	Resistance thermometer	
Colour of hot object	Thermostrips / liquid crystal thermometer	
Length of solid	Bimetallic thermometer	
Electromotive force	Thermocouple	
Gas pressure	Constant volume gas thermometer	

- Good thermometers are
 - Responsive to temperature changes
 - Sensitive to small temperature changes
 - Able to measure a wide range of temperatures


Liquid-in-Glass Thermometer

- Thin glass bulb to conduct heat
- Portable & cheap
- Independent of other equipment

Resistance Thermometer

- Usually made of platinum due to linear resistance-temperature relationship
- Highly accurate & sensitive
- Wide range of temps (-200°C- 1000°C)

Thermocouple

- Measures electromotive force based on temp difference of 2 junctions Wide range of temps (-200°C- 1700°C) 25
- Can be use in precise places

12.3 Calculating Temperature

Celsius Scale

• In general, for a thermometric substance with physical property X (e.g. height of mercury) which changes linearly with temperature rise:

$$\theta^{\circ}C = (X_{\theta}-X_{L}/X_{H}-X_{L}) \times (\theta_{H}-\theta_{L}) + \theta_{L}$$

 X_L = Physical property at lower fixed point X_H = Physical property at higher fixed point X_{θ} = Physical property at $\theta^{\circ}C$

Kelvin Scale

- At absolute zero, all possible thermal energy transferred away from body
- Unit = Kelvin (K) \rightarrow SI unit for temperature
- Temperature in Kelvin = Temperature in Celsius + 273.15°C

Thermal Properties of Matter

13.1 Heat Capacity

Heat Capacity

• Heat capacity of a substance = amount of energy required to raise the temperature of substance by 1°C

Specific Heat Capacity

• SHC = amount of energy required to raise temperature of a *unit mass* of the substance by 1°C

Heat Transfer without Change in State

- When 2 bodies of different temperatures finally reach thermal equilibrium,
- Energy lost by hot body = Energy gained by cold body

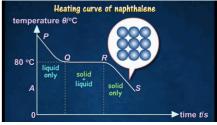
13.2 Specific Latent Heat

Cooling Curve of Napthalene

- From P to Q:
 - Temp Ψ due to loss of average KE of particles
 - From Q to R:
 - Temp constant
 - Heat loss comes from loss of PE of particles as bonds form to hold particles in more stable configurations
- From R to S:
 - \circ Temp \clubsuit due to loss of average KE of particles

 $Q = C \Delta \theta$

Q = amount of energy transferred (]) C = heat capacity (] K⁻¹) Δ = change in temperature (K)


$$Q = mc \Delta \theta$$

Q = amount of energy transferred (J)m = mass (kg)c = specific heat capacity (J kg⁻¹ K⁻¹) $\Delta = change in temperature (K)$

 $m_1 c_1 \Delta \theta_1 = m_2 c_2 \Delta \theta_2$

$$Q = P x t$$

Q = amount of energy transferred (J) P = power of heater (W) t = time taken (s)

Latent Heat

= the energy that is absorbed / released by substance when there is a change in state of substance without change in temp

- required to overcome the IMF between the particles
- 2 types: LH of fusion & LH of vaporization

Specific Latent Heat

- SLH of fusion (*l_f*) = amount of energy needed to change a unit mass of the substance from solid to liquid (or vice versa), without a change in temp
- SLH of vaporization (*l_v*) = amount of energy needed to change a unit mass of the substance from liquid to gas (or vice versa), without a change in temp
- In general, if there is a change in state: **Q** = **ml**
- SLH of F of ice = 33600 J kg^{-1}
- SLH of V of water = 2268000 J kg⁻¹

13.3 Boiling & Evaporation

Evaporation

- Molecules in liquids are in constant motion
- More energetic molecules at surface can break free from surface, while less energetic molecules left behind
- Hence, average KE of liquid molecules decreases
- Less average KE = Lower temp
- Hence, evaporation cools down a liquid
- Factors affecting: temp, surface area, wind, humidity, pressure of surrounding air

EVAPORATION	BOILING	
Occurs only at surface of liquid	Occurs throughout liquid	
Occurs at all temps	Occurs at b.p. only	
Slow process	Quick process	
Energy source not required	Energy source e.g. heater required	

$$l_f = \frac{Q}{m}$$

Q = amount of energy transferred (J) m = mass (kg)

$$I_v = \frac{Q}{m}$$

Q = amount of energy transferred (J) m = mass (kg)