CATHOLIC JUNIOR COLLEGE H2 MATHEMATICS 2023 JC2 PRELIM EXAM PAPER 2 SOLUTION

Q2	
(a)	$y = e^{-x} \sin x + x - 1$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{-x}\cos x - \mathrm{e}^{-x}\sin x + 1$
	$= e^{-x} \left(\cos x - \sin x \right) + 1$
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \mathrm{e}^{-x} \left(-\sin x - \cos x \right) - \mathrm{e}^{-x} \left(\cos x - \sin x \right)$
	$= -2e^{-x}\cos x$ where $k = -2$ (shown)
	2
(D)	$\frac{d^{3}y}{dx^{3}} = -2e^{-x}(-\sin x) - (-2e^{-x})\cos x$
	$=2e^{-x}\left(\sin x+\cos x\right)$
	When $x = 0: f(0) = -1$
	f'(0) = 2
	f''(0) = -2
	f''(0) = 2
	$y = -1 + 2x - 2 \cdot \frac{x^2}{2!} + 2 \cdot \frac{x^3}{3!} + \dots$
	$= -1 + 2x - x^2 + \frac{x^3}{3} + \dots$

$$\begin{bmatrix} \mathbf{c} \\ \frac{e^{-x} \sin x + x - 1}{\cos 2x} = \frac{-1 + 2x - x^2 + \frac{x^3}{3} + \dots}{1 - \frac{(2x)^2}{2!} + \dots} \\ = \left(-1 + 2x - x^2 + \frac{x^3}{3} + \dots \right) (1 - 2x^2)^{-1} \\ = \left(-1 + 2x - x^2 + \frac{x^3}{3} + \dots \right) [1 + (-1)(-2x^2) + \dots] \\ = \left(-1 + 2x - x^2 + \frac{x^3}{3} + \dots \right) (1 + 2x^2 + \dots) \\ = -1 - 2x^2 + 2x + 4x^3 - x^2 + \frac{x^3}{3} + \dots \\ = -1 + 2x - 3x^2 + \frac{13}{3}x^3 + \dots$$

Q3	
(a)	Method 1
	$1 \qquad M \qquad N$
	$\overline{P(13-2P)}^{-}\overline{P}^{+}\overline{13-2P}$
	$1 = M\left(13 - 2P\right) + NP$
	When $P = 0$, $M = \frac{1}{13}$
	When $P = \frac{13}{2}$, $N = \frac{2}{13}$
	$\frac{1}{2} = \frac{1}{2} + \frac{2}{2}$
	P(13-2P) = 13P + 13(13-2P)
	$=\frac{1}{13}\left(\frac{1}{P} + \frac{2}{13 - 2P}\right)$
	$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{26} P \left(13 - 2P \right)$
	$\int \frac{1}{P(13-2P)} \mathrm{d}P = \frac{1}{26} \int 1 \mathrm{d}t$
	$\frac{1}{13}\int \frac{1}{P} + \frac{2}{(13 - 2P)} dP = \frac{1}{26}\int 1 dt$
	$\int \frac{1}{P} dP - \int \frac{-2}{(13 - 2P)} dP = \frac{1}{2} \int 1 dt$
	$\ln P - \ln 13 - 2P = \frac{1}{2}t + C$
	$\ln\left \frac{P}{13-2P}\right = \frac{1}{2}t + C$
	$\left \frac{P}{13-2P}\right = e^{\frac{1}{2}t+C}$

$$\frac{P}{13-2P} = \pm e^{\frac{1}{2}t \cdot e^{t}}$$

$$\frac{P}{13-2P} = \pm e^{\frac{1}{2}t} \cdot e^{t}$$

$$\frac{P}{13-2P} = 4e^{\frac{1}{2}t}$$

$$P = 13Ae^{\frac{1}{2}t} - 2APe^{\frac{1}{2}t}$$

$$P\left(1+2Ae^{\frac{1}{2}t}\right) = 13Ae^{\frac{1}{2}t}$$

$$P\left(1+2Ae^{\frac{1}{2}t}\right) = 13Ae^{\frac{1}{2}t}$$

$$P = \frac{13Ae^{\frac{1}{2}t}}{1+2Ae^{\frac{1}{2}t}}$$

$$P = \frac{13A}{e^{\frac{1}{2}t} + 2A}$$
When $t = 0$, $P = 2$,
$$2 = \frac{13A}{1+2A}$$

$$2 + 4A = 13A$$

$$9A = 2$$

$$A = \frac{2}{9}$$

Method 2
$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{26} P (13 - 2P)$
$\int \frac{1}{P(13-2P)} \mathrm{d}P = \frac{1}{26} \int 1 \mathrm{d}t$
$\int \frac{1}{13P - 2P^2} \mathrm{d}P = \frac{1}{26} \int 1 \mathrm{d}t$
$-\frac{1}{2} \int \frac{1}{\left(P - \frac{13}{4}\right)^2} - \left(\frac{13}{4}\right)^2 dP = \frac{1}{26} \int 1 dt$
$-\frac{1}{2}\frac{1}{2\left(\frac{13}{4}\right)}\ln\left \frac{P-\frac{13}{4}-\frac{13}{4}}{P-\frac{13}{4}+\frac{13}{4}}\right = \frac{1}{26}t+C$
$\ln \left \frac{P - \frac{13}{2}}{P} \right = -\frac{1}{2}t + C'$
 $\left \frac{P-\frac{13}{2}}{P}\right = e^{-\frac{1}{2}t+C'}$

(b)	When $P = 4$,
	$4 = \frac{26}{26}$
	$9e^{-\frac{1}{2}t} + 4$
	$4\left(9e^{-\frac{1}{2}t} + 4\right) = 26$
	$9e^{-\frac{1}{2}t} = \frac{5}{2}$
	$e^{-\frac{1}{2}t} = \frac{5}{18}$
	$-\frac{1}{2}t = \ln\left(\frac{5}{18}\right)$
	$t = -2\ln\left(\frac{5}{18}\right)$
	t = 2.56
	It takes 2.56 months for the number of people who downloaded Ginseng Impact to double since the launch.

Q4	
(a)	Vector equation of the line <i>l</i> is $\begin{pmatrix} -2 \\ -2 \end{pmatrix} = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$
	Let α be the acute angle between the normal vector of plane Π_1 and line <i>l</i> .
	$\alpha = \cos^{-1} \frac{\begin{vmatrix} 2 \\ 1 \\ -2 \\ 1 \end{vmatrix}}{\begin{vmatrix} 2 \\ 1 \\ -1 \end{vmatrix} \begin{vmatrix} 3 \\ -2 \\ 1 \end{vmatrix}}$
	$= \cos^{-1} \left \frac{3}{\sqrt{6}\sqrt{14}} \right $ = 70.893° or 1.2373
	\therefore acute angle between the plane Π_1 and line <i>l</i> is
	$=90^{\circ}-70.893^{\circ}$ or $\frac{\pi}{2}-1.2373$
	$=19.1^{\circ}$ or 0.333
(b)	Substitute equation of line into the equation of plane:

(d)	A vector perpendicular to the plane Π_2 is
	$ \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 5 \\ 7 \end{pmatrix} $
	Equation of plane Π_2 is
	$\begin{split} r \cdot \begin{pmatrix} 1\\5\\7 \end{pmatrix} = \begin{pmatrix} -2\\4\\3 \end{pmatrix} \cdot \begin{pmatrix} 1\\5\\7 \end{pmatrix} \\ r + 5v + 7z = 39 \end{split}$
(0)	$\frac{x + 5y + 12 - 5y}{12 - 5y}$
(e)	Note that point $(4, 0, 5)$ lies on both planes Π_1 and Π_2 .
	A vector parallel to the line of intersection of both planes is
	$\begin{pmatrix} 2\\1\\-1 \end{pmatrix} \times \begin{pmatrix} 1\\5\\7 \end{pmatrix} = \begin{pmatrix} 12\\-15\\9 \end{pmatrix} = 3 \begin{pmatrix} 4\\-5\\3 \end{pmatrix}$
	Vector equation of the line that lies in both planes is
	$\chi = \begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}, \mu \in \Box$

Q5				
	Tables of outcomes			
	1	2	3	4
l	1 3	3	4	5
l	2 3	6	5	6
	3 4	5	9	7
	4 5	6	7	12
	$P(spin = 1) = \frac{144}{360} = \frac{2}{5}$ $P(spin = 2) = \frac{108}{360} = \frac{1}{1}$ $P(spin = 3) = \frac{72}{360} = \frac{1}{5}$ $P(spin = 4) = \frac{36}{360} = \frac{1}{1}$	$\frac{4}{10} = \frac{4}{10}$ $\frac{3}{10}$ $\frac{4}{5} = \frac{2}{10}$ $\frac{1}{10}$		
a)	P(X = 6) = P(spin ₁ = 2, spin ₂ = = $\left[\left(\frac{3}{10}\right)\left(\frac{3}{10}\right)\right] + \left[\left(\frac{3}{10}\right)\right]$ = 0.15	$(\frac{1}{10}) + P(sp)$	$in_1 = 2, sp$ $-\left[\left(\frac{1}{10}\right)\left(\frac{1}{2}\right)\right]$	$\left[\frac{3}{0} \right]$
b)	$P(X = 3)$ $= P(spin_1 = 1, spin_2 =$ $= \left[\left(\frac{4}{10}\right) \left(\frac{4}{10}\right) \right] + \left[\left(\frac{4}{10}\right) \right]$ $= 0.4$	$1) + P(\text{spin}) = \frac{1}{10} \left(\frac{3}{10}\right) + \frac{1}{10} \left(\frac{3}{10}\right) = \frac{1}{10} \left$	$n_1 = 1, spi$ - $\left[\left(\frac{3}{10} \right) \right] \left(\frac{3}{10} \right)$	$ n_2 = 2) + P $

P(X=4)
$= P(spin_1 = 1, spin_2 = 3) + P(spin_1 = 3, spin_2 = 1)$
$= \left[\left(\frac{4}{10}\right) \left(\frac{2}{10}\right) \right] + \left[\left(\frac{2}{10}\right) \left(\frac{4}{10}\right) \right]$ $= 0.16$
$P(X = 5) = P(spin_1 = 1, spin_2 = 4) + P(spin_1 = 4, spin_2 = 1) + P(spin_1 = 2, spin_2 = 3) + P(spin_1 = 3, spin_2 = 2) = \left[\left(\frac{4}{10}\right) \left(\frac{1}{10}\right) \right] + \left[\left(\frac{1}{10}\right) \left(\frac{4}{10}\right) \right] + \left[\left(\frac{3}{10}\right) \left(\frac{2}{10}\right) \right] + \left[\left(\frac{2}{10}\right) \left(\frac{3}{10}\right) \right] = 0.2$ $P(X = 7)$
$= P(\operatorname{spin}_{1} = 3, \operatorname{spin}_{2} = 4) + P(\operatorname{spin}_{1} = 4, \operatorname{spin}_{2} = 3)$ $= \left[\left(\frac{2}{10}\right) \left(\frac{1}{10}\right) \right] + \left[\left(\frac{1}{10}\right) \left(\frac{2}{10}\right) \right]$
= 0.04 P(X = 9)
$= P(spin_1 = 3, spin_2 = 3)$
$= \left[\left(\frac{2}{10}\right) \left(\frac{2}{10}\right) \right]$ $= 0.04$
P(X=12)
$= P(spin_1 = 4, spin_2 = 4)$
= 0.01
Alternative presentation format (Probability Distribution Table)x34567912

	$\mathbf{P}(X=x)$	$\frac{40}{100}$ = $\frac{2}{5}$ = 0.4	$\frac{\frac{16}{100}}{\frac{4}{25}} = 0.16$	$\frac{20}{100}$ = $\frac{1}{5}$ = 0.2	$\frac{\frac{15}{100}}{\frac{3}{20}} = 0.15$	$\frac{4}{100}$ $=\frac{1}{25}$ $= 0.04$	$\frac{\frac{4}{100}}{=\frac{1}{25}}$	$\frac{1}{100}$ = 0.01	
(c)	P(Score < 1)	0 Custo	mer wins	a prize)					
	$= \mathbf{P}(X < 10)$	X > 6							
	$= \frac{P(X < 10 \cap X > 6)}{100}$								
	P(X > 6)								
	$= \frac{P(X=7) + P(X=9)}{P(X=7) + P(X=9)}$								
	P(X=7)+P(X=9)+P(X=12)								
	= (0.04)+(0.04)								
	(0.04)+(0.04)+(0.01)								
	$=\frac{8}{9}$ or 0.88	9 (3 s.f.)							

Q6	
(a)	\checkmark s (hundred units) (24.506)
	$\times \times $
	×
	×
	r = 0.9474557
	= 0.947 (3 s.f.)
	Although the product moment correlation coefficient $r = 0.947$ is close to +1, which suggests a strong, positive, linear relationship, The scatter
	diagram indicates that as <u>t increases</u> , <u>s increases at a decreasing rate</u> i.e. the scatter diagram shows the points appear to lie on a curve rather than a straight line as a linear model may not model the relationship well
(h)	For $s = a \ln t + b$.
(~)	
	4 = 3 x + b a= 43 c. 107019 6 b = +923. 8376217 r²=0, 93673240955
	P=0.76/0493/34
	a = 436.107 (3 d.p.)
	<i>b</i> = -923.838 (3 d.p.)
(c)	r = 0.967849 = 0.968(3 s.f.)
(d)	$s = a \ln t + b$ is a better model as the <i>r</i> -value is <u>closer to 1</u> .
(e)	When $t = 38$,
	$s = 436.107 \ln(38) - 923.8376$
	s = 662.53655
	Salas = 66.254 units
	5aics - 00,257 units
	Not reliable since 38°C is out of the data range hence extrapolation was performed.

Q7	
(a)(i)	No. of ways = ${}^{12}C_3 \times 3! = 1320$
(a)(ii)	$ \frac{\text{Method } \textcircled{O}:}{\text{No. of ways}} = \underbrace{\begin{smallmatrix} 1^2 \text{C}_2 \times {}^6 \text{C}_1 \times 3!}_{\text{Select 2 girls from 12 \& 1 boy from 6}} + \underbrace{\begin{smallmatrix} 1^2 \text{C}_1 \times {}^6 \text{C}_2 \times 3!}_{\text{Select 1 girl from 12 \& 2 boys from 6}} \\ = 3456 $ $ \frac{\text{Method } \textcircled{O}:}{\text{No. of ways}} $
	$=\underbrace{{}^{18}C_3 \times 3!}_{\text{No restriction}} - \underbrace{{}^{12}C_3 \times 3!}_{\text{Select 3 girls from 12 followed by arrangement}} - \underbrace{{}^{6}C_3 \times 3!}_{\text{Select 3 boys from 6 followed by arrangement}}$ = 3456
(b)	$\frac{\text{Method } \textcircled{O}:}{\text{Required probability}} = \frac{(15-1)! \times {}^{15}\text{C}_{3} \times 3!}{(18-1)!}$ $= \frac{91}{136}$
	<u>Method @:</u> [Not Recommended] $(1(-1)) = 21$
	Required probability = 1 - $\underbrace{\frac{(16-1)! \times 3!}{(18-1)!}}_{\text{chairperson, vice-charperson and secretary together}} - 3 \underbrace{\left[\frac{(15-1)! \times {}^{13}C_2 \times 2! \times 2!}{(18-1)!}\right]}_{\text{any 2 together and 1 separate}}$ $= \frac{91}{136}$
(c)	<u>Method ①:</u> [Arrange boys first followed by the girls]

Q8	
(a)	The probability of an orange being rotten is constant at $p\%$.
	The event of an orange being rotten is independent of the event of any other orange being rotten.
(b)(i)	Let X be the random variable denoting the number of rotten oranges out of 10 oranges. (defined by the question)
	$X \square \mathbf{B(10,0.2)}$
	$P(X \ge 2) = 1 - P(X \le 1)$
	= 0.6241903616
	= 0.624 (to 3 s.f.)

```
(b)(ii)
                 Expected number of packets of oranges that contains more than 1 rotten orange
                 =100\left[P(X>1)\right]
                 =100\left[1-P(X\leq 1)\right]
                 = 62.41903616
                 Method 1
                 Expected profit when all the packets of oranges are sold = 2(100) = 200
                 For the store manager to have a net profit,
                  Expected loss < Expected profit
                 62.41903616d < 200
                             d < 3.204150726
                             d < 3.20 (to 2 d.p.)
                 \therefore 0 < d < 3.20
                 Method 2
                 Total profit
                 = (100 - 62.41903616)(2) + 62.41903616(2 - d)
                 =200-62.41903616d
                 For the store manager to have a net profit,
                   Total profit > 0
                 200 - 62.419d > 0
                             d < 3.20 (to 2 d.p.)
                 ∴ 0 < d < 3.20
```


Q9					
(a)	Required probability				
	$= \left[P(A < 140) \right]^2 \times P(A > 170) \times \frac{3!}{2!}$				
	$= [P(A < 140)]^2 \times P(A > 170) \times 3$				
	$=(0.3341176)^2 \times (0.26015833) \times 3$				
	= 0.087128				
	= 0.0871(3 s.f)				
(b)	Let <i>A</i> be the random variable denoting the mass of an apple from the supermarket. Let <i>G</i> be the random variable denoting the mass of a guava from the supermarket. $A \square N(152, 28^2)$ and $G \square N(268, 43^2)$				
	$X = A_1 + A_2 + A_3 + A_4 + A_5$				
	$X \square \mathrm{N}(5 \times 152, 5 \times 28^2)$				
	$X \square N(760, 3920)$				
	$Y = G_1 + G_2 + G_3$				
	$Y \Box \mathbf{N} \left(3 \times 268, 3 \times 43^2 \right)$				
	$Y \square \mathbb{N}(804, 5547)$				
	$X - Y \square N(760 - 804, 3920 + 5547)$				
	$X - Y \square N(-44, 9467)$				
	P(X < Y) = P(X - Y < 0)				
	= 0.6744435				
	= 0.674 (to 3 s.f.)				
(c)	$F = A_1 + A_2 + A_3 + G_1 + G_2$				

	$F \square \mathrm{N}(3 \times 152 + 2 \times 268, 3 \times 28^2 + 2 \times 43^2)$
	$F \square N(992, 6050)$
	Given $P(F-992 < m) = 0.95$
	P(-m < F - 992 < m) = 0.95
	P(992 - m < F < 992 + m) = 0.95
	$\frac{\text{Method } \mathbb{O}:}{992 + m = 1144.449}$
	m = 152.449
	m = 153 (3 s.f.)
	$\frac{\text{Method } \textcircled{0:}}{992 - m = 839.551}$
	m = 152.449
	m = 153 (3 s.f.)
(d)	Method O: Convert weight from grams to kilograms to use selling price in \$/kg given in question
	$F \square N(992, 6050)$ (in g)
	$F' \square N\left(\frac{992}{1000}, \frac{6050}{1000^2}\right)$ (in kg)
	$F' \square N(0.992, 0.00605)$
	Let C be the cost of a Family Pack ($\frac{k}{kg}$). C = 5F'
	$C \sim N(5 \times 0.992, 5^2 \times 0.00605)$
	$C \sim N(4.96, 0.15125)$

P(C < 5) = 0.54096= 0.541(to 3 s.f.) Method @: Convert selling price from \$/kg to \$/g Let C be the cost of a Family Pack in $\frac{1}{2}$ and F be the total mass of a Family Pack in grams (from (iii)). Selling price of Family pack = $\frac{5}{\text{kg}} = \frac{0.005}{\text{g}}$ C' = 0.005F $C' \sim N(0.005 \times 992, (0.005)^2 \times 6050)$ $C' \sim N(4.96, 0.15125)$ P(C < 5) = 0.54096= 0.541(to 3 s.f.) Method ③: Convert random variable from price to weight in grams $F \square N(992, 6050)$ (in g) Let C be the cost of a Family Pack ($\frac{k}{kg}$). $C = \frac{5}{1000} F$ P(C < 5) $= \mathbf{P}\left(\frac{5}{1000}\,F < 5\right)$ = P(F < 1000)= 0.54096= 0.541 (to 3 s.f.)

Q10	
(a)	Unbiased estimates of the population mean
	$\sum (x-650)$
	$=\frac{n}{n}+650$
	34.39
	$=-\frac{1}{50}+650$
	= 649.3122
	Unbiased estimates of the population variance, s^2
	$=\frac{1}{n-1}\left(\sum (x-650)^{2} - \frac{\left(\sum (x-650)\right)^{2}}{n}\right)$
	$=\frac{1}{49}\left(22769.98-\frac{\left(-34.39\right)^2}{50}\right)$
	$=\frac{89621}{6087}$ or 464.21
	= 464 (to 3 s f)
(b)	$H_0: \mu = 650$
	$H_1: \mu < 650, \mu$ is the population mean travelling distance on a single charge
	Under H ₀ ,
	Since sample size, $n = 50$ is sufficiently large,
	$\overline{X} \sim N\left(650, \frac{464.21}{50}\right)$ approximately by CLT

	Distribution of test statistic $Z = \frac{\overline{X} - 650}{\sqrt{\frac{464.21}{50}}} \sim N(0, 1)$ Test statistic, $z = \frac{649.3122 - 650}{\sqrt{\frac{464.21}{50}}} = -0.22573 \approx -0.226$ (3 s.f.)		
	Critical value method	p-value method	
	At 5% level of significance, we reject H_0 if $z_{test} \le -1.64485$.	At 5% level of significance, we reject H_0 if <i>p</i> -value ≤ 0.05 .	
		p -value = 0.4107056 \approx 0.411 (3 s.f.)	
	Since $z_{\text{test}} \leq -1.64485$, we do not reject H_0 and conclude that there is insufficient evidence at the 5% level of significance that the car manufacturer has overstated the travelling distance on a single charge.	Since <i>p</i> -value = $0.411 > 0.05$, we do not reject H ₀ and conclude that there is insufficient evidence at the 5% level of significance that the car manufacturer has overstated the travelling distance on a single charge.	
(c)	The MeTube car reviewer needs to appcharge is unknown (i.e. not normallyWith the sample size of 50 (large), CL'distributed.	bly Central Limit Theorem (CLT) becau 7 distributed). T can be applied and the <u>mean</u> travellin	use the distribution of the travelling distance on a single g distance on a single charge is <u>approximately</u> normally

(d)	The TokTik car reviewer should use a 2-tail test since travelling distance on a single charge can either be more than or less than 650 km .
(e)	The TokTik car reviewer needs to assume that the travelling distance on a single charge is normally distributed.
	He also needs to assume that the observations of travelling distance on a single charge are independent.
	Accept: Assume that the unbiased estimate of the population variance is a good estimate of the population variance.