1 The variables x and y are related by the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 2\mathrm{e}^{-2x} \ .$$

Solve the differential equation. Hence find a possible solution curve that has an oblique asymptote, and state the equation of the oblique asymptote. [4]

2

In the triangle PQR, angle $PQR = \frac{\pi}{3}$ radians and angle $PRQ = \frac{\pi}{3} - \theta$ radians, where θ is small enough for θ^3 and higher powers of θ to be negligible.

Show that $\frac{PR}{PQ} \approx 1 + \alpha\theta + \beta\theta^2$, where α and β are exact real constants to be determined. [5]

3 A curve *C* has equation $x^2y + y^4 = 5$.

(a) Find
$$\frac{dy}{dx}$$
 in terms of x and y. [2]

- (b) Find the exact distance between the two tangents to C that are parallel to the x-axis. [3]
- 4 Without the use of a calculator, show that

$$\int_{-2}^{2} \frac{|x-2|}{x^2-2x+4} \, \mathrm{d}x = p \ln 3 + q \, \pi \; ,$$

where p and q are exact real constants to be determined. [6]

- 5 A curve G with equation y = f(3x-2) + a, where a is a positive real constant, is transformed onto the curve with equation y = f(x) by a sequence of transformations.
 - (a) Describe fully, in terms of a, the sequence of transformations. [3]

A point on *G* with coordinates (b,0) is mapped onto the point with coordinates (c,d)on the curve with equation $y = \frac{1}{f(x)}$.

- (b) Find c and d in terms of a and b. [4]
- (a) By writing $\frac{1}{(2r+1)(2r+3)}$ in partial fractions, find an expression for $\sum_{n=1}^{n} \frac{1}{(2r+1)(2r+3)}$ in terms of *n*. [4]
 - (b) Explain why $\sum_{r=1}^{n} \left[\left(-\frac{1}{3} \right)^r + \frac{1}{(2r+1)(2r+3)} \right]$ is a convergent series, and state its sum to infinity. [4]
- 7 It is given that

6

$$f(x) = \begin{cases} \tan\left(\frac{\pi}{4a}x\right) & \text{for } -a < x \le a, \\ \sin\left(\frac{\pi}{2a}x\right) & \text{for } a < x \le 3a, \end{cases}$$

and that f(x) = f(x-4a) for all real values of x, where a is a positive real constant.

- (a) Sketch the graph of y = f(x) for $-4a \le x \le 7a$. [3]
- (b) By using the sketch in part (a), write down an equation relating f(x) and f(-x). [1]
- (c) Show that $\int_{-2a}^{4a} f(x) dx = \frac{ka}{\pi} (1 + \ln m)$, where k and m are constants to be determined. [5]

- 8 Relative to the origin *O*, two points *A* and *B* have position vectors given by $\mathbf{a} = 2\mathbf{i} \mathbf{j}$ and $\mathbf{b} = \alpha \mathbf{k}$ respectively, where α is a negative real constant.
 - (a) Find the angle between OA and OB. [1]

Let $\angle OBA = \theta$, where θ is in degrees. It is given that $\sin \theta = \frac{1}{2}$.

- (b) Find the two possible values of θ , and justify which of the two values is the correct value of θ . [2]
- (c) By considering a suitable scalar product, find the exact value of α . [3]

A point C has position vector \mathbf{c} such that $\mathbf{c} = \mathbf{b} - \mathbf{a}$.

- (d) State the shape of the quadrilateral *OABC*, justifying your answer. Find the exact area of the quadrilateral *OABC*. [3]
- 9 The function f is defined by

$$f: x \mapsto \ln (x+1)^2 + 2, \quad x \in \mathbb{R}, \ x \ge 0.$$

[2]

- (a) Show that f has an inverse.
- (b) Find $f^{-1}(x)$ and state the domain of f^{-1} . [3]

The function g is defined by

$$g: x \mapsto \frac{1-x}{x+1}, \quad x \in \mathbb{R}, \ x \neq -1.$$

- (c) Given that g^{-1} exists, show that $g^{-1}f^{-1}$ exists, and find the range of $g^{-1}f^{-1}$. [3]
- (d) Find the exact value of x such that $g^{-1}f^{-1}(x) = \frac{1}{2}$. [3]
- 10 A complex number z is given by $z = re^{i\frac{\pi}{n}}$, where 0 < r < 1 and n is a positive integer with $n \ge 3$. The numbers $1, z, z^2, ..., z^n$ can be represented by the points $P_0, P_1, P_2, ..., P_n$ respectively in an Argand diagram. The (n+1)-sided polygon formed by using $P_0, P_1, P_2, ..., P_n$ is called the (n+1)-polygon generated by z. An example of a (3+1)-polygon generated by z is shown in the following Argand diagram (not drawn to scale).

Let
$$z = \frac{1}{4}(1 + \sqrt{3}i)$$
 for parts (a) to (c).

- (a) Express z in the form $re^{i\theta}$, where r > 0 and $0 < \theta \le \pi$. [2]
- (b) Hence write down z^2 and z^3 in similar form. [2]
- (c) Find the exact area of triangle OP_0P_1 , where O is the origin. Hence find the exact area of the (3+1)-polygon generated by z. [4]

Let
$$z = \frac{1}{2} e^{i\frac{\pi}{n}}$$
 for part (d).

- (d) Find the area of an (n+1)-polygon generated by z in terms of n, leaving your answer in the form $a(1-b^n)\sin\frac{\pi}{n}$, where a and b are real numbers to be determined. [3]
- 11 [The volume of a right circular cone of radius r and height h is $\frac{1}{3}\pi r^2 h$.]

A student makes a printer nozzle for his self-built 3D printer. The printer nozzle consists of a hollow inverted right circular cone of negligible thickness with radius r mm where 0 < r < 2, height h mm and slanted edge 2 mm joined to a hollow cylinder of negligible thickness with radius r mm and height r mm. A height of $\frac{1}{4}h$ mm is cut off from the vertex of the cone for the nozzle opening (see diagram).

The volume of the printer nozzle is $V \text{ mm}^3$.

(a) Show that
$$V = \pi r^3 + \frac{21}{64}\pi r^2 \sqrt{4 - r^2}$$
. [3]

The student wants V to be a maximum.

(b) It is given that $r = r_1$ gives the maximum value of V. Show that r_1 satisfies the equation $4537r^4 - 18736r^2 + 3136 = 0$. [4]

- (c) Show that one of the positive roots of the equation in part (b) does not give a stationary value of V. Suggest a reason why this value is a solution to the equation in part (b) even though it does not give a stationary value of V. [3]
- (d) Given that r_1 is the largest positive root of the equation in part (b), state the value of r_1 and find the corresponding value of *h*. (You need not show that your answer gives a maximum.) [1]
- (e) With reference to the value of r_1 found in part (d), comment on the practicality of having a maximum volume for the printer nozzle. [1]
- 12 A data processing centre processes data (in suitable units) every day. Let u_n , where *n* is an integer, $n \ge 1$, represents the amount of data processed each day starting from 1st September. It is given that

$$u_{n+1} = (1+p)u_n$$
,

where p is a positive real constant.

- (a) Explain why the sequence $\{u_n\}$ is a geometric progression. [1]
- On 1st September, 2^m units of data, where *m* is an integer, $m \ge 6$, were processed.
- (b) If the total amount of data processed in the three days from 1st September to 3rd September is $\frac{127}{36}(2^m)$ units, find the value of p. [3]
- (c) Explain if there is a limit to the total amount of data the centre can handle in the long run. [1]
- Let $p = \frac{1}{4}$ for the rest of the question.

It is desired that data processors at the centre operate at below their maximum capacities to avoid processor downtime due to overheating. In a revised operating procedure, it is proposed that v_r (where r is a positive integer, $r \ge 1$), the amount of data processed each day starting from 1st October, follows a sequence given by

$$v_r = \begin{cases} u_r & \text{for } 1 \le r \le 4, \\ v_{r-1} - 25 & \text{for } r \ge 5. \end{cases}$$

(d) Show that

$$v_r = k[5(2^{m-6}) - r + 4]$$
 for $r \ge 4$,

where k is a constant to be determined.

[4]

- (e) Find the total amount of data processed up to the 15^{th} day, starting from 1^{st} October. Give your answer in the form $s(2^m)+t$, where s and t are constants to be determined. [3]
- (f) Assume that the revised operating procedure is adopted. Explain, in context, if it is meaningful to compute the total amount of data processed in the long run.

[1]