	ST ANDREW'S JUNIOR COLLEGE JC2 PRELIMINARY EXAMINATIONS HIGHER 2					
CANDIDATE NAME						
CLASS	2	3	S			

CHEMISTRY

Paper 1 Multiple Choice Candidate answer on the Optical Answer Sheet Additional Materials: Data Booklet 11 September 2024 1 hour

9729/01

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

There are **thirty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Optical Answer Sheet.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

This document consists of **XX** printed pages (including this cover page).

1	Use of Data Booklet is relevant to this question.									
	Soc	dium azide, NaN ₃ ,	is an ion	ic salt w	hich is us	ed to inf	late airba	ags insid	e a car d	luring a
	cra	sh.								
	Ho	w many electrons	are there	in a soc	lium ion a	nd an az	ide ion r	espective	ely?	
		sodium ion	azide	ion						
	A	<u>10</u>	22							
	В	11	21							
	С	22	42							
	D	22	43							
	An	s: A								
	Tot	al number of elect	rons in N	a [⊤] = 11 ·	-1 = 10	20				
	TO	al number of elect	rons in in	$_{3} = (7 \times 10^{-3})$	3) + 1 = 4	22				
2	The	first soven succe	necivo ior	visation (or olomo	nt V aro	as show	un Vict	ound in
2	Por	ind 3	55116 101	isation	energies i			as 5110V	VII. I 13 IV	
	1 01	100 0.								
			1st	2nd	3rd	4th	5th	6th	7 th	1
		Ionisation	1010	1900	2900	5000	6300	21300	25400	
		energy /	1010	1000	2000	0000	0000	21000	20100	
		kJ mol ⁻¹								
	Wh	ich statements are	e correct?)						
	1	The valence she	II of Y cor	ntains or	nly s and p	orbitals				
	2	The element afte	r Y in the	same p	eriod has	a lower	first ionis	ation en	ergy than	Υ.
	3	Y can react with	magnesiu	ım meta	l to form t	he comp	ound Mg	J 3 Y 2.		
	Α	1, 2 and 3								
	В	1 and 3 only								
	C	2 and 3 only								
	D	2 only								
	An	s: C								
	Opt	tion 1 is wrong as	the valen	ce shell	is n = 3, v	vhich coi	nsists of	s, p and	d orbitals	. The d
	orb	itals are empty the	ough.							

4	A s	ample of pure gas is put into a gas syringe at 27.0 °C and 16 kPa. The plunger of the				
	syr	inge is pushed in to compress the gas, until the volume occupied is halved. After				
	compression, the pressure of the gas is 40 kPa.					
	What is the new temperature of the gas?					
	Α	33.8 °C				
	В	67.5 °C				
	C	102.0 ℃				
	D	375.0 °C				
	An	s: C				
	Giv	ren that n and R are constant (n is constant because the gas did not react), p_1V_1 / T_1 =				
	p ₂ V	$T_{2/}$ / T ₂ . Temperature must be in K when using this formula.				
	16\	$/ / 300 = 40(0.5V) / T_2 \Rightarrow T_2 = 375K = 102 °C$				
5	Y is	s an element in Period 3. In each reaction, Y forms a product in its highest oxidation				
	sta	te.				
	Rea	action 1: Chlorine + $\mathbf{Y} \rightarrow \mathbf{Y}_{a}Cl_{b}$				
	Rea	action 2: Oxygen + $\mathbf{Y} \rightarrow \mathbf{Y}_{p}O_{q}$				
	Wh	ich fractions show an increase from sodium to phosphorus?				
	Α	Both $\frac{a}{a}$ and $\frac{p}{a}$				
	В	a/b only				
	С	^p / ₋ only				
	6					
	U	Neither $\frac{d}{b}$ and $\frac{p}{q}$				
	An	s: D				

			Na	Mg	Al		Si	P
	Ch	lorides of	NaCl	MgCl ₂	Al	Cl_3	SiCl ₄	PCl ₅
	Period 3							
	Fra	action	1/1 = 1	1⁄2 = 0.5	1/3	8 = 0.33	1⁄4 = 0.25	1/5 = 0.2
	0>	kides of	Na ₂ O	MgO	A <i>l</i> ₂	O ₃	SiO ₂	P ₄ O ₁₀
	Pe	eriod 3						
	Fra	action	2/1 = 2	1/1 = 1	2/3	8 = 0.66	1/2 = 0.5	4/10 = 0.4
6	Wh	en dilute sul	furic acid is	added to copper	(I) oxid	e, the produ	ucts formed a	re copper metal,
	сор	per(II) ions	and water.					
	Wh	ich is correo	ct?					
	 		<u> </u>				<u> </u>	
			of moles of	number of mo			or moles of	
		Curio			L	Cu-		
	B		1	2			1	
			' 2	<u>۲</u>			' 1	
	D		<mark>-</mark> 2	2			<mark>.</mark> 1	
	Ans	s: C						
	Cu ₂	O + H ₂ SO ₄	\rightarrow H ₂ O + S	O₄ ^{2−} + Cu + Cu ²⁺	÷			
	То	get 1 mol of	Cu and 1 m	nol of Cu ²⁺ ,				
	Cu⁺	+ e⁻ → Cu	(1)					
	Cu⁺	\rightarrow Cu ²⁺ + e	e⁻ (2)					
	(1)	+ (2): 2Cu+	\rightarrow Cu + Cu ²	+ (2Cu ⁺ came from the from t	om 1 m	ol of Cu ₂ O)		
7	Use	e of the Data	a Booklet is	relevant to this o	questio	า.		
	In a	n experime	nt, 2 g of a f	uel is completely	/ burnt.	55% of the	energy relea	ased is absorbed
	by 2	200 g of wat	ter and the t	emperature rose	e from 1	8 °C to 66	°C.	
	Wh	at is the ene	ergy release	d per gram of fu	el burn	t?		
	A	20 064 J						
	R	36 480 J						
	C	36 845 J						
	ט) 72 960 J						

	r					
	An	s: B				
	q =	200 x 4.18 x (66 – 18) = 40 128 J				
	q ('	100%) = (100 x 40 128) / 55 = 72 960 J				
	Total energy released per gram of fuel burnt = 72 960 / 2 = 36 480 J					
8	An	energy cycle is given below.				
		Step I				
		$Br_2(l) + 3F_2(g) \longrightarrow 2BrF_3(l)$				
		Step III Step II				
		Step IV				
		$2Br(g) + 6F(g) \longrightarrow 2BrF_3(g)$				
	Wh	ich statements are correct?				
	1	Step I represents the enthalpy change of formation of $BrF_3(l)$.				
	2	Step II involves the breaking of intermolecular instantaneous dipole-induced dipole				
		interactions only.				
	3	Step III involves the sum of 3 x bond energy of F-F(g) and 2 x enthalpy change of				
		atomisation of $Br_2(l)$.				
	Α	1, 2 and 3				
	В	1 and 2 only				
	С	2 and 3 only				
	D	3 only				
	Ans: D					
	Option 1 is wrong as step I should be 2 x enthalpy change of formation of $BrF_3(l)$.					
	Option 2 is wrong as both intermolecular permanent dipole-permanent dipole interactions					
	and	instantaneous dipole-induced dipole interactions are broken.				
	Ор	tion 3 is correct.				
9	The	e reaction between aqueous ethanedioic acid, (COOH)2, and acidified potassium				
	ma	nganate(VII) produces the following graph. This reaction is carried out in a				

	the	rmostatically controlled water bath at 60 °C. The products formed are Mn ²⁺ , CO ₂ and					
	H ₂ C	D.					
	concentration of (COOH) ₂ (aq)						
		t time					
	Wh	ich statement is correct?					
	Δ	Before time t, the reaction rate is slow because of the high concentration of $(COOH)_{0}$					
	B	The temperature used is sufficient to cause the reaction rate to increase after time t					
	о С	The processes of more Mn^{2+} equals the reaction rate to increase after time t.					
	C C	The presence of more wint causes the reaction rate to increase after time t.					
	D The reaction rate decreases eventually as the temperature decreases.						
	Ans: C						
	This question is an example of autocatalysis. The rate increases after time t because						
	suff	icient concentration of Mn ²⁺ is produced to catalyse the reaction.					
10	Azo	pmethane, $CH_3N=NCH_3$, undergoes thermal decomposition according to the following					
	equ	ation. This reaction is first order with respect to the concentration of azomethane.					
		$CH_3N=NCH_3(g) \rightarrow C_2H_6(g) + N_2(g)$					
	In a	an experiment, the initial pressure of azomethane was 300 Pa. After 20 minutes of					
	the	rmal decomposition at 600 K, the pressure of azomethane was 150 Pa.					
	In a	nother experiment, the initial pressure of azomethane was 600 Pa. What would be the					
	final pressure of azomethane after 20 minutes of thermal decomposition at 600 K2						
	Δ	150 Pa					
	R	300 Pa					
	0	450 De					
	C	400 Ma					

	D	900 Pa				
	An	s: B				
	Hal	f-life of a first order i	reaction is constant a	nd therefore, independe	ent of the [reactant] or	
	initi	initial pressure of azomethane. In the first experiment, 20 min is actually the half-life of				
	rea	ction. For the secon	d experiment, even th	ough the initial pressur	e doubled, 20 min is	
	still	the half-life which m	neans that pressure of	f azomethane will be ha	alved (ie. ½ x 600 =	
	300) Pa).				
11	1 m	nol of N_2O_4 and 0.2 r	nol of NO ₂ were adde	d to a 2 dm ³ sealed ves	ssel of fixed volume at	
	298	8 K. When the system	n reached equilibrium	, 0.68 mol of NO ₂ was	present in the vessel.	
			N₂O₄(g) ≂	≐ 2NO₂(g)		
	Wh	ich statements are o	correct?			
	1	0.76 mol of N ₂ O ₄ was present at equilibrium.				
	2	The value of the ed	uilibrium constant, K	, is 0.608.		
	3	The pressure in the vessel at equilibrium is lower than the pressure in the vessel before				
		the reaction started	ł.			
	Α	1, 2 and 3				
	В	1 and 2 only				
	С	2 and 3 only				
	D	<mark>1 only</mark>				
	An	s: D				
			N ₂ O ₄ (g)	\rightleftharpoons	2NO ₂ (g)	
	In	itial amount / mol	1		0.2	
	CI	nange in amount /	-0.24		+0.48	
	mol					
	Equilibrium amount		0.76		0.68	
	/ mol					
	K _c :	= (0.68/2) ² / (0.76/2)	= 0.304			
	Sta	tement 1 is correct.				
	Sta	tement 2 is wrong.				
	Since n _{total} is greater at equilibrium, pressure should be higher. Statement 3 is wrong.					

12	10	cm^3 of a 0.0100 mol dm^{-3} solution of sulfuric acid is diluted with 90 cm^3 of water.			
	Wh	at is the pH of the resulting solution?			
	Α	2.65			
	B	2.70			
	С	2.95			
	D	3.00			
	An	s: B			
	[H+	$] = 2 \times 10/1000 \times 0.01 \div 100/1000 = 0.00200 \text{ moldm}^{-3}$			
	pН	= -lg [H ⁺] = 2.698 ≈ 2.70			
13	Equ	ual volumes of two solutions are mixed.			
	Wh	ich mixtures will result in buffer solutions?			
	1	0.1 mol dm ⁻³ NaOH with 0.2 mol dm ⁻³ (COOH) ₂			
	2	0.2 mol dm ^{-3} CH ₃ NH ₂ with 0.1 mol dm ^{-3} HBr			
	3	0.2 mol dm ⁻³ NaOH with 0.1 mol dm ⁻³ H_2SO_4			
	Α	1, 2 and 3			
	B	1 and 2 only			
	С	2 and 3 only			
	D	1 only			
	An	s: B			
	Mix	ture 1 consists of 0.0025 mol HOOC-COOH and 0.0025 mol HOOC-COO ⁻ – Acidic			
	buffer				
	Mix	ture 2 consists of 0.0025 mol CH_3NH_2 and 0.0025 mol $CH_3NH_3^+$ – Basic buffer			
	Mix	ture 3 consist of 0.0025 mol Na ₂ SO ₄ – Neutral salt			
14	ZnS is a sparingly soluble salt.				
		$ZnS(s) \rightleftharpoons Zn^{2+}(aq) + S^{2-}(aq)$			
	A s	ample of ZnS is added to H_2S solution, which is a weak dibasic acid.			

15 The structure of a famous anti-cancer drug is as shown. Around Pt, the shape is square planar. NH_3 $H_3N-P_l^{\dagger}t-Cl$ Inside the human body, the following reaction takes place. Pt(NH₃)₂Cl₂ and $[Pt(NH_3)_2(H_2O)Cl]^+$ have different colours. $\begin{array}{c|c}
 & \mathsf{NH}_{3} \\
 & \mathsf{H}_{3}\mathsf{N}-\mathsf{Pt}-\mathsf{C}l \\
 & \mathsf{C}l \\
\end{array} + \mathsf{H}_{2}\mathsf{O} \longrightarrow \left| \begin{array}{c}
 & \mathsf{NH}_{3} \\
 & \mathsf{H}_{3}\mathsf{N}-\mathsf{Pt}-\mathsf{C}l \\
 & \mathsf{H}_{3}\mathsf{N}-\mathsf{Pt}-\mathsf{C}l \\
 & \mathsf{OH}_{2} \\
\end{array} \right| + \mathsf{C}l$ Which statements are correct? Pt has an oxidation state of +4. 1 2 $Pt(NH_3)_2Cl_2$ can exist as cis-trans isomers. 3 When the Pt complex reacts with H₂O, the energy gap between d-orbitals remains the same. 1, 2 and 3 Α В 1 and 3 only 2 and 3 only С 2 only D Ans: D Option 1 is wrong as the oxidation state of Pt should be +2. The complex is overall electrically neutral while the ligands exist as NH₃ (0 charge) and Cl⁻. Option 2 is correct as the 2 NH₃ or 2 C l^- can either be on the same side or opposite side in the complex. Option 3 is wrong as the type of reaction is ligand exchange. With H₂O as the new ligand, it will affect the extent of d-splitting, thus affecting the energy gap.

16	Nitrogen monoxide, NO, is an air pollutant which is produced in the internal combustion						
	eng	ine of vehicles.					
	Wh	Which reaction occurs in a catalytic converter to decrease the emission of nitrogen					
	mo	noxide?					
	Α	NO(g) + CO (g) →	• NO ₂ (g) + C(s)				
	B	$NO(g) + CO(g) \rightarrow$	$\frac{1}{2}N_2(g) + CO_2(g)$				
	С	$NO(g) + CO_2(g) \rightarrow$	• NO ₂ (g) + CO(g)				
	D	$NO(g) \rightarrow \frac{1}{2}N_2(g) +$	+ ½O ₂ (g)				
	Ans	s: B					
	CO	produced from the	e incomplete combustio	on of fuel will reduc	e NO to form N_2 , while it		
	itse	If is oxidised to form	n CO ₂ . N ₂ and CO ₂ are	less harmful than N	NO and CO.		
17	CH	₃ CH ₂ CH(CH ₃)CH ₃ ι	Indergoes free radical s	substitution with chlo	orine. During the reaction,		
	prin	nary, secondary and	d tertiary hydrogen ator	ms are replaced by o	chlorine atoms at different		
	rate	es as shown below.					
		ſ		na la Constanta	1		
			$RCH_3 \rightarrow RCH_2Cl$	1			
			$R_2CH_2 \rightarrow R_2CHCl$	7			
			$R_3CH \rightarrow R_3CCl$	21			
	Wh	ich statements rega	arding the mono-substi	tuted product C ₅ H ₁₁	Cl are correct?		
	1	Ratio of CH ₂ C/C	$H_2CH(CH_3)CH_3: CH_3($	CHCICH(CH ₃)CH ₃	$: CH_3CH_2CCl(CH_3)CH_3 :$		
		CH ₃ CH ₂ CH(CH ₃)C	CH ₂ C <i>l</i> is 3 : 14 : 21 : 6.				
	2	Excess CH ₃ CH ₂ Cl	H(CH ₃)CH ₃ is used to e	nsure that the mono	osubstituted product is the		
		major product.					
	3	Amongst the	organic products fo	ormed from the	mono-substitution of		
			, nare is only or	ie constitutional is	omer which can exhibit		
		stereoisomerism.					
	^	1 2 and 2					
	R	1, 2 and 3					
		1 and 2 only					
	C	r and 5 only					

	D	2 only					
	An	s: B					
	Opt	tion 1 is correct.					
	Rat	tio of $CH_2C/CH_2CH(CH_3)CH_3$: $CH_3CHC/CH(CH_3)CH_3$: $CH_3CH_2CC/(CH_3)CH_3$:					
	СН	₃ CH ₂ CH(CH ₃)CH ₂ C <i>l</i> is (3 x 1) : (2 x 7) : (1 x 21) : (6 x 1).					
	Opt	tion 2 is correct as the excess alkane means that it is less likely for multiple substituted					
	products to be formed.						
	Opt	tion 3 is wrong as there are 2 constitutional isomers that have a chiral carbon and					
	the	refore can exhibit enantiomerism - $CH_3C^*HC/CH(CH_3)CH_3$ and					
	СН	₃ CH ₂ C*H(CH ₃)CH ₂ C <i>I</i> .					
18	Wa	rfarin is used as a blood thinner to prevent blood clots. The structure of warfarin is as					
	shc	wn.					
		 ,0, ,0 					
		OH O					
	Wh	ich statements are correct?					
	1	Warfarin has 1 chiral carbon.					
	2	Warfarin has 2 cis-trans isomers.					
	3	Warfarin can react with PCl_5 to form the following product.					
		0_0					
		Ċı					
	4	Warfarin has 2 functional groups that react with NaBH					
	-						
	A	1 only					
	B	2 and 3 only					
	- C	1 2 and 3 only					
	•						

	D	All of the above		
	An	s: A		
	Op	tion 1 is correct as shown.		
	Opt	tion 2 is wrong because $C=C$ is within a ring and therefore, the trans isomer will		
	exp	erience ring strain. Hence, there is no cis-trans isomerism.		
	Op	tion 3 is wrong because the lone pair of electrons on O will delocalise towards $C=C$,		
	res	ulting in C-OH to have partial double character, making it harder to break. As such,		
	the	re is no nucleophilic substitution with PCl_5 .		
	Opt	tion 4 is wrong because 1 of the C=O belongs to ester functional group, which can		
	onl	y be reduced by LiA <i>l</i> H ₄ .		
	_			
19	one of its side-chains is converted into $CH_3(CH_2)_4CH=CHCH_2CH=CH(CH_2)_7CO_2$ and two side-chains are converted into $CH_3(CH_2)_7CH=CH(CH_2)_7CO_2$.			
		$CH_3(CH_2)_3CH \longrightarrow CHCH \longrightarrow CHCH \longrightarrow CH(CH_2)_7CO_2CH_2$		
		$CH_3(CH_2)_3CH = CHCH = CHCH = CH(CH_2)_7CO_2CH$		
		$CH_3(CH_2)_3CH = CHCH = CHCH = CH(CH_2)_7CO_2CH_2$		
	Glyceryl trieleostearate			
	Hov trie	w many moles of hydrogen gas are needed to convert one mole of glyceryl leostearate into margarine?		
	Α	3		
	B	5		
	С	6		
	D	9		
	An	s: B		

	Ead	ch side chain has 3 double bonds initially. After hydrogenation, 1 side chain has 2					
	dou	Ible bonds and 2 side chains have 1 double bond.					
	(3)	(3) - (2 + 2) = 5 C=C which participated in hydrogenation					
	OR						
	For CH ₃ (CH ₂) ₃ CH=CH-CH=CH-CH=CH(CH ₂) ₇ CO ₂ →						
	$CH_3(CH_2)_4CH=CH-CH_2-CH=CH(CH_2)_7CO_2$, the following must happen.						
	$CH_{3}(CH_{2})_{3}C = C + C = C - (CH_{2})_{1}CO_{2}$ $H = H$						
		$\longrightarrow CH_3(CH_2)_3 CH_2 C = C - CH_2 - C = C - (CH_2)_7 CO_2$					
	Hence, 1 mol of H_2 is needed.						
	For	$CH_{2}(CH_{2})_{2}CH_{$					
	means that the C=C highlighted in vellow must undergo addition with H ₂ Number of						
	moles of H ₂ required = 2×2 (for 2 side-chains) = 4						
	Total amount of $H_2 = 1 + 4 = 5$ mol						
20	Wh	ich statement correctly describes the benzene molecule as a result of the delocalised					
	electrons present within it?						
	Α	Benzene can act as reducing agent.					
	В	Benzene is a conductor of electricity.					
	С	Benzene prefers to undergo addition reactions.					
	D	All the carbon-carbon bonds are of the same strength.					
	An	s: D					
	The	e delocalisation of pi electrons results in every carbon-carbon bonds to have partial					
	dou	ble bond character and therefore, they will all have the same strength.					
21	CH	$_{3}$ OCOCH $_{3}$ is reacted with a strong base to form the following nucleophile.					

		O II				
	Which compound can be formed from the nucleophilic addition between a ketone and					
	CH	$_{\rm 2}$ OCOCH $_{\rm 2}^-$ followed by protonation?				
	-					
	Α	CH ₃ OCOCH ₂ CH(OH)CH ₃				
	В	CH ₃ COOCH ₂ C(OH)(CH ₃) ₂				
	С	CH ₃ OCOCH ₂ CH(OH)CH ₂ CH ₃				
	D	CH ₃ OCOCH ₂ C(OH)(CH ₃) ₂				
	An	s: D				
	Options A and C are wrong because aldehyde are used instead of ketone.					
	Option B is wrong because it should be the -H on C adjacent to C=O which is acidic, not					
	the	-H on C adjacent to O of ester.				
22	What is the organic product obtained when 2-chloro-2-fluoropropane is heated with excess					
	NaOH(aq)?					
	Α	OH				
		ОН				
	в	Ę				
		OH				
	С	Cl				
		OH				
		F				
	Ans: B					
	C-F is too strong to be broken, unlike C-C <i>l</i> . Therefore, C <i>l</i> will be substituted to form OH.					
00	1 male of organia compound is placed in 1 dm ³ of water					
23	1 mole of organic compound is placed in 1 dm ³ of water.					

C_6H_5OH CH_3COCl C_6H_5OH CH_3COCl CH_3COCl ns: A H_5OH is less acidic than CH_3COCl e negative charge is delocalized here the negative charge is delocalized	CH ₃ COOH C ₆ H ₅ OH CH ₃ COC <i>l</i> CH ₃ COOH COOH because CH ₃ COO ⁻ is d over the O-C-O bond, makir	CH ₃ COCI CH ₃ COOH CH ₃ COOH C ₆ H ₅ OH				
CH_3COCl C_6H_5OH CH_3COCl ns: A H_5OH is less acidic than CH_3d e negative charge is delocalized here the negative charge is delocalized	C ₆ H ₅ OH CH ₃ COC <i>l</i> CH ₃ COOH COOH because CH ₃ COO ⁻ is d over the O-C-O bond, makir	CH ₃ COOH CH ₃ COOH C ₆ H ₅ OH				
C ₆ H₅OH CH ₃ COC <i>l</i> ns: A H₅OH is less acidic than CH ₃ d e negative charge is delocalized here the negative charge is del	CH ₃ COC <i>l</i> CH ₃ COOH COOH because CH ₃ COO ⁻ is d over the O-C-O bond, makir	CH ₃ COOH C ₆ H ₅ OH				
CH ₃ COC <i>l</i> ns: A H ₅ OH is less acidic than CH ₃ (e negative charge is delocalized here the negative charge is del	CH₃COOH COOH because CH₃COO ⁻ is d over the O-C-O bond, makir	C ₆ H₅OH				
hs: A H₅OH is less acidic than CH₃(e negative charge is delocalize here the negative charge is del	COOH because CH₃COO [−] is d over the O-C-O bond, makir					
where the negative charge is delocalised into the benzene ring. CH ₃ COC/ undergoes hydrolysis in water, forming CH ₃ COOH and HC/. Thus, an aque solution of CH ₃ COC/ is the most acidic. Which reagents and conditions can be used to distinguish between compounds Y and $\begin{array}{c} O\\ \downarrow\\ \downarrow\\$						
Acidified KMnO4(aq), heat						
Acidified K ₂ Cr ₂ O ₇ (aq), heat						
Alkaline I ₂ (aq), warm						
1.2 and 2						
1, 2 and 3						
D 1 and 2 only						
2 and 3 only						
	hich reagents and conditions c $\downarrow \downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ $\downarrow \downarrow$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	hich reagents and conditions can be used to distinguish bet $ \begin{array}{c} $				

26	Lactic acid, CH ₃ CH(OH)COOH, is a common monomer used in the manufacture of						
	pol	yesters. It can be synthesised fro	om ethanol by the following r	eactions.			
	СН	3CH2OH → CH3CHO →	→ CH ₃ CH(OH)CN —	→ CH ₃ CH(OH)COOH			
		Step 1 Ste	p 2 Ste	р 3			
	Wh	ich option shows the correct rea	gents and conditions for ste	os 1 to 3?			
		Step 1	Step 2	Step 3			
	Α	Acidified K ₂ Cr ₂ O ₇ (aq), heat	Hot ethanolic KCN	Hot H ₂ SO ₄ (aq)			
	В	Acidified K ₂ Cr ₂ O ₇ (aq), distill	Hot ethanolic KCN	Hot NaOH(aq)			
	С	Acidified K ₂ Cr ₂ O ₇ (aq), heat	Cold HCN with KCN	Hot NaOH(aq)			
	D	Acidified K ₂ Cr ₂ O ₇ (aq), distill	Cold HCN with KCN	<mark>Hot H₂SO₄(aq)</mark>			
	An	s: D					
	Step 1: Must distill with K ₂ Cr ₂ O ₇ to isolate the aldehyde product.						
	Ste	p 2: Nucleophilic addition require	es the use of cold HCN with	trace KCN.			
	Ste	p 3: Acidic hydrolysis is needed	to form the hydroxy acid (La	actic acid) as alkaline			
	hyc	Irolysis will result in the -COOH t	to be neutralized to -COO ⁻ .				
27	Wh	ich is the dominant species form	ed when equal volumes of ().1 mol dm ⁻³ H₂SO₄(aq),			
	0.1	mol dm ⁻³ KOH(aq) and 0.1 mol	$dm^{-3} H_2 NCH (CH_2 C_6 H_5) CO_2 H_3 CO_2 H$	H are mixed?			
	$\mathbf{A} H_2NCH(CH_2C_6H_5)COO^-$						
	B H ₂ NCH(CH ₂ C ₆ H ₅)CO ₂ H						
	$\begin{array}{ c c c c } C & H_3N^+CH(CH_2C_6H_5)CO_2H \\ \hline \end{array}$						
	$D H_3N^+CH(CH_2C_6H_5)COO^-$						
	Ans: C						
	When mixed together, H_2SO_4 and KOH will undergo neutralisation. Since H ⁺ is in excess,						
	it will be used to protonate the amino group of amino acid, thus forming -NH ₃ ⁺ COOH						
	remains intact as it is a weaker acid than H ₂ SO ₄ and therefore, does not react with KOH						
	IIIS	L.					
00	_			at succedby Theorem 1			
28	Forchiorrenuron is a chemical commonly used to accelerate plant growth. The structure of						
	IOICHIOHENUION IS AS SHOWN.						

	D	2 mol	4 mol	1 mol of O ₂						
	Ans: B									
	In c	In concentrated NaCl solution, the high [Cl ⁻] will shift the following equilibrium position								
	left.									
	$Cl_2(g) + 2e^- \iff 2Cl^-(aq)$									
	Its electrode potential (E) will become less positive than +1.23V and hence, Cl^- will be									
	oxidised.									
	At the cathode: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$									
	At the anode: $2Cl^- \rightarrow Cl_2 + 2e^-$									
	Overall equation: $2H_2O + 2Cl^- \rightarrow Cl_2 + H_2 + 2OH^-$									
30	The	ere are two electrolytic	c cells. The first one	contains XSO4(ac	q) and the second one					
	contains \mathbf{Y}_2 SO ₄ (aq). The same current is passed through both cells for the same amount									
	of time to obtain X and Y . The relative atomic masses of X and Y are in the ratio 1 : 2.									
	Wh	What is the ratio of the mass of X produced to the mass of Y produced?								
	Α	1:1								
	В	1:2								
	C	<mark>1:4</mark>								
	D	2:1								
	Ans: C									
	$X^{2+} + 2e^- \rightarrow X$									
	$Y^- + e^- \rightarrow Y$									
	Q =	Q = It								
	For	For It C of electricity, It/96500 mol of e ⁻ are transferred								
	Am	ount of X formed = It/2	(96500) mol							
	Mass of X = $It/2(96500) \times 1 g$									
	Amount of Y formed = It/(96500) mol									
	Mass of Y = $It/(96500) \times 2 g$									
	Mass ratio of X : $Y = (1/2) : 2 = 1 : 4$									

END OF PAPER