DARRELL ER (COPYRIGHTED) ©

TOPIC 3: MOLE CONCEPT & CHEMICAL EQUATIONS

THE ABOUT

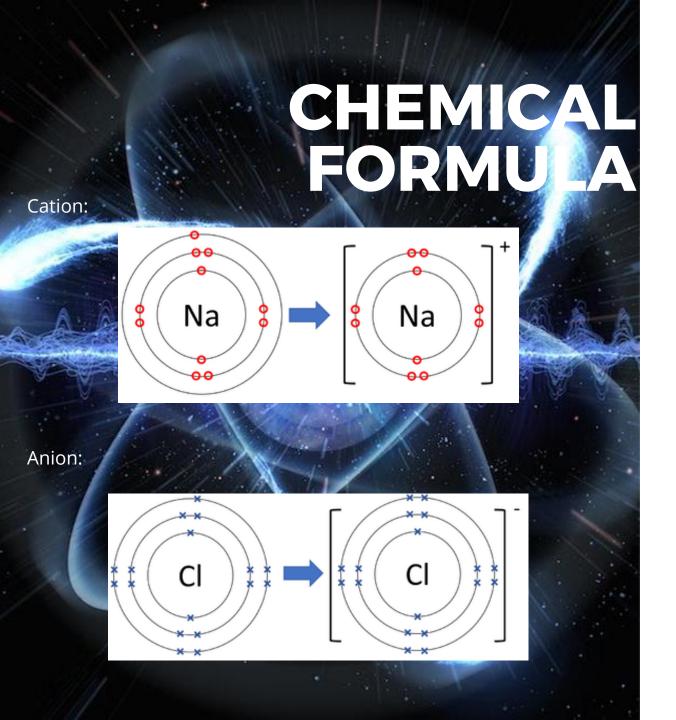
TIME

- Need to practice **a lot**
- 5 **key** concepts

CHAPTER ANALYSIS

EXAM

- Heavily tested
- Tested as add-on to other chapters
 - → Acid & Bases, Electrolysis etc...


WEIGHTAGE

- Heavy overall weightage
- Constitute to **8%** of marks for past 5 year papers

KEY CONCEPT

CHEMICAL EQUATION CHEMICAL FORMULA BALANCING CHEMICAL EQUATION IONIC EQUATION

IONIC COMPOUNDS

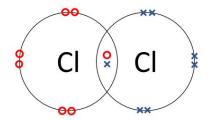
Some common anions:

Carbonate CO₃²Nitrate NO₃⁻
Phosphate PO₄³Sulfate SO₄²Chloride Cl⁻

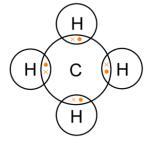
Forming of ionic compounds:

For example,

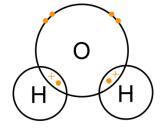
Cation: Ca²⁺ Anion: NO₃-


To balance out charges,

 $1 \times Ca^{2+} & 2 \times NO_3^{-1}$


Compound:

 $Ca(NO_3)_2$


CHEMICAL FORMULA

Chlorine molecule

Methane compound

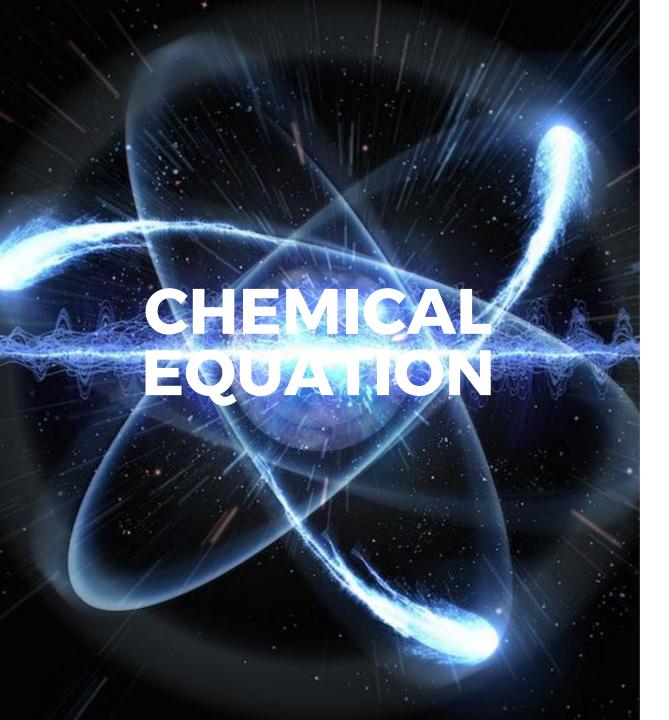
Water compound

COVALENT COMPOUNDS

Prefixes are generally used to name compounds.

Prefix:

Mono - 1


Di - 2

Tri - 3

Tetra – 4

Pent - 5

For example, Nitrogen monoxide – NO Nitrogen dioxide – NO₂

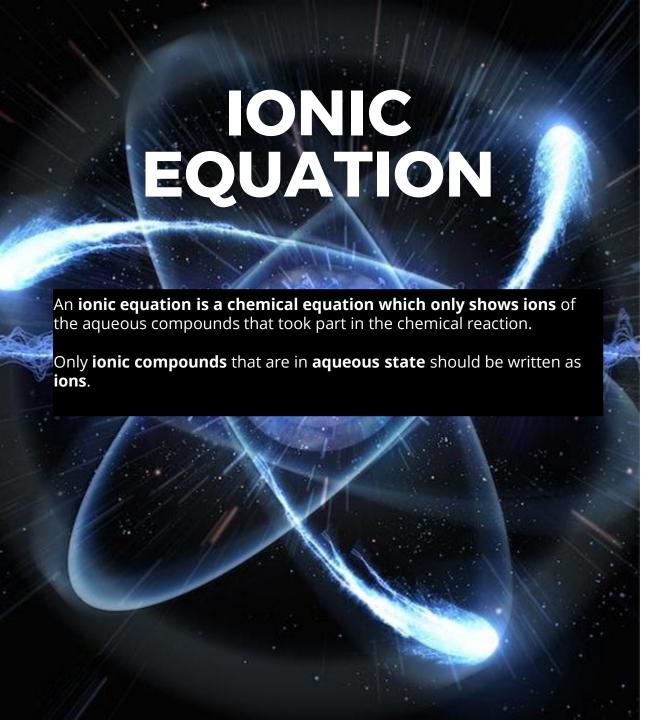
STATE SYMBOLS

Solid (s) Liquid (l) Gaseous (g) Aqueous (aq) – exist as ions in a solution, water was added.

BALANCING EQUATIONS

Check that the number of atoms for each element is equal on both sides of the equation (reactants & products).

To balance the chemical equation, you will need to add a **coefficient** in front of the compounds that are not balanced.


For example,

$$MgCl_2(aq) + Na_2CO_3(aq) \rightarrow MgCO_3(s) + 2 NaCl(aq)$$

$$MgCO_3$$
 (s) + $\underline{2}$ HCl (aq) \rightarrow $MgCl_2$ (aq) + CO_2 (g) + H_2O (l)

$$Fe_2O_3(s) + \underline{3}CO(g) \rightarrow \underline{2}Fe(s) + \underline{3}CO_2(g)$$

Practice makes perfect!

<u>Step 1</u>

Write the balanced chemical equation for the reaction.

$$CaCl_2(aq) + CuSO_4(aq) \rightarrow CaSO_4(s) + CuCl_2(aq)$$

Step 2

Ionic compounds that are in **aqueous state** should be written as **ions.**

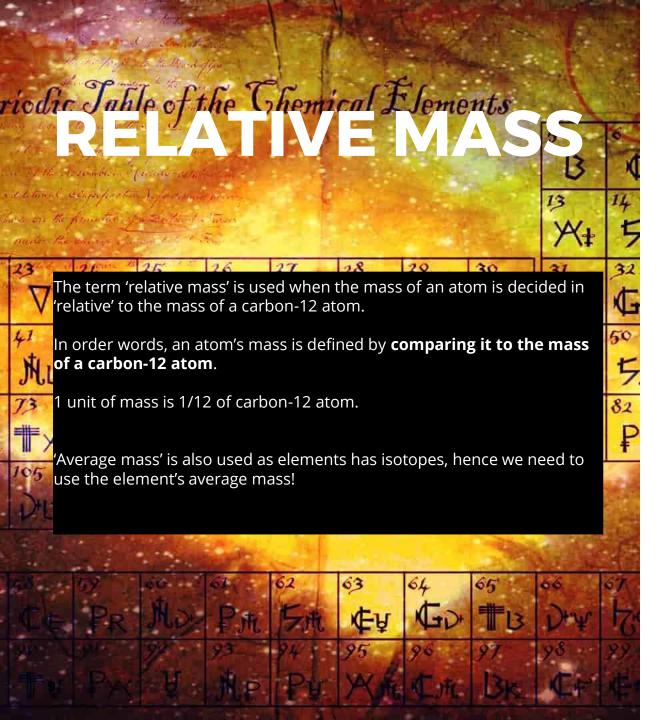
$$Ca^{2+}$$
 (aq) + 2Cl⁻ (aq) + Cu^{2+} (aq) + SO_4^{2-} (aq) \rightarrow CaSO₄ (s) + Cu^{2+} (aq) + 2Cl⁻ (aq)

Step 3

Remove all the spectator ions.

$$Ca^{2+}$$
 (aq) + $\frac{2Cl^{-}(aq)}{(aq)}$ + $\frac{2Cl^{-}(aq)}{(aq)}$

Step 4


Obtain the final ionic equation.

$$Ca^{2+}$$
 (aq) + SO_4^{2-} (aq) \rightarrow $CaSO_4$ (s)

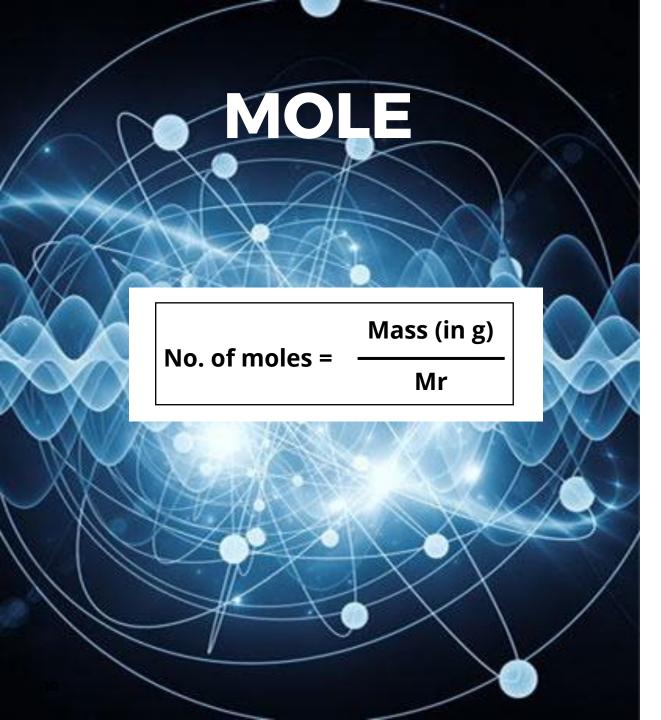
KEY CONCEPT

MOLE CONCEPT Ar, Mr MOLE CONCENTRATION

Relative atomic mass (A_r)

 A_r of an element is defined as the **average mass** of its atom **compared to 1/12** of the mass of one carbon-12 atom.

Relative molecular mass (M_r)


 M_r is defined as the **average mass** of a molecule of a substance **compared to 1/12 of the mass of one carbon-12 atom.**

*Carbon–12 is used as a basis of comparison because it is the most commonly available element on Earth.

Percentage by mass of an element present in a compound:

Ar x (no. of atoms)

Mr of compound

WHAT IS MOLE?

One mole of any substance would contain 6.02×10^{23} particles.

The value 6.02×10^{23} is referred to as the Avogadro's constant.

No. of particles = mole x 6.02×10^{23}

MOLAR VOLUME OF GASES

At room temperature and conditions, one mole of gas has a volume of **24 dm³** or **24 000 cm³**.

Any type of gas, regardless of their chemical formula & M_r, all have the same volume.

1 mole of gas = $24dm^3$

Concentration

No. of moles = Concentration x volume

CONCENTRATION

Concentration of a solution refers to the **amount of solute in a solution**.

There are two ways to measure concentration:

- 1) The mass (in grams) of solute in 1 dm³ of a solution (gdm⁻³).
- 2) The number of moles of solute in 1 dm³ of solution (**moldm⁻³**).

Example:

Calculate the mass of solute in 600 cm³ of 0.4 moldm⁻³ copper(II) sulfate solution.

Volume of solution = $600 \text{ cm}^3 = 0.60 \text{ dm}^3$

Number of moles of CuSO₄

- = Concentration (moldm⁻³) × Volume of solution (dm³)
- $= 0.4 \times 0.60$
- = 0.24 mol

Mass of CuSO₄

- = Number of moles (mol) × Molar mass (gmol⁻¹)
- $= 0.24 \times [64 + 32 + 4(16)]$
- = 38.4 g

KEY CONCEPT

STOICHIOMETRY LIMITING REAGENT PERCENTAGE YIELD & PERCENTAGE PURITY EMPIRICAL/MOLECULAR FORMULA

CHEMICAL CALCULATIONS

STOICHIOMETRY FOR GAS

Since one mole of all gases share the same volume (1 mol = 24dm³), assuming temperature and pressure are constant, volume of a gas is directly proportional to the number of moles.

Hence, the mole ratio of gases in a chemical equation can also let us know the **ratio of the volumes of gases in the chemical reaction**.

 $N_2(g) + 2 O_2(g) \rightarrow 2 NO_2(g)$

10 cm³ of N₂ will react with 20 cm³ of O₂ to produce 20 cm³ of NO₂.

CHEMICAL CALCULATIONS

Example:

Find the mass of hydrogen gas formed when 80g of calcium metal is reacted with excess hydrochloric acid.

Step 1: Write out the balanced equation.

$$Ca(s) + 2 HCl(aq) \rightarrow CaCl_2(aq) + H_2(g)$$

Step 2: Calculate the number of moles of Mg reacted.

Number of moles of Ca reacted = mass / Mr = 80 / 40 = 2

Step 3: Determine the molar ratio.

Number of moles of Ca reacted : Number of moles of H₂ produced

1 : 2 :

Step 4: Calculate the mass of H₂ produced.

Mass of H_2 produced = Mole x Mr = 2 x 2 = 4.0 g

LIMITINGREAGENT

VISUALISE THIS

For a car to be assembled, each car body must be assembled with 4 wheels.

1 car body + 4 wheels \rightarrow 1 full car

How many full cars can I assemble if I have 10 car bodies & 12 car wheels?

Answer: 3 full cars

Hence, the wheels are the limiting reagent as it 'limits' further reaction to assemble more cars even though there is an 'excess' of car bodies.

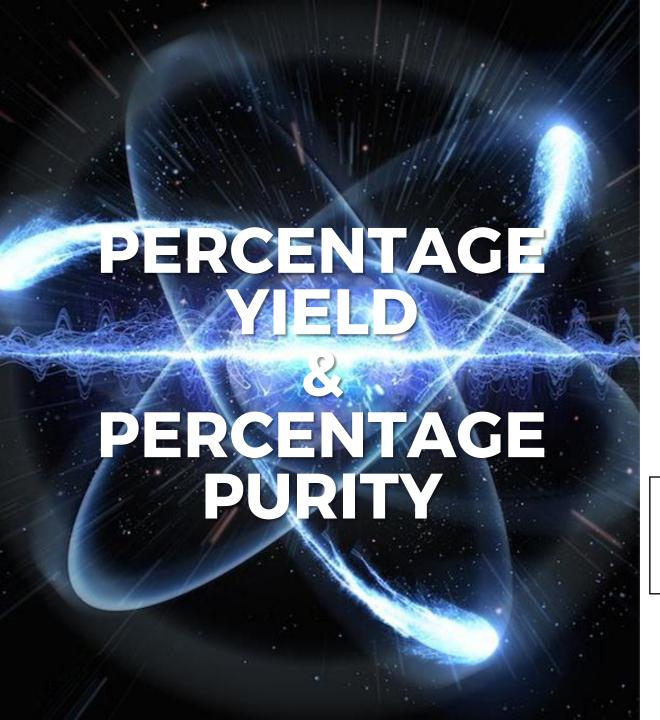
LIMITING AND EXCESS REACTANTS

Not all the reactants are always fully used up in a chemical reaction.

The reaction will stop when one reactant is fully used up, even if the other reactants are still available.

The **limiting reactant** is the reactant that is **completely used up** first. It **limits the amount of product** that can be formed.

The **excess reactant** is the reactant that would **still remain** in excess even when the limiting reactant has been completely reacted.


Example:

$$Cu(NO_3)_2(aq) + 2 KCl(aq) \rightarrow CuCl_2(s) + 2 KNO_3(aq)$$

Hypothetically, let's say there is 1 mole of $Cu(NO_3)_2 \& 5$ moles of KCl.

As there is only 1 mole of Cu(NO₃)_{2,} so even if there are 5 moles of KCl, only 2 moles of KCl will react.

Cu(NO₃)₂ is the limiting reactant while KCl is the excess reactant.

PERCENTAGE YIELD

Actual yield refers to the actual amount of product obtained.

Theoretical yield refers to the maximum amount of products formed based on chemical calculation.

PERCENTAGE PURITY

EMPIRICAL FORMULA

EMPIRICAL FORMULA

The empirical formula is the **simplest ratio of the constituent elements of a compound**.

If values of M_r is given, the **molecular formula** can be determined.

 \rightarrow Just multiply by appropriate ratio to increase empirical formula to match the M_r .

Example (by mass):

Calcium metal of mass 1.6g was burnt in oxygen to form calcium oxide. When the calcium was completely burnt, the oxide produced had a mass of 2.24 g.

Determine the empirical formula & molecular formula of this oxide. (Mr is 102)

Mass of calcium = 1.60 g Mass of calcium oxide produced = 2.24 g Mass of oxygen reacted = 2.24 – 1.60 = 0.64 g

	Calcium (Ca)	Oxygen (O)
Mass in sample/g	1.6	0.64
Molar mass/g mol ⁻¹	40	16
Number of moles	1.6 / 40 = 0.04	0.64 / 16 = 0.04
Simplest ratio	1	1

Hence, the **empirical formula of the oxide is CaO**.

Since M_r of oxide is 102, n(40+16) = 102

Hence, molecular formula is Ca₂O₂.

Try it yourself! (TYS Question)

24. Which compound contains the highest percentage of sulfur by mass?

H₂SO₄ PbS,

(N2020/P1/Q9)

Answer:

24. A Percentage of S in
$$SO_2 = \frac{32}{(32 + 2 \times 16)} \times 100\%$$

= 50%

Percentage of S in H,SO4

$$= \frac{32}{(2 \times 1 + 32 + 4 \times 16)} \times 100\%$$

$$= 32.7\%$$

Percentage of S in Na₂S =
$$\frac{32}{(2 \times 23 + 32)} \times 100\%$$

Percentage of S in PbS₂ =
$$\frac{(2 \times 32)}{(207 + 2 \times 32)} \times 100\%$$

= 23.6%

SO, contains the highest percentage of sulfur by mass.

Try it yourself! (TYS Question)

25. On heating, the carbonate of element X decomposes.

$$XCO_3(s) \rightarrow XO(s) + CO_2(g)$$

6.25 g of XCO₃ is heated and 1.2 dm³ of carbon dioxide, measured at room temperature and pressure, is produced.

What is the relative atomic mass, A_r , of X?

(N2020/P1/Q10)

A 57 C 125 B 65 D 150

()

Answer:

25. **B**No. of moles of $CO_2 = \frac{1.2}{24}$ = 0.05 molBy comparing mole ratio,
no. of moles of $XCO_3 = 0.05 \text{ mol}$ M_{τ} of $XCO_3 = \frac{6.25}{0.05}$ = 125 A_{τ} of X = 125 - 12 - 3(16)

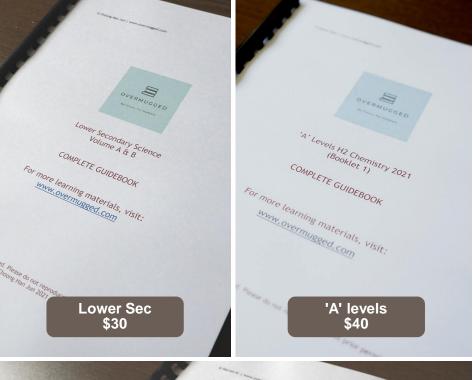
About Us

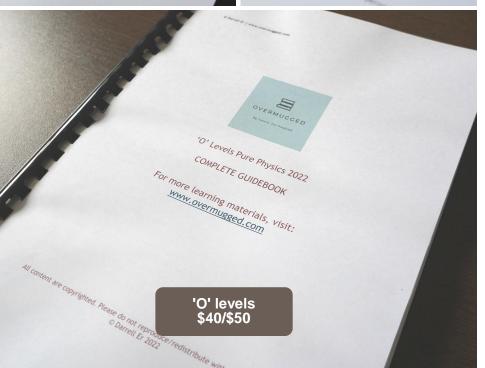
OVERMUGGED is a learning platform created by tutors, for students.

Our team of specialist tutors offer 1-to-1 private tuition, group tuitions and crash courses.

Follow us on <u>IG</u> and join our <u>Telegram channel</u> to get the latest updates on our free online revision sessions, webinars and giveaways!

If you would want to join Darrell's group tuition, contact him at:


Whatsapp: <u>8777 0921</u>


Telegram: @DarrellEr

Website: https://www.overmugged.com/darrell

Notes prepared by: Darrell Er **'O' Levels Chemistry & Physics**

For more free notes & learning materials, visit: www.overmugged.com

Found the free notes useful? We got something better!

OVERMUGGED's curated notes is a **highly condensed booklet** that **covers all content within the MOE syllabus**.

This booklet consist of **key concept breakdowns**, **worked examples** and **exam tips/ techniques** to required to ace your exams.

Get an **upgraded version** of the free notes and supercharge your revision!

Purchase here.

Crash courses

Check out our upcoming crash courses at: https://www.overmugged.com/crashcourses

'O' levels subject available:

- Pure Chemistry
- Pure Physics
- Pure Biology
- Combined Science
- E-Math
- -A-Math
- -English
- History
- Geography
- Combined Humanities
- Principles of Accounts (POA)