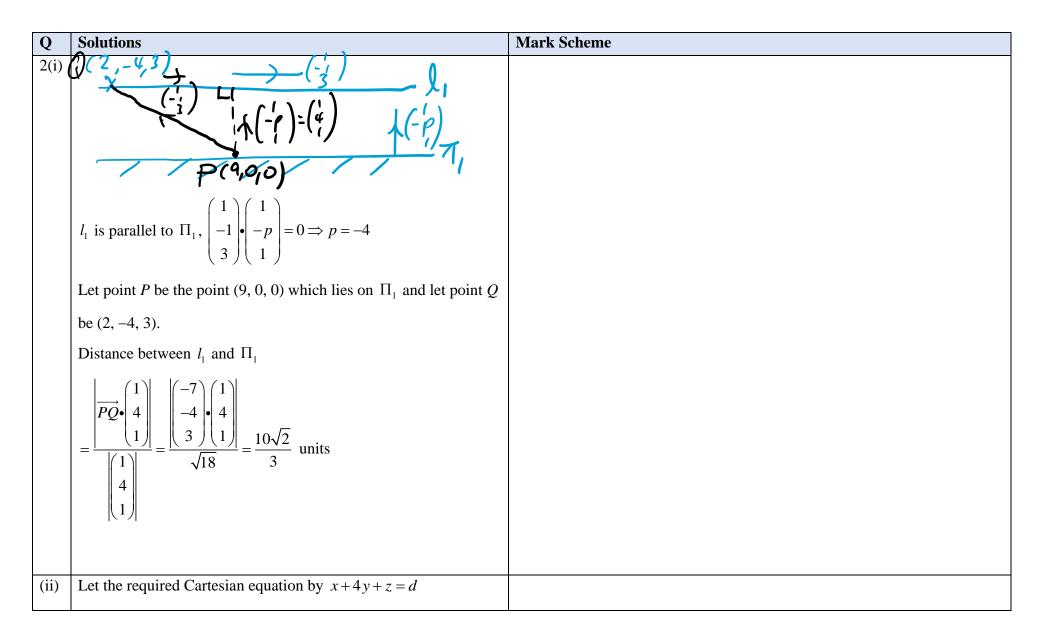
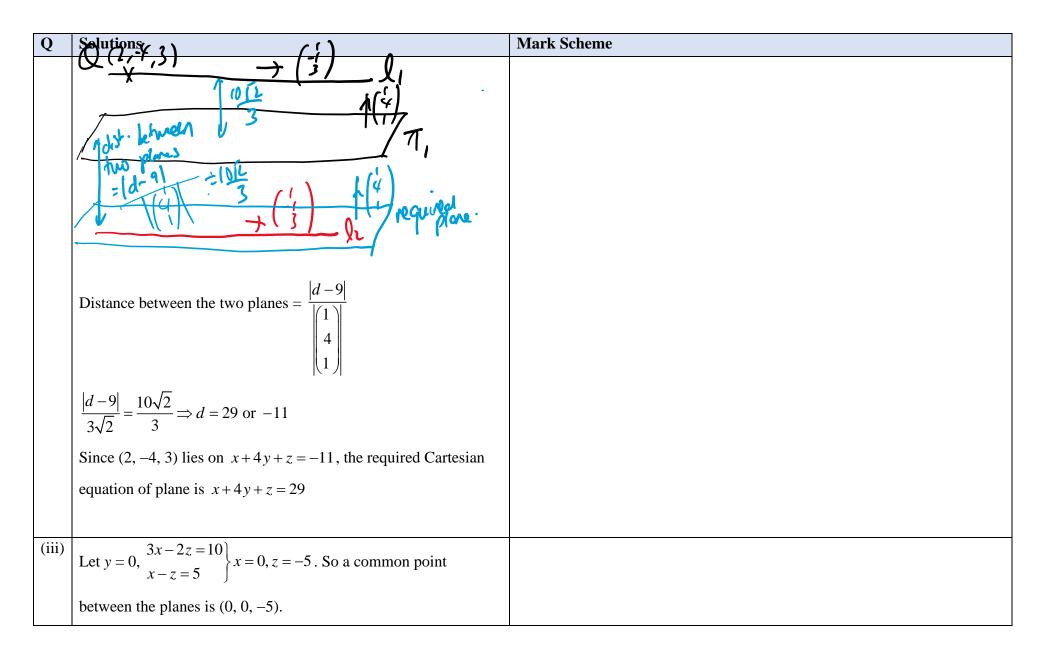

<u>St Andrew's Junior College</u> 2022 Preliminary Examination

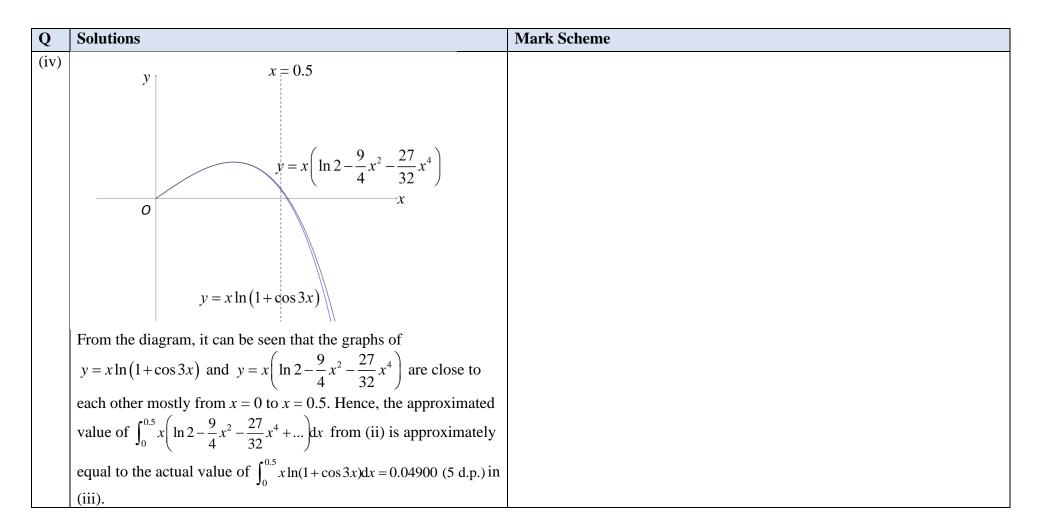

H2 Mathematics Paper 2 (9758/02)

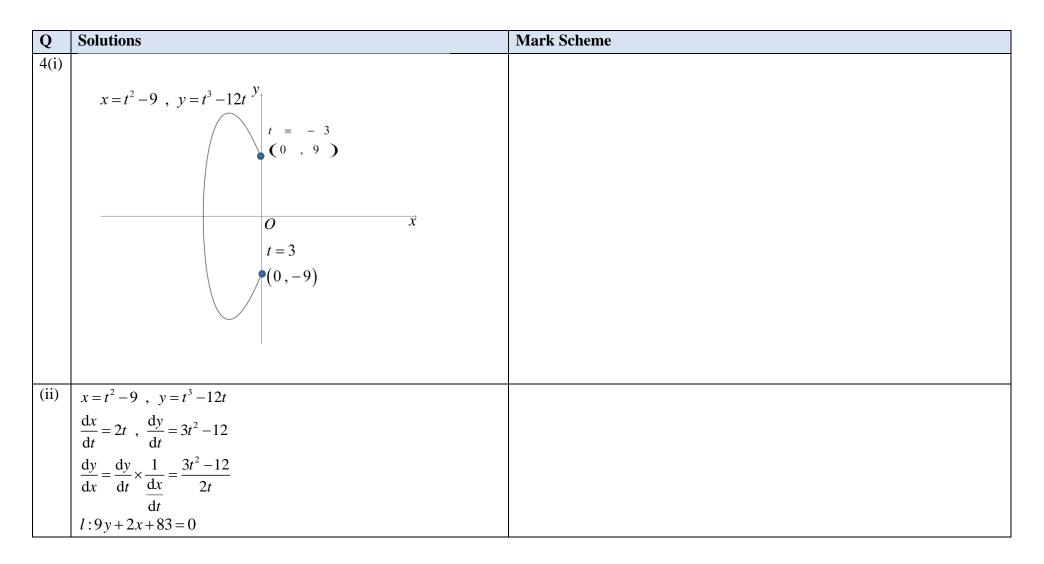

Section A: Pure Mathematics

Q	Solutions	Mark Scheme
	As $N \to \infty$, $\frac{1}{N!} \to 0$ $\sum_{n=2}^{N} \frac{1-n}{n!} \to -1$ which is finite, hence	
	$\sum_{n=2}^{N} \frac{1-n}{n!}$ converges and the sum to infinity is -1.	
(iii)	$\sum_{n=8}^{N+5} \frac{2-n}{(n-1)!} = \sum_{n=7}^{N+4} \frac{1-n}{n!} \qquad (\text{Replace } n \text{ by } n+1)$	
	$=\sum_{n=2}^{N+4} \frac{1-n}{n!} - \sum_{n=2}^{6} \frac{1-n}{n!}$	
	$1 \qquad (1 \qquad)$	
	$=\frac{1}{(N+4)!} - 1 - \left(\frac{1}{6!} - 1\right)$	
	$=\frac{1}{(N+4)!} -\frac{1}{720}$	

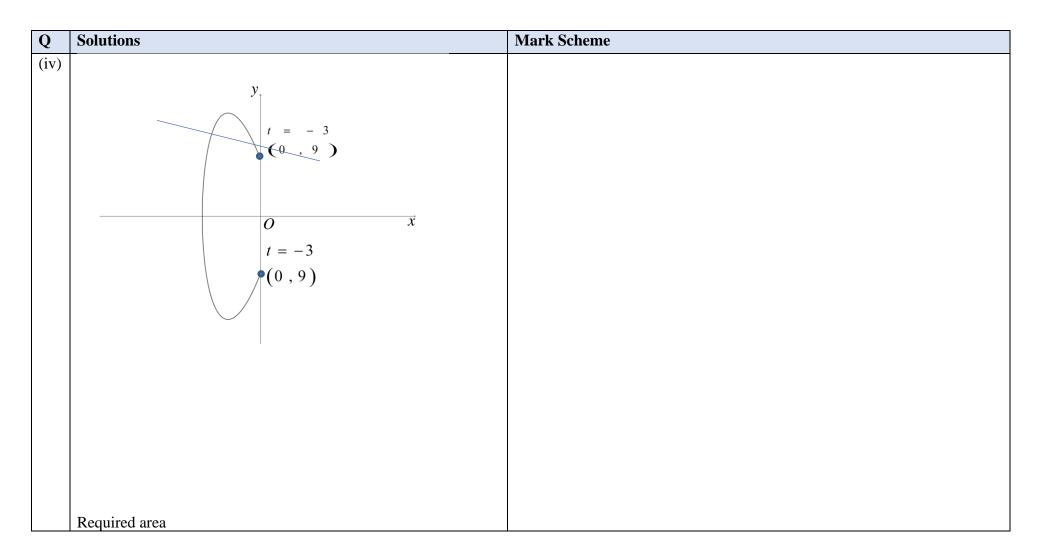
[Turn Over

Q	Solutions	Mark Scheme
	A vector parallel to the $l_3 = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix} \times \begin{pmatrix} 1 \\ -a \\ -1 \end{pmatrix} = \begin{pmatrix} 1-2a \\ 1 \\ 1-3a \end{pmatrix}$	
	$l_3: \mathbf{r} = \begin{pmatrix} 0\\0\\-5 \end{pmatrix} + \lambda \begin{pmatrix} 1-2a\\1\\1-3a \end{pmatrix}, \lambda \in \mathbb{R}$	
	Alternative Solution 1	
	Let $x = 0$, $\begin{array}{c} -y - 2z = 10 \\ -ay - z = 5 \end{array}$ $y = 0, z = -5$	
	$l_3: \mathbf{r} = \begin{pmatrix} 0\\0\\-5 \end{pmatrix} + \lambda \begin{pmatrix} 1-2a\\1\\1-3a \end{pmatrix}, \lambda \in \mathbb{R}$	
	Alternative Solution 2	
	Let $z = 0$, $\frac{3x - y = 10}{x - ay = 5}$ $x = \frac{5 - 10a}{1 - 3a}$, $y = \frac{5}{1 - 3a}$	
	$l_3: \mathbf{r} = \frac{5}{1-3a} \begin{pmatrix} 1-2a\\1\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1-2a\\1\\1-3a \end{pmatrix}, \lambda \in \mathbb{R}$	
	Alternative Solution 3	


Q	Solutions	Mark Scheme
	$3x - y - 2z = 10 \Longrightarrow 3x - y = 10 + 2z - (1)$	
	$x - ay - z = 5 \Longrightarrow x - ay = 5 + z - (2)$	
	Solving (1) and (2),	
	$3x - y = 2x - 2ay \Longrightarrow x = (1 - 2a)y$	
	From (2): $y = \frac{1}{1-3a}(5+z), x = \frac{1-2a}{1-3a}(5+z)$	
	$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \frac{1}{1 - 3a} \begin{pmatrix} 5 - 10a + z \\ 5 + z \\ (1 - 3a)z \end{pmatrix}$	
	$l_3: \mathbf{r} = \frac{5}{1-3a} \begin{pmatrix} 1-2a\\1\\0 \end{pmatrix} + \lambda \begin{pmatrix} 1-2a\\1\\1-3a \end{pmatrix}, \lambda \in \mathbb{R}$	
(iv)	$\begin{pmatrix} 1-2\alpha\\ 1-3\alpha \end{pmatrix}$ χ	

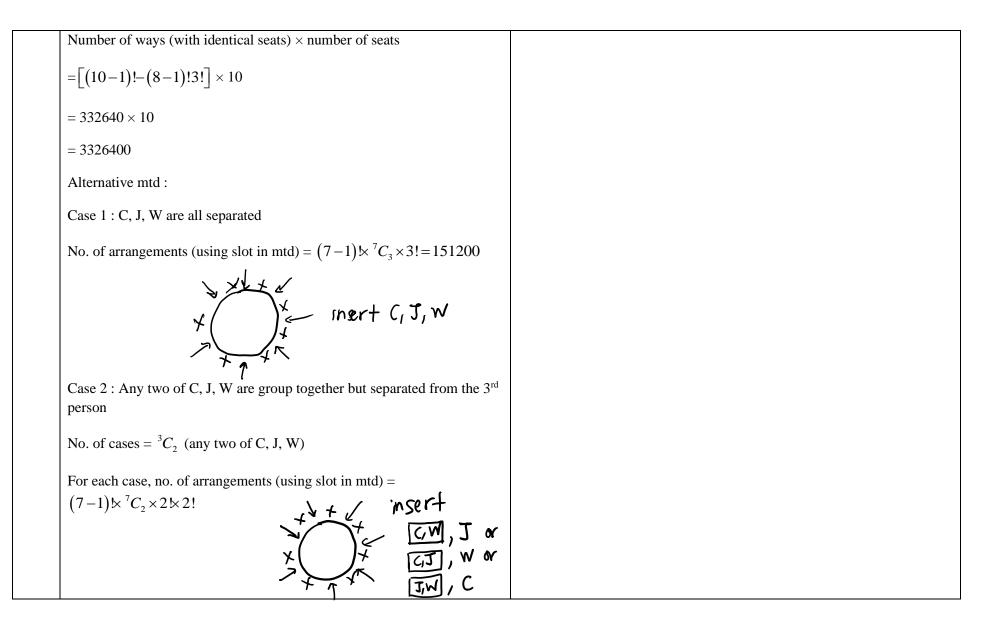

[Turn Over

Q **Solutions Mark Scheme** 9==-0 Given θ be the acute angle between l_3 and Π_1 , $\frac{\begin{vmatrix} 1 - 2a \\ 1 \\ 1 - 3a \end{vmatrix} \cdot \begin{pmatrix} 1 \\ 4 \\ 1 \end{vmatrix}}{\sqrt{(1 - 2a)^2 + 1 + (1 - 3a)^2} \sqrt{18}} = \sin \theta$ $\frac{\begin{vmatrix} 1 - 2a \\ 1 \\ 1 - 3a \end{vmatrix} \cdot \begin{vmatrix} 1 \\ 4 \\ 1 \end{vmatrix}}{\sqrt{(1 - 2a)^2 + 1 + (1 - 3a)^2} \sqrt{18}} = \frac{\sqrt{3}}{18} \text{ (given)}$ $\frac{\left|\left(1-2a\right)+4+\left(1-3a\right)\right|}{\sqrt{\left(1-2a\right)^{2}+1+\left(1-3a\right)^{2}}\sqrt{18}}=\frac{\sqrt{3}}{18}$ $\frac{|6-5a|}{\sqrt{(1-2a)^2+1+(1-3a)^2}} = \frac{\sqrt{54}}{18}$ Squaring both sides, $\frac{\left|6-5a\right|^{2}}{\left(1-2a\right)^{2}+1+\left(1-3a\right)^{2}}=\frac{54}{324}=\frac{1}{6}$


Q	Solutions	Mark Scheme
	$\frac{\left(6-5a\right)^2}{1-4a+4a^2+1+1-6a+9a^2} = \frac{1}{6}$	
	$\frac{\left(6-5a\right)^2}{13a^2-10a+3} = \frac{1}{6}$	
	$6(6-5a)^2 = 13a^2 - 10a + 3$	
	$6(36-60a+25a^2)-13a^2+10a-3=0$	
	$137a^2 - 350a - 213 = 0$	
	(a-1)(137a-213) = 0	
	$\Rightarrow a = 1 \text{ or } a = \frac{213}{137}$	
3(i)	$\cos 3x = 1 - \frac{(3x)^2}{2!} + \frac{(3x)^4}{4!} + \dots$	
	$2! \qquad 4! \\= 1 - \frac{9}{2}x^2 + \frac{27}{8}x^4 + \dots$	

Q	Solutions	Mark Scheme
	$\ln(1+\cos 3x) = \ln\left(1 + \left(1 - \frac{9}{2}x^2 + \frac{27}{8}x^4 + \dots\right)\right)$	
	$= \ln 2 \left(1 - \frac{9}{4} x^2 + \frac{27}{16} x^4 + \dots \right)$	
	$= \ln 2 + \ln \left(1 - \frac{9}{4} x^2 + \frac{27}{16} x^4 + \dots \right)$	
	$= \ln 2 + \left(-\frac{9}{4}x^{2} + \frac{27}{16}x^{4} + \dots\right) - \frac{\left(-\frac{9}{4}x^{2} + \frac{27}{16}x^{4} + \dots\right)^{2}}{2} + \dots$	
	$= \ln 2 - \frac{9}{4}x^2 + \frac{27}{16}x^4 - \frac{81}{32}x^4 + \dots$	
	$= \ln 2 - \frac{9}{4}x^2 - \frac{27}{32}x^4 + \dots$	
(ii)	$\int_{0}^{0.5} x \ln(1 + \cos 3x) dx = \int_{0}^{0.5} x \left(\ln 2 - \frac{9}{4} x^2 - \frac{27}{32} x^4 + \dots \right) dx$	
	$= \int_0^{0.5} \left((\ln 2)x - \frac{9}{4}x^3 - \frac{27}{32}x^5 + \dots \right) dx$	
	$= \left[(\ln 2)\frac{x^2}{2} - \frac{9}{16}x^4 - \frac{9}{64}x^6 + \dots \right]_0^{0.5}$	
	≈ 0.04929 (5 d.p.)	
(iii)	Using GC, $\int_0^{0.5} x \ln(1 + \cos 3x) dx = 0.04900$ (5 d.p.)	

Q	Solutions	Mark Scheme
	$\frac{3t^2 - 12}{2t} = \frac{9}{2}$	
	$t^2 - 3t - 4 = 0$	
	(t-4)(t+1) = 0	
	t = -1 or $t = 4$	
	Since $t \in [-3, 3]$, $t = -1$.	
(iii)	Since the curve <i>C</i> intersects the line <i>l</i> at $Q(q^2-9, q^3-12q)$	
	$9(q^3 - 12q) + 2(q^2 - 9) = 83$	
	$9q^3 - 108q + 2q^2 - 18 - 83 = 0$	
	$9q^3 + 2q^2 - 108q - 101 = 0$ (Shown)	
	Using G.C., $q = -2.9836$ or -1 or 3.7613	
	Since $-3 \le q \le 3$ and $q \ne -1$, $q = -2.9836$.	
	Hence,	
	$x = (-2.9836)^2 - 9 = -0.09813$,	
	$y = (-2.9836)^3 - 12(-2.9836) = 9.2436$	
	Q(-0.0981, 9.24)	

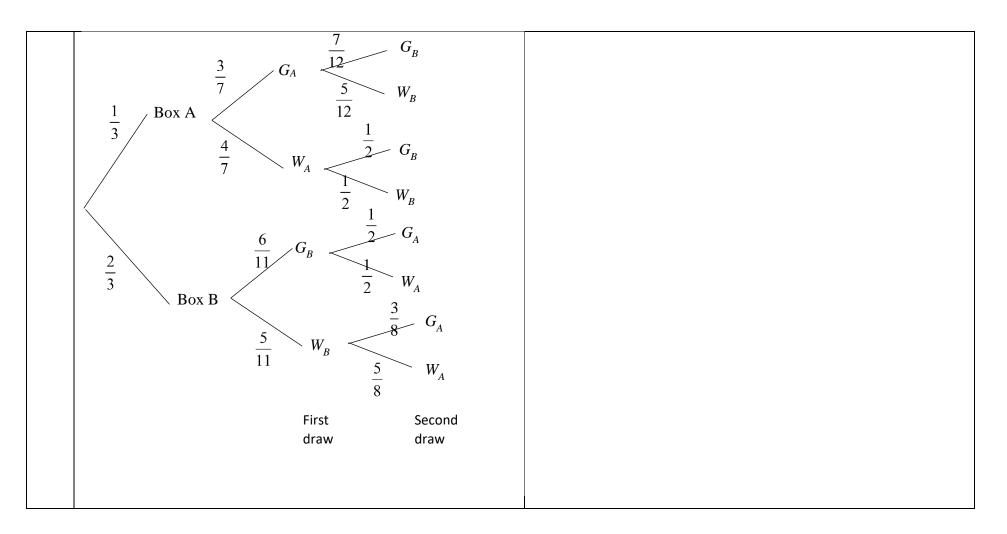


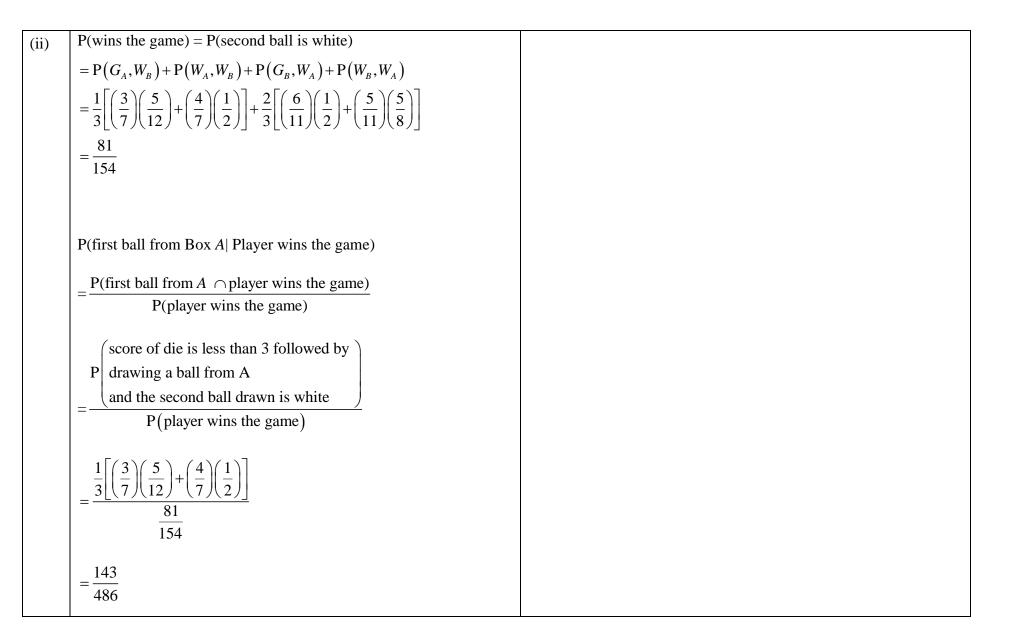
Q	Solutions	Mark Scheme
	$= \int_{-8}^{-0.0981} y \mathrm{d}x - \frac{1}{2} \Big[-0.09813 - (-8) \Big] \Big[9.2436 + 11 \Big]$	
	$= \int_{-1}^{-2.9836} \left(t^3 - 12t\right) \left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) \mathrm{d}t - 79.981$	
	$= \int_{-1}^{-2.9836} \left(t^3 - 12t \right) (2t) \mathrm{d}t - 79.981$	
	$= 30.324 \text{ units}^2$	
	$= 30.3 \text{ units}^2$ (to 3 sf)	

Section B: Probability and Statistics

Q	Solutions	Mark Scheme
5(i)	Let C be Caleb, J be James and W be the woman.	
	Number of ways to arrange the 7 people (exclude C, J and W) = $(7-1)!$	
	+ + × × × × × × × × × × × × × × × × × ×	
	Number of ways to insert the pair C & J together and the woman = ${}^{7}C_{2} \times 2!$	
	Number of ways to arrange C and J within the pair = $2!$	
	Total number of ways = $(7-1) \stackrel{\text{tr}}{\sim} ^7C_2 \times 2 \stackrel{\text{tr}}{\sim} 2! = 60480$	
	Alternative mtd 1 : No. of ways to arrange the 'CJ' unit and 7 other men excluding the woman = $(8-1) \ge 2!$ \xrightarrow{X} \xrightarrow{X}	
	No. of ways to insert W such that she is not next to the 'CJ' unit = 6 or ${}^{6}C_{1}$	
	Total number of ways = $(8-1) \ge 2 \ge 6 = 60480$	
	Alternative mtd 2 (Complementary mtd 1):	
	No. of arrangements where C and J are grouped together = $(9-1) \ge 2!$	
	No. of ways to arrange the 'CJ' unit and $W = 2!$	

	No. of arrangements where C and J group together and the 'CJ' unit is
	also next to $W = (8-1) \times 2 \times 2!$
	Note : 2! to arrange C and J and 2! to arrange the 'C,J' unit and W Total number of ways = No. of arrangements where C and J are grouped together - No. of arrangements where C and J group together and the 'CJ' unit is also next to $W = (9-1) \times 2! - (8-1) \times 2 \times 2! = 60480$
	Alternative mtd 3 (Complementary mtd 2): No. of arrangements where C and J are separated = $(8-1) \ge {}^{8}C_{2} \times 2!$ (using slot in mtd)
	Total number of ways = No. of arrangements with no restrictions - No. of arrangements where C and J are separated - No. of arrangements where C and J group together and the 'CJ' unit is also next to W = $(10-1)! - (8-1)! \times {}^{8}C_{2} \times 2! - (8-1)! \times 2! \times 2! = 60480$
(ii)	Number of ways (with identical seats) = number of ways without
	restriction – number of ways in which C, J and W seated together = (10-1)!-(8-1)!3! = 332640
	Number of ways (with different seats) =


	No. of arrangements for Case 2 = ${}^{3}C_{2} \times (7-1) \times {}^{7}C_{2} \times 2 \times 2! = 181440$	
	Total no. of ways(with different seats) = $(151200+181440) \times 10 = 3326400$	
6(i)	Let X be the random variable "no of students out of 30 students who could do the Differentiation question" $X \sim B(30, 0.3)$ $P(X \ge 6) = 1 - P(X \le 5)$ $= 0.92341 \approx 0.923$ (3 sig. fig.)	
(ii)	Let S be the random variable "no of students out of 8 who could do the Differentiation question "Let T be the random variable "no of students out of 22 who could do the Differentiation question "S ~ B(8,0.3) T ~ B(22,0.3)	


	P(only 2 among first 8 could do that question $ X \ge 6$)	
	$= \frac{P(\text{only 2 among first 8 could do that question} \cap X \ge 6)}{2}$	
	$P(X \ge 6)$	
	P(only 2 among first 8 could do that question	
	$\int_{-1}^{1} \left(\text{At least 4 among the next 22 could do the question} \right)$	
	$-\frac{1}{P(X \ge 6)}$	
	$=\frac{\mathbf{P}(S=2\cap T\geq 4)}{2}$	
	$=$ $(X \ge 6)$	
	$P(S=2)P(T \ge 4)$	
	$=\frac{P(S=2)P(T \ge 4)}{P(X \ge 6)}$	
	$= \frac{P(S=2)[1-P(T \le 3)]}{P(X \ge 6)}$	
	$=\frac{0.296475\times0.931937}{0.92341}=\frac{0.276297}{0.92341}$	
	$= 0.29921 \approx 0.299$ (to 3 sig. fig.)	
	- 0.2))21~ 0.2)) (10 5 sig. lig.)	
(iii)	Let <i>Y</i> be the random variable "no of students out of <i>n</i> who could do	
	the Differentiation question "	
	$Y \sim \mathbf{B}(n, 0.3)$	
	$P(Y \le 5) > 0.9$	
	From G.C,	
	n $P(Y \le 5)$	
	10 0.95265 < 0.9	
	11 0.92178 < 0.9	
	12 0.88215 > 0.9	

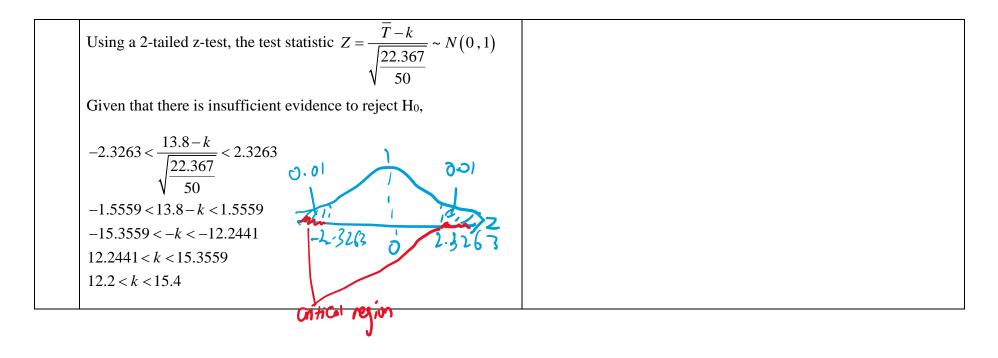
[Turn Over

	Therefore, the largest possible value of n is 11.	
7(i)	P = 0.92588M + 69.804 $\frac{763 + k}{9} = 0.92588(27.333) + 69.804$ 763 + k = 9(95.111) k = 855.999 - 763 k = 92.999 = 93.0 (3sf) (Shown)	
(ii)	P/ mm Hg	
102	▲ + + + +	
89	+ 19.2 33.6 M/ kg/m ²	
(iii)	$\ln P = aM + b$ $\Rightarrow P = e^{aM + b}$	

	From the scatter diagram, as <i>M</i> increases, <i>P</i> increases at an increasing rate, hence <i>a</i> is positive.	
	[From the scatter diagram, as M increases, P increases. Hence, ln P will also increase. Therefore a is positive]	
	Product moment correlation coefficient between <i>M</i> and $\ln P = 0.988128=0.988$ (to 3 sf)	
(iv)	From (ii), as <i>M</i> increases, <i>P</i> increases at an increasing rate instead of constant rate.	
	From (iii), the PMCC between M and $\ln P$ is closer to 1 as compared to the PMCC between M and P .	
	Hence $\ln P = aM + b$ is the better model.	
(v)	It may not be reliable to estimate John's DBP using the model as John's BMI is outside the given BMI data range of 19.2 to 33.6 and extrapolation is needed.	
8(i)	Let G_A and G_B represent the event that the ball drawn is green from	
	Box A and Box B respectively.	
	Let W_A and W_B represent the event that the ball drawn is white from	
	Box A and Box B respectively.	

9(i)	Given that <i>X</i> is a discrete random variable, $\sum_{\text{all } x} P(X = x) = 1$.	
	2p + 2q = 1 (1)	
	Also	
	$E(X^{2}) = \sum_{\text{all } x} x^{2} P(X = x) = 13.3$	
	4p + 9q + 16q + 25p = 13.3	
	$\Rightarrow 29p + 25q = 13.3(2)$	
	Solving (1) and (2), by GC,	
	$p = \frac{1}{5}, q = \frac{3}{10}$	
	By symmetry, $E(X) = 3.5$	
	$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \left[\operatorname{E}(X)\right]^{2}$	
	$=13.3-3.5^{2}$	
	=1.05	
(ii)	Since $n = 30$ is sufficiently large, by Central Limit Theorem	

$\overline{X} \sim N\left(3.5, \frac{1.05}{30}\right)$ approximately	
$P(\overline{X} > 3.8) = 0.054405 = 0.0544 $ (3 s.f.)	


Qn	Solutions	Mark Scheme
10(i)	Let <i>H</i> be the mass of a honeydew in kg. $H \sim N(1.5, 0.2^2)$	
	Let <i>W</i> be the mass of a watermelon in kg. $W \sim N(8.5, 0.3^2)$	
	Required probability	
	$=3 \times P(H < 1.8)^2 P(H > 1.8)$	
	= 0.17454	
	= 0.175	
(ii)	Let $T = H_1 + H_2 + H_3 + H_4 + H_5 - W$	
	$E(T) = E(H_1 + H_2 + H_3 + H_4 + H_5 - W)$	
	=5E(H)-E(W)	
	=5(1.5)-8.5=-1	
	$\operatorname{Var}(T) = \operatorname{Var}(H_1 + H_2 + H_3 + H_4 + H_5 - W)$	
	$= 5 \operatorname{Var}(H) + \operatorname{Var}(W)$	
	$= 5(0.2)^2 + 0.3^2 = 0.29$	
	$T \sim N(-1, 0.29)$	
	P(<i>T</i> < 0)	
	= 0.96834	
	= 0.968	
(iii)	Let $F = H + W$	

	$E(F) = E(H+W) \qquad Var(F) = Var(H+W)$ $E(H) + E(H) \qquad Var(H) + Var(H)$
	$= \mathbf{E}(H) + \mathbf{E}(W) \qquad = \mathbf{Var}(H) + \mathbf{Var}(W)$
	$=1.5+8.5=10 \qquad \qquad =0.2^2+0.3^2=0.13$
	$F \sim N(10, 0.13)$
	P(F-10 < m) = 0.9
	P(10 - m < F < 10 + m) = 0.9
	10 + m = 10.593
	$\Rightarrow m = 0.593$
(iv)	Let $C = 3.5H + 0.7W$
(1)	Let $C = 5.5M + 0.7W$
	$\mathbf{E}(F) = \mathbf{E}(3.5H + 0.7W)$
	= 3.5 E(H) + 0.7 E(W)
	= 3.5(1.5) + 0.7(8.5)
	=11.2
	$\operatorname{Var}(F) = \operatorname{Var}(3.5H + 0.7W)$
	$= 3.5^2 \operatorname{Var}(H) + 0.7^2 \operatorname{Var}(W)$
	$= (3.5)^{2} (0.2^{2}) + (0.7)^{2} (0.3^{2})$
	= 0.5341
	$C \sim N(11.2, 0.5341)$
	$P(C \le 10) = 0.050296 = 0.0503$ (to 3 sf)

(v)	The event that a honeydew and watermelon cost at most \$5
	each is a subset of the event that the total cost of one honeydew
	and one watermelon is \$10.

11 (i)	The branch manager obtains a sampling frame consisting of all the customers of the branch, numbering all the customers with a distinct number from 1 to <i>N</i> . Randomly select 80 of these customers by generating 80 distinct random numbers (using a random number generator) and select the corresponding customers.
(ii)	Let <i>T</i> be the random variable denoting the waiting time of a customer at the branch in minutes and μ be the population mean waiting time. Unbiased estimate of population mean, \bar{t} $= \frac{\sum (t-15)}{50} + 15$ $= \frac{-60}{50} + 15 = 13.8 \text{ (Exact)}$
	Unbiased estimate of population variance, s^2 $= \frac{1}{n-1} \left[\sum (t-15)^2 - \frac{(\sum (t-15))^2}{n} \right]$ $= \frac{1}{50-1} \left(1168 - \frac{(-60)^2}{50} \right)$ $= 22.367$ $= 22.4 \text{ (to 3 sf)}$
(iii)	Test $H_0: \mu = 15$ against $H_1: \mu < 15$ at 5% significance level.

	Under H ₀ , since $n = 50 > 30$ is large, $\overline{T} \sim N\left(15, \frac{22.367}{50}\right)$ approximately by Central Limit Theorem.	
	Using a 1-tailed z-test,	
	The test statistic value $\overline{t} = 13.8$ gives $z_{\text{calc}} = -1.7942$ and <i>p</i> -value = $0.036393 = 0.0364 \le 0.05$	
	Since <i>p</i> -value = $0.0364 \le 0.05$, we reject H_0 and conclude that at the 5% level of significance, there is sufficient evidence to conclude that the mean waiting time is less than 15 minutes.	
(iv)	The <i>p</i> -value of 0.0364 is the probability that sample mean waiting time of a customer in the branch is at most 13.8 minutes when the (population) mean waiting time of a customer in the branch is actually 15 minutes .	
	Note:	
(v)	Test $H_0: \mu = k$ against $H_1: \mu \neq k$ at 2% significance level.	
	Under H ₀ , since $n = 50 > 30$ is large, $\overline{T} \sim N\left(k, \frac{22.367}{50}\right)$ approximately by Central Limit Theorem.	

