
Socket Programming

CPDD Computer Education Unit Version: Oct 2018
1

 Name: __________________________ () Class: _________ Date: _________

Lesson: Socket Programming

Instructional Objectives:

By the end of this task, you should be able to:

 Define sockets as a general way for programs to communicate with each other

 State that each end of a socket is an IP address and port number

 Describe how servers differ from clients in that servers listen for incoming

connections while clients initiate the connection

 Understand the difference between the Python types str and bytes

 Use str.encode() and bytes.decode() to convert a Unicode string to its

UTF-8 encoding and vice versa

 Use the socket module in Python to send bytes between two Python programs

 Implement the client code given the server code for a given scenario (e.g., for

a tic-tac-toe game) and vice-versa

Sharing Data Between Programs

Suppose you have two Python programs running at the same time. How would you
send data from one program to the other and vice versa? Most operating systems
provide a powerful mechanism to do this called sockets.

Program BProgram A

bytes

bytes

Socket

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
2

You can picture a socket connection as a pipe between two running programs. The
pipe is bidirectional and can carry data (represented by bytes) in both directions.

There are many kinds of sockets, but the kind that is most often discussed is called an
Internet socket. Internally, Internet sockets deliver data using the same Transmission
Control Protocol and Internet Protocol suite (commonly abbreviated as TCP/IP) that is
used to transmit data over the Internet. This means that Internet sockets can deliver
data between any two programs, even programs that that are running on different
computers, as long as the two computers can access each other over the network.

For simplicity, we illustrate an Internet socket as a pipe that is only attached to the two
computers. In reality, however, data that is transmitted through an Internet socket may
pass through multiple devices before reaching its destination. You should be aware
that any of these devices can steal or modify the data that passes through a socket
unless you encrypt the data first. A more accurate illustration of a socket that shows
how the data passes through multiple devices is shown below:

As networks can become congested, we cannot assume that data sent over Internet
sockets will be transmitted instantaneously. For instance, a program may receive only
the first half of a message before the second half arrives some time later. To avoid
working with incomplete data, we will need to define a protocol (explained later) so
that the start and end of messages can be detected unambiguously.

Program BProgram A

Computer X Computer Y

bytes

bytes

Internet
socket

Program BProgram A

Computer X Computer Y

bytes

bytes

Intermediary
Device

Intermediary
Device

bytes

bytes

bytes

bytes

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
3

1 Which of the following methods for sending data from one Python program to

another does NOT work?

A One program copies the data onto the system clipboard and the other
program reads it from the system clipboard

B One program writes the data into a file (that is readable to everyone) and

the other program reads it from the same file

C One programs assigns the data to a Python variable and the other

program reads it from the same variable

D The two programs set up at socket connection and transmit the data from

one program to the other through the socket

 (C)

IP Addresses and Ports

Each end of a socket is associated with a running program and is uniquely identified
by a combined IP address and port number. The IP address identifies which device
that end of the socket is attached to and the port number identifies which program on
that device is using the socket.

There are two kinds of IP addresses in use today: IPv4 addresses and IPv6 addresses.
IPv4 addresses have 32 bits and are usually presented as 4 denary numbers
separated by dots. Each denary number can range from 0 to 255 (inclusive) and
corresponds to one byte (8 bits) of the IP address.

Program BProgram A

IP address: 192.168.1.20 IP address: 192.168.1.17

Port
4321

Port
1234

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
4

Some IPv4 addresses are reserved for special use and have specific meanings. Two
important special IPv4 addresses are:

 127.0.0.1 Refers to the local computer

 0.0.0.0 Refers to all IP addresses for local computer

IPv6 addresses, on the other hand, have 128 bits and are usually presented as 8
groups of 4 hexadecimal digits separated by colons. For compactness, leading zeros
and up to one consecutive sequence of zero-only groups may be omitted.

Currently, IPv4 addresses are more frequently encountered than IPv6 addresses, so
to simplify our discussion, we will be working with IPv4 addresses only.

On each device, port numbers are used to distinguish between attached sockets. The
device also keeps track of which program is associated with each port and which port
numbers are still available for use by new sockets.

Port numbers can range from 0 to 65,535. However, the first 1,024 port numbers are
reserved for specific kinds of programs and should not be used for other purposes.
For instance, port 80 and port 443 are reserved for use by web server programs.

On a Windows computer with access to PowerShell or Command Prompt, you can run
the command netstat -n to list out the sockets that are currently open on your

computer. Each socket will be displayed with a combined IP address and port number
for each of its ends (i.e., its local and foreign addresses):

Program BProgram A

Port
443

Port
50203

172.16.184.131 204.79.197.229

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
5

To reveal which program is using each socket, you can run netstat -no to reveal the

process ID (PID) associated with each socket. You can then open Task Manager and
match each PID to the name of a running program:

2 Which of the following statements is true?

A We can uniquely identify a program and which machine it is running on
using only an IPv4 address.

B We can uniquely identify a program and which machine it is running on

using only an IPv4 or IPv6 address.

C We can uniquely identify a program and which machine it is running on

using only a port number.

D We can uniquely identify a program and which machine it is running on

using only an IPv4 or IPV6 address and a port number.

 (D)

Creating a Socket Connection

Creating a socket connection is a multi-step process that requires one program to be
the server and another program to be the client. The server's IP address and port
number for accepting connections must also be known ahead of time by the client.

First, the server creates a passive socket, binds it to the pre-chosen port number and
listens for an incoming connection. (A passive socket is not connected and merely
waits for an incoming connection.)

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
6

Next, the client initiates a connection request using the server's IP address and port
number. If no server is listening on the chosen port, the connection will be refused.

On the other hand, if the connection request reaches an IP address and port number
that a server is listening on, the server accepts and creates a new socket for the
requesting client using a dynamically assigned port number.

The passive socket goes back to listening for new connections while the client and
server can now exchange data using the newly-created socket.

Server: 192.168.1.20

1234

listeningListening…

Server: 192.168.1.20 Client: 192.168.1.17

43211234

Accepted!

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
7

Note that the newly-created socket is symmetrical: data sent on one end is received
on the other end and vice versa. Once a socket is established, it can send data both
from the client to the server and from the server to the client.

3 Which of the following statements about using sockets is FALSE?

A Before connecting, the client must know the server’s IP address and port
number but not vice versa.

B For each connection, the client’s and server’s port numbers must match.

C The server must be running before the client can successfully connect.

D The server uses a socket solely to listen for connection requests and

creates a completely new socket each time it accepts a connection.

 (B)

Unicode and Encodings

We are almost ready to write Python code to create our own sockets. However, as
sockets work at a very basic level, they can only send and receive data in the form of
raw bytes. In other words, we must be able to encode the data into a sequence of 8-
bit characters using Python's bytes type.

Thankfully, a Python str can be easily converted into bytes using the str.encode()

method and vice versa using the bytes.decode() method.

This encoding and decoding is necessary as internally, a Python str is actually treated

as a sequence of numbers called Unicode code points. There are over a million
possible code points, so it is not always possible to represent each code point using
just 8 bits. Instead, the Unicode standard defines an encoding called UTF-8 so code
points can be represented using bytes in a space-efficient and consistent manner.

To enter a sequence of bytes directly in code, we can use a bytes literal that starts

with the letter b, followed by a sequence of bytes (in the form of ASCII characters)

enclosed in matching single or double quotes. Note that most escape codes that work
for str literals also work for bytes literals.

b'Raw bytes'

b'Raw bytes'.decode()

'Unicode str'

'Unicode str'.encode()

Converts bytes to str
using UTF-8 encoding

Converts str to bytes
using UTF-8 encoding

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
8

4 The character 中 can be written as the str literal '\u4e2d' in Python. This uses

an escape code that produces a character by specifying its Unicode code point.

 Use Python to evaluate len('\u4e2d'). What is the result?

A An error

B 1

C 2

D 3

 (B)

5 Use Python to evaluate len('\u4e2d'.encode()). What is the result now?

A An error

B 1

C 2

D 3

 (D)

This shows that the Unicode code point for 中 is represented by 3 bytes in UTF-8.

Using the socket Module

You can create and manage sockets in Python by importing the socket module and

creating socket objects. The methods of the socket class are summarised below:

Methods Description

bind((host, port)) Binds socket object to the given address tuple
(host, port), where host is an IPv4 address and

port is a port number

listen() Enables socket to listen for incoming connections
from clients

accept() Waits for an incoming connection and returns a tuple
containing a new socket object for the connection
and an address tuple (host, port), where host is

the IPv4 address of the connected client and port is

its port number

connect((host, port)) Initiates a connection to the given address tuple
(host, port), where host is the IPv4 address of

the server and port is its port number

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
9

recv(max_bytes) Receives and returns up to the given number of
bytes from the socket

sendall(bytes) Sends the given bytes to the socket

For example, create the following basic server program that listens for a client on port
12345, accepts a connection request, sends b'Hello from server\n' to the client

through the socket, then closes the socket.

Program 1: basic_server.py

1
2
3
4
5
6
7
8
9
10
11

import socket

my_socket = socket.socket()
my_socket.bind(('127.0.0.1', 12345))
my_socket.listen()

new_socket, addr = my_socket.accept()
print('Connected to: ' + str(addr))
new_socket.sendall(b'Hello from server\n')
new_socket.close()
my_socket.close()

Note that instead of 12345 on line 4, we could have chosen any large port number to
use. This number must be decided ahead of time, however, for the client (written later)
to use when connecting.

Also note that on line 7, socket.accept() returns a tuple of the newly created socket

and a nested address tuple. We store both the new socket and the address tuple in
two variables named new_socket and addr respectively. Note that new_socket is the

socket that we actually use to send and receive data.

Run this program. If a firewall is running and has not been configured previously, you
may be asked to grant Python network access at this point. Click "Allow access" if you
are an administrator and wish to accept connection requests from other computers.
Otherwise, click "Cancel".

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
10

If everything is working correctly, the server should appear stuck shortly after it is
started. This is because the socket.accept() method is blocking1 the program and

prevents it from continuing until a connection request is received.

To create a client that can connect to this server, start a second copy of Python. For
instance, if you use IDLE on Windows, open the Start Menu and run IDLE again. Move
any windows from the first copy of Python to one side so the two copies of Python are
clearly separated.

Create a new Python program using the second copy of Python. If you use IDLE,
select "New File" using the shell window that is not running the server.

1 A “blocked” process means that it is waiting for some event to occur.

Copy 1 of Python Copy 2 of Python

Copy 1 of Python Copy 2 of Python

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
11

In the window that appears, enter the following basic client program that asks for the
server's IP address and port number, requests for a connection, receives and prints at
most 1024 bytes from the server, then closes the socket.

Program 2: basic_client.py

1
2
3
4
5
6
7
8
9
10

import socket

my_socket = socket.socket()

address = input('Enter IPv4 address of server: ')
port = int(input('Enter port number of server: '))

my_socket.connect((address, port))
print(my_socket.recv(1024))
my_socket.close()

Note that the argument for socket.recv() is required and should be set to a relatively

small power of 2. In this case, we use a value of 210 or 1024. For more information,
see: https://docs.python.org/3/library/socket.html#socket.socket.recv

Run this program using the second copy of Python and make sure the server you
started previously is still running. For instance, if you use IDLE, check that there are
two shell windows running two different programs simultaneously. Otherwise, it is likely
that you accidentally stopped the server when starting the client. If this happens, close
the client, restart the server and make sure you reopen the client using the second
shell window. If things are set up correctly, each program should affect a different shell
window when it is run (e.g., by pressing F5).

At this point, the client should be prompting you for the address and port number of
the server. Use the special IPv4 address 127.0.0.1 that refers to the local machine
and enter 12345 as the port number. The client should successfully connect to the

Copy 1 of Python Copy 2 of Python

SERVER SHELL

SERVER PROGRAM

CLIENT SHELL

CLIENT PROGRAM

F5 F5

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
12

server and print out the bytes that were received. At the same time, the server program
should become unstuck and end normally.

Congratulations, you created a socket and tried to send some data through it!

6 Recall that once a socket is established, it is symmetrical and can transfer data

in both directions. However, our example only demonstrates sending data in
one direction (i.e., from the server to the client).

 For this question, write your own server and client to demonstrate that data can

be sent in the opposite direction. Specifically, the client should send b'Hello
from client\n' to the server and the server should print out any bytes that are

received from the client.

(Be aware that, by default, socket.recv() will block the program and prevent

it from continuing until at least 1 byte is received.)

Program: practice_server.py

import socket

my_socket = socket.socket()
my_socket.bind(('0.0.0.0', 12345))
my_socket.listen()

new_socket, addr = my_socket.accept()
print('Connected to: ' + str(addr))
print(new_socket.recv(1024))

new_socket.close()

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
13

my_socket.close()

Program: practice_client.py

import socket

my_socket = socket.socket()

address = input('Enter IPv4 address of server: ')
port = int(input('Enter port number of server: '))

my_socket.connect((address, port))
my_socket.sendall(b'Hello from client\n')
my_socket.close()

Designing a Protocol

The basic_server.py and basic_client.py programs from the previous section

have a hidden flaw: when using the basic server program to send longer sequences
of bytes, only part of the data may be successfully transmitted even if we increase

the maximum number of bytes that socket.recv() can receive.

To understand why, suppose that the sequence of bytes being sent is long enough

that it needs to be sent as multiple packets. We can simulate this by breaking the
sequence into two pieces and calling socket.sendall() twice, once for each piece.

To simulate a busy network that may delay transport of the second packet, we also
import the time module and call time.sleep() before sending the second piece.

Program 3: basic_server_split.py

1
2
3
4
5
6
7
8
9
10
11
12
13

import socket
import time

my_socket = socket.socket()
my_socket.bind(('127.0.0.1', 12345))
my_socket.listen()

new_socket, addr = my_socket.accept()
new_socket.sendall(b'Hello fr')
time.sleep(0.1)
new_socket.sendall(b'om server\n')
new_socket.close()
my_socket.close()

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
14

Run this version of the server, then run the client such that both programs run
simultaneously on the same machine. Once again, use 127.0.0.1 for the IPv4 address
and 12345 for the port number when prompted. This time, the client should receive
only the first piece of data. If the client has closed the socket, the server may also
produce an error when trying to send the second piece of data.

This example illustrates that, in general, we should never assume that socket.recv()
will receive all the bytes that were sent over at one go. The only way to be certain that
any received data is complete is to agree beforehand on a protocol or set of rules for
how communication should take place. For instance, we can agree beforehand that
any data we transmit will always end with a newline character \n and that the data

itself will never contain the \n character. This very simple protocol allows us to detect

the end of a transmission easily by just searching for the \n character.

The following projects updates the client so that it uses the \n character to detect when

the message ends. This new client calls socket.recv() continuously and appends

the received bytes to a variable named data until the \n character is encountered.

Program 4: basic_client_protocol.py

1
2
3
4
5
6
7
8
9
10
11
12
13

import socket

my_socket = socket.socket()

address = input('Enter IPv4 address of server: ')
port = int(input('Enter port number of server: '))

my_socket.connect((address, port))
data = b''
while b'\n' not in data:
 data += my_socket.recv(1024)
print(data)
my_socket.close()

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
15

With this new client, all the data sent by the server up to and including the \n character

is successfully received and printed.

7 A remote control program provides movement instructions to a robot program

using a socket. The two programs communicate using a protocol where bytes
are sent in one direction only from the remote control to the robot.

 There are only four valid instructions that can be sent from the remote control.

These instructions (in bytes literal form) are:

1. b'FORWARD\n'
2. b'LEFT\n'
3. b'RIGHT\n'
4. b'END\n'

According to the protocol, the b'FORWARD\n', b'LEFT\n' and b'RIGHT\n'

instructions can be sent in any order and repeated any number of times. The
b'END\n' instruction, on the other hand, must always be the last instruction sent

by the remote control, after which the socket must be closed by both sides.

Assuming that the protocol is followed exactly, which sequence of bytes (in literal
form) may be received by the robot when socket.recv() is called?

A b'ND\nLEFT\nLEFT\nFORWARD\nRIGHT\nRIGHT'

B b'RWARD\nFORWARD\nFORWARD\nRIGHT\nEND\n'

C b'RIGHT\nBACK\nFORWARD\nRIGHT\nRIGHT\nE'

D b'\nLEFT\nLEFT\nFORWARD\nRIGHT\nLEFTFOR'

 (B)

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
16

Iterative and Concurrent Servers

Currently, the server program exits immediately after it finishes working with a client.
In reality, we often want the server program to run continuously so that it is always
listening and available for multiple clients to send connection requests. We can do this
by putting the code that deals with a client in an infinite loop.

Program 5: basic_server_iterative.py

1
2
3
4
5
6
7
8
9
10

import socket

my_socket = socket.socket()
my_socket.bind(('127.0.0.1', 12345))
my_socket.listen()

while True:
 new_socket, addr = my_socket.accept()
 new_socket.sendall(b'Hello from server\n')
 new_socket.close()

To interrupt a program that is running in an infinite loop, press Ctrl-C. In IDLE, we can
also restart the shell using Ctrl-F6.

Internally, the server's passive socket keeps a queue of connection requests that have
been received. A request is removed from this queue each time socket.accept() is

called to create a connection. (If the queue is empty, socket.accept() will block the

program until a connection request is received, as expected.)

Since socket.accept() is called each time the infinite loop repeats, our program is

able to handle multiple clients by processing them one at a time. This means that our
program works as an iterative server. Iterative servers are easy to write but limited
as they can only handle one client at a time.

Alternatively, we could have written our server such that it starts a thread that runs
simultaneously with the main program each time a client tries to connect. This makes
the program more complicated to write but will let it to handle multiple clients at the
same time, hence making it a concurrent server. In this starter kit, however, we will
only work with iterative servers to simplify our discussion.

Writing a Chat Program

We now have all the tools needed to write a simple chat client and server such that
two users can take turns sending single lines of text to each other. One user would be
running the server and the other user would be running the client.

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
17

Since each message is restricted to a single line, we can be certain that the newline
character \n will never be part of a message. This means that we can adopt a similar

protocol of using \n to detect the end of a message.

Let us use a different port number of 6789 and create the following chat server
program that repeatedly prompts the user for some text, sends that text to the client
(after encoding it into bytes), then receives and prints out the client's response.

Program 6: chat_server.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

import socket

listen_socket = socket.socket()
listen_socket.bind(('127.0.0.1', 6789))
listen_socket.listen()

chat_socket, addr = listen_socket.accept()
while True:
 data = input('INPUT SERVER: ').encode()
 chat_socket.sendall(data + b'\n')
 print('WAITING FOR CLIENT...')
 data = b''
 while b'\n' not in data:
 data += chat_socket.recv(1024)
 print('CLIENT WROTE: ' + data.decode())

The client program is similar, except the order of sending and receiving is reversed.

Program 7: chat_client.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

import socket

chat_socket = socket.socket()

address = input('Enter IPv4 address of server: ')
port = int(input('Enter port number of server: '))

chat_socket.connect((address, port))
while True:
 print('WAITING FOR SERVER...')
 data = b''
 while b'\n' not in data:
 data += chat_socket.recv(1024)
 print('SERVER WROTE: ' + data.decode())
 data = input('INPUT CLIENT: ').encode()
 chat_socket.sendall(data + b'\n')

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
18

Run the server and client using two different copies of Python. Once again, since the
server is running on the same machine as the client, we can use 127.0.0.1 as the
server's IPv4 address and 6789 as the port number.

8 Currently, there is no way to exit our chat programs other than to press Ctrl-C

or to restart the shell (in IDLE).

 For this question, modify chat_server.py and chat_client.py so that both

programs exit once the message 'quit' is sent by any user. Remember to

make sure that all sockets are closed properly before exiting.

Program: chat_quit_server.py

import socket

listen_socket = socket.socket()
listen_socket.bind(('127.0.0.1', 6789))
listen_socket.listen()

chat_socket, addr = listen_socket.accept()
while True:
 data = input('INPUT SERVER: ').encode()
 chat_socket.sendall(data + b'\n')
 if data == b'quit':
 break
 print('WAITING FOR CLIENT...')
 data = b''
 while b'\n' not in data:
 data += chat_socket.recv(1024)
 if data == b'quit\n':

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
19

 break
 print('CLIENT WROTE: ' + data.decode())

chat_socket.close()
listen_socket.close()

Program: chat_quit_client.py

import socket

chat_socket = socket.socket()

address = input('Enter IPv4 address of server: ')
port = int(input('Enter port number of server: '))

chat_socket.connect((address, port))
while True:
 print('WAITING FOR SERVER...')
 data = b''
 while b'\n' not in data:
 data += chat_socket.recv(1024)
 if data == b'quit\n':
 break
 print('SERVER WROTE: ' + data.decode())
 data = input('INPUT CLIENT: ').encode()
 chat_socket.sendall(data + b'\n')
 if data == b'quit':
 break

chat_socket.close()

Writing a Turn-Based Game

So far, we have been responsible for writing both the server and client programs.
Sometimes, however, both server and protocols designs may be based on an existing
standard or developed by someone else. To write a client that can communicate with
an existing server, we need to study its code and follow the expected protocol.

Conversely, sometimes the client may be developed by someone else and we need
to write a server to communicate with it. In either case, it is important to start by
understanding the protocol being used.

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
20

To demonstrate how to do this, let us examine the server program for a simple turn-
based 2-player game of Tic-Tac-Toe. First, we create a simple library that defines
some constants and a TicTacToe class to handle the game logic:

Program 8: tictactoe.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

N = 3 # Size of grid
WIDTH = len(str(N ** 2)) # Width for each cell
PLAYERS = ('O', 'X') # Player symbols

class TicTacToe:

 def __init__(self):
 self.board = []
 for i in range(N):
 self.board.append([None] * N)

 def render_row(self, row_index):
 start = row_index * N + 1
 row = self.board[row_index].copy()
 for column_index in range(N):
 if row[column_index] is None:
 cell = str(start + column_index)
 else:
 cell = PLAYERS[row[column_index]]
 if len(cell) < WIDTH:
 cell += ' ' * (WIDTH - len(cell))
 row[column_index] = ' ' + cell + ' '
 return '|'.join(row) + '\n'

 def render_board(self):
 rows = []
 for row_index in range(N):
 rows.append(self.render_row(row_index))
 divider = '-' * ((WIDTH + 3) * N - 1) + '\n'
 return divider.join(rows)

 def make_move(self, player_index, cell_index):
 cell_index -= 1
 self.board[cell_index // N][
 cell_index % N] = player_index

 def is_valid_move(self, cell_index):
 if cell_index < 1 or cell_index > N ** 2:
 return False
 cell_index -= 1
 return self.board[cell_index // N][
 cell_index % N] is None

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
21

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

 def is_full(self):
 for row_index in range(N):
 for column_index in range(N):
 if self.board[row_index][
 column_index] is None:
 return False
 return True

 def get_winner(self):
 # Check diagonals
 if self.board[0][0] is not None:
 found = True
 for i in range(N):
 if self.board[0][0] != self.board[i][i]:
 found = False
 break
 if found:
 return self.board[0][0]
 if self.board[0][N - 1] is not None:
 found = True
 for i in range(N):
 if self.board[0][N - 1] != self.board[i][
 N - i - 1]:
 found = False
 break
 if found:
 return self.board[0][N - 1]

 # Check rows and columns
 for i in range(N):
 if self.board[i][0] is not None:
 found = True
 for j in range(N):
 if self.board[i][0] != self.board[i][j]:
 found = False
 break
 if found:
 return self.board[i][0]
 if self.board[0][i] is not None:
 found = True
 for j in range(N):
 if self.board[0][i] != self.board[j][i]:
 found = False
 break
 if found:
 return self.board[0][i]

 # No matching lines were found, so no winner
 return None

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
22

The following is a summary of the methods in TicTacToe class:

Methods Description

render_row(row_index) Returns a string representation of the
specified row, such as:

 1 | 2 | 3

render_board() Returns a string representation of the
entire board, such as:

 1 | 2 | 3

 4 | 5 | 6

 7 | 8 | 9

make_move(player_index, cell_index) Modifies the board such that the
specified cell is marked with the
symbol for the specified player

is_valid_move(cell_index) Returns whether the specified cell is
currently blank

is_full() Returns whether the entire board has
been filled up

get_winner() Returns winning player for the current
board or None if there is no winner

Using this library, we create a server program that creates a TicTacToe object on line

9 to store information about the Tic-Tac-Toe board:

Program 9: game_server.py

1
2
3
4
5
6
7
8
9
10
11
12
13

import socket
import tictactoe

listen_socket = socket.socket()
listen_socket.bind(('127.0.0.1', 3456))
listen_socket.listen()

game_socket, addr = listen_socket.accept()
game = tictactoe.TicTacToe()
while True:
 # Display current Tic-Tac-Toe board
 print(game.render_board())

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
23

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

 # Check if client player won
 if game.get_winner() is not None:
 print('Opponent wins!')
 print()
 break

 # Check if board is full
 if game.is_full():
 print('Stalemate')
 print()
 break

 # Prompt for move from server player
 move = -1
 while move != 0 and not game.is_valid_move(move):
 move = int(input('Server moves ' +
 '(0 to quit): '))
 print()
 if move == 0:
 game_socket.sendall(b'END\n')
 print('You quit, opponent wins!')
 print()
 break
 game.make_move(0, move)
 game_socket.sendall(b'MOVE' +
 str(move).encode() + b'\n')

 # Display current Tic-Tac-Toe board
 print(game.render_board())

 # Check if server player won
 if game.get_winner() is not None:
 print('You win!')
 print()
 break

 # Check if board is full
 if game.is_full():
 print('Stalemate')
 print()
 break

 # Receive move from client player
 received = b''
 while b'\n' not in received:
 received += game_socket.recv(1024)
 if received.startswith(b'MOVE'):
 move = int(received[4:])
 print('Client moves: ' + str(move))

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
24

63
64
65
66
67
68
69
70
71

 print()
 game.make_move(1, move)
 elif received.startswith(b'END'):
 print('Opponent quits, you win!')
 print()
 break

game_socket.close()
listen_socket.close()

Analysing this server code, we see that communications with the client is divided into
several steps that repeat in an infinite loop:

1. Display current Tic-Tac-Toe board
2. Check if opponent has won, and if so, end game with opponent winning
3. Check if the board is full, and if so, end game with a stalemate
4. Prompt for input from player; if player makes a valid move, update game board

accordingly, then send b'MOVE' followed by the chosen cell number and b'\n'

to the opponent; if player chooses to quit, send b'END\n' to the opponent and

end game with the opponent winning
5. Display current Tic-Tac-Toe board again
6. Check if player has won, and if so, end game with player winning
7. Check if the board is full, and if so, end game with a stalemate
8. Receive opponent's action via the socket; if the action is b'MOVE' followed by

a cell number and b'\n', update game board accordingly; if the action is

b'END\n', end game with the player winning

As written, the server player always starts first. This means that our client code should
start by receiving and processing the server's result. We also know that Tic-Tac-Toe
is a symmetrical game (other than the choice of starting player), so we deduce that
the client code should be similar to the server code except that "client" and "server"
are exchanged and the last step is moved to the front:

1. Receive opponent's action via the socket; if the action is b'MOVE' followed by

a cell number and b'\n', update game board accordingly; if the action is

b'END\n', end game with the player winning

2. Display current Tic-Tac-Toe board
3. Check if opponent has won, and if so, end game with opponent winning
4. Check if the board is full, and if so, end game with a stalemate
5. Prompt for input from player; if player makes a valid move, update game board

accordingly, then send b'MOVE' followed by the chosen cell number and b'\n'

to the opponent; if player chooses to quit, send b'END\n' to the opponent and

end game with the opponent winning
6. Display current Tic-Tac-Toe board again
7. Check if player has won, and if so, end game with player winning
8. Check if the board is full, and if so, end game with a stalemate

A client program that does this is as follows:

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
25

Program 10: game_client.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

import socket
import tictactoe

game_socket = socket.socket()
game_socket.connect(('127.0.0.1', 3456))

game = tictactoe.TicTacToe()
while True:
 # Receive move from server player
 received = b''
 while b'\n' not in received:
 received += game_socket.recv(1024)
 if received.startswith(b'MOVE'):
 move = int(received[4:])
 print('Server moves: ' + str(move))
 print()
 game.make_move(0, move)
 elif received.startswith(b'END'):
 print('Opponent quits, you win!')
 print()
 break

 # Display current Tic-Tac-Toe board
 print(game.render_board())

 # Check if server player won
 if game.get_winner() is not None:
 print('Opponent wins!')
 print()
 break

 # Check if board is full
 if game.is_full():
 print('Stalemate')
 print()
 break

 # Prompt for move from client player
 move = -1
 while move != 0 and not game.is_valid_move(move):
 move = int(input('Client moves ' +
 '(0 to quit): '))
 print()
 if move == 0:
 game_socket.sendall(b'END\n')
 print('You quit, opponent wins!')

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
26

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

 print()
 break
 game.make_move(1, move)
 game_socket.sendall(b'MOVE' +
 str(move).encode() + b'\n')

 # Display current Tic-Tac-Toe board
 print(game.render_board())

 # Check if client player won
 if game.get_winner() is not None:
 print('You win!')
 print()
 break

 # Check if board is full
 if game.is_full():
 print('Stalemate')
 print()
 break

game_socket.close()

Run the server and client using two different copies of Python on the same machine
to verify that the game works as expected. A sample run is also provided below:

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
27

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
28

9 Currently, the Tic-Tac-Toe game is written such that the server takes its turn
first. For this question, modify game_server.py and game_client.py so that

the client takes its turn first instead.

Program: game_server_alternative.py

import socket
import tictactoe

listen_socket = socket.socket()
listen_socket.bind(('127.0.0.1', 3456))
listen_socket.listen()

game_socket, addr = listen_socket.accept()
game = tictactoe.TicTacToe()
while True:
 # Receive move from client player
 received = b''
 while b'\n' not in received:
 received += game_socket.recv(1024)
 if received.startswith(b'MOVE'):
 move = int(received[4:])
 print('Client moves: ' + str(move))
 print()
 game.make_move(1, move)
 elif received.startswith(b'END'):
 print('Opponent quits, you win!')
 print()
 break

 # Display current Tic-Tac-Toe board
 print(game.render_board())

 # Check if client player won
 if game.get_winner() is not None:
 print('Opponent wins!')
 print()
 break

 # Check if board is full
 if game.is_full():
 print('Stalemate')
 print()
 break

 # Prompt for move from server player
 move = -1
 while move != 0 and not game.is_valid_move(move):

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
29

 move = int(input('Server moves ' +
 '(0 to quit): '))
 print()
 if move == 0:
 game_socket.sendall(b'END\n')
 print('You quit, opponent wins!')
 print()
 break
 game.make_move(0, move)
 game_socket.sendall(b'MOVE' +
 str(move).encode() + b'\n')

 # Display current Tic-Tac-Toe board
 print(game.render_board())

 # Check if server player won
 if game.get_winner() is not None:
 print('You win!')
 print()
 break

 # Check if board is full
 if game.is_full():
 print('Stalemate')
 print()
 break

game_socket.close()
listen_socket.close()

Program: game_client_alternative.py

import socket
import tictactoe

game_socket = socket.socket()
game_socket.connect(('127.0.0.1', 3456))

game = tictactoe.TicTacToe()
while True:
 # Display current Tic-Tac-Toe board
 print(game.render_board())

 # Check if server player won
 if game.get_winner() is not None:
 print('Opponent wins!')
 print()
 break

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
30

 # Check if board is full
 if game.is_full():
 print('Stalemate')
 print()
 break

 # Prompt for move from client player
 move = -1
 while move != 0 and not game.is_valid_move(move):
 move = int(input('Client moves ' +
 '(0 to quit): '))
 print()
 if move == 0:
 game_socket.sendall(b'END\n')
 print('You quit, opponent wins!')
 print()
 break
 game.make_move(1, move)
 game_socket.sendall(b'MOVE' +
 str(move).encode() + b'\n')

 # Display current Tic-Tac-Toe board
 print(game.render_board())

 # Check if client player won
 if game.get_winner() is not None:
 print('You win!')
 print()
 break

 # Check if board is full
 if game.is_full():
 print('Stalemate')
 print()
 break

 # Receive move from server player
 received = b''
 while b'\n' not in received:
 received += game_socket.recv(1024)
 if received.startswith(b'MOVE'):
 move = int(received[4:])
 print('Server moves: ' + str(move))
 print()
 game.make_move(0, move)
 elif received.startswith(b'END'):
 print('Opponent quits, you win!')
 print()
 break

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
31

game_socket.close()

10 While Tic-Tac-Toe is a symmetrical game where the rules are the same for both

players, other games may be asymmetrical and thus require the two players to
behave differently from each other.

 The following is a client program for an asymmetric guess-the-number game

where a server generates a random number from 1 to 100 and a client tries to
guess it within 5 tries. After each incorrect guess, the server returns whether
the guess is greater than or less than the required number:

Program 11: guess_client.py

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import socket

s = socket.socket()
s.connect(('127.0.0.1', 9999))

data = b''
while True:
 while b'\n' not in data:
 data += s.recv(1024)
 received = data[:data.find(b'\n')]
 data = data[len(received) + 1:]
 if received == b'LOW':
 print('Your guess is too low.')
 elif received == b'HIGH':
 print('Your guess is too high.')
 elif received == b'GUESS':
 guess = int(input('Enter guess (1-100): '))
 s.sendall(str(guess).encode() + b'\n')
 elif received == b'WIN':
 print('You win!')
 break
 elif received == b'GAMEOVER':
 print('You ran out of tries! Game over.')
 break

s.close()

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
32

Write the corresponding server program.

Program: guess_server.py

import socket
import random

listen_socket = socket.socket()
listen_socket.bind(('127.0.0.1', 9999))
listen_socket.listen()

s, addr = listen_socket.accept()
answer = random.randint(1, 100)
guessed = False
for i in range(5):
 s.sendall(b'GUESS\n')
 data = b''
 while b'\n' not in data:
 data += s.recv(1024)
 guess = int(data)
 if guess < answer:
 s.sendall(b'LOW\n')
 elif guess > answer:
 s.sendall(b'HIGH\n')
 else:
 guessed = True
 break
if guessed:
 s.sendall(b'WIN\n')
else:
 s.sendall(b'GAMEOVER\n')

s.close()
listen_socket.close()

Socket Programming

CPDD Computer Education Unit Version: Oct 2018
33

socket Module Summary

Methods Description

bind((host, port)) Binds socket object to the given address tuple
(host, port), where host is an IPv4 address and

port is a port number

listen() Enables socket to listen for incoming connections
from clients

accept() Waits for an incoming connection and returns a
tuple containing a new socket object for the
connection and an address tuple (host, port),

where host is the IPv4 address of the connected

client and port is its port number

connect((host, port)) Initiates a connection to the given address tuple
(host, port), where host is the IPv4 address of

the server and port is its port number

recv(max_bytes) Receives and returns up to the given number of
bytes from the socket

sendall(bytes) Sends the given bytes to the socket

