

JC1 H2 Mathematics (9758) Term 4 Revision Topical Quick Check Chapter 3 Functions

Revision Guide Chapter 3 Page 3-4

6. **One-one functions**

(b) Horizontal Line Test (MUST SKETCH GRAPH)

The function f is one-one if **any** horizontal line y = b ($b \in \mathbb{R}$) cuts the graph of

f at most once.

• If not one-one: find a counter-example (sketch a horizontal line y = k that cuts the graph twice (providing the value of *k*) or find $a, b \in D_f$ such

that f(a) = f(b)).

INVERSE FUNCTIONS

7. The inverse of a function f is denoted by f^{-1} .

(Do not confuse **inverse function** (f^{-1}) with **reciprocal graph** $\left(\frac{1}{f(x)}\right)$)

8. f^{-1} exists $\Leftrightarrow f$ is one-one.

9.
$$D_{f^{-1}} = R_f$$
 and $R_{f^{-1}} = D_f$

10. The graph of f^{-1} can be obtained by reflecting the graph of f about the line y = x (provided that f has an inverse).

11.
$$\operatorname{ff}^{-1}(x) = \operatorname{f}^{-1}\operatorname{f}(x) = x$$
; but ff^{-1} and $\operatorname{f}^{-1}\operatorname{f}$ have different domains.

- (a) $D_{ff^{-1}} = D_{f^{-1}} = R_f$ (b) $D_{f^{-1}f} = D_f$
- 12. If $\pm \sqrt{}$ occurs in the process of finding inverse, use the domain of f to determine whether to choose $\sqrt{}$ (positive square root) or $-\sqrt{}$ (negative square root).

COMPOSITE FUNCTIONS

- 13. If f and g are two functions such that $R_f \subseteq D_g$, then the composite function g of f (i.e. gf) exists and is defined by gf (x) = g(f(x)) for all $x \in D_f$.
- 14. For gf to exist, $R_f \subseteq D_g$.
- 15. Domain of composite function gf, $D_{gf} = D_f$.
- 16. Range of composite function gf, $R_{gf} \subseteq R_{g}$.
 - (a) Method 1: Sketch both functions and use $D_f \xrightarrow{f} R_f \xrightarrow{g} R_{gf}$ [**Using R_f as restricted domain of g]
 - (b) Method 2: Find the composite function and sketch the graph, keeping in mind of the domain of the first function, i.e., D_f since $D_{gf} = D_f$.

Let's Try Now

1 YIJC Promo 9758/2022/Q9 (modified)

The function f is defined by

 $f: x \mapsto x^2 - 4x - 5$, for $x \in \mathbb{R}$, $x \le 2$.

- (a) Find $f^{-1}(x)$ and state the domain of f^{-1} . [3]
- (b) On the same diagram, sketch the graphs of f and f^{-1} . [3]
- (c) Find the exact solution of the equation $f(x) = f^{-1}(x)$. [3]

The function g is defined by

$$g: x \mapsto 1 - x^2$$
, for $x \in \mathbb{R}$, $x < 1$.

(d) Explain why the composite function fg exists and find the range of fg. [3]

1 **YIJC Promo 9758/2022/Q9 (modified)** The function f is defined by

$$f: x \mapsto x^2 - 4x - 5$$
, for $x \in \mathbb{R}$, $x \le 2$

(a) Find $f^{-1}(x)$ and state the domain of f^{-1} .

Q1 Solution (a) Let $y = x^2 - 4x - 5$. Then $y = (x-2)^2 - 9$ $y+9 = (x-2)^2$ $x-2 = \pm \sqrt{y+9}$ $x = 2 \pm \sqrt{y+9}$ Since $D_f = (-\infty, 2]$, $x = 2 - \sqrt{y+9}$. Hence, $f^{-1}(x) = 2 - \sqrt{x+9}$ $D_{f^{-1}} = [-9, \infty)$

(b) On the same diagram, sketch the graphs of f and f^{-1} .

Q1 Solution (b) y = f(x) (-9, 2)(-

[3]

[3]

Q1	Solution
(c)	$\mathbf{f}(x) = x$
	$x^2 - 4x - 5 = x$
	$x^2 - 5x - 5 = 0$
	$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(1)(-5)}}{2(1)}$
	$x = \frac{5 \pm 3\sqrt{5}}{2}$
	Since $D_f = (-\infty, 2]$, then we reject $x = \frac{5 + 3\sqrt{5}}{2}$. Therefore, $x = \frac{5 - 3\sqrt{5}}{2}$.

The function g is defined by

$$g: x \mapsto 1-x^2$$
, for $x \in \mathbb{R}$, $x < 1$.

(d) Explain why the composite function fg exists and find the range of fg. [3]

Q1	Solution
(d)	$R_g = (-\infty, 1]$
	$\mathbf{D}_{\mathrm{f}} = (-\infty, 2]$
	Since $R_g \subseteq D_f$, then the composite function fg exists.
	$R_{fg} = [-8,\infty)$

[3]

Let's Try Now

2 HCI Promo 9758/2022/Q6

The function h is defined as follows.

$$\mathbf{h}: x \mapsto \frac{1}{8} \left(x^3 - 6x^2 + 32 \right), \qquad x \in \mathbb{R}.$$

- (i) Explain why h does not have an inverse.
- (ii) If the domain of h is restricted to $0 \le x \le k$, state the largest value of k for which the function h^{-1} exists. [1]

Use the domain of h in part (ii) for the rest of this question.

- (iii) Sketch the graphs of h and h⁻¹ on the same diagram, showing clearly the relationship between the two graphs, and the coordinates of the end points for both graphs.
- (iv) Deduce the solution(s) of the equation $h(x) = h^{-1}(x)$. [2]
- (v) The function g is defined as follows.

$$g: x \mapsto \ln((x-3)^2+1), \qquad x \in \mathbb{R}.$$

Given that the composite function gh exists, find the exact range of gh. [2]

[1]

2 HCI Promo 9758/2022/Q6

The function h is defined as follows.

$$\mathbf{h}: x \mapsto \frac{1}{8} \left(x^3 - 6x^2 + 32 \right), \qquad x \in \mathbb{R}$$

(i) Explain why h does not have an inverse.

(ii) If the domain of h is restricted to $0 \le x \le k$, state the largest value of k for which the function h^{-1} exists. [1]

2	Solution
(ii)	Largest value of k is 4.

Use the domain of h in part (ii) for the rest of this question.

(iii) Sketch the graphs of h and h⁻¹ on the same diagram, showing clearly the relationship between the two graphs, and the coordinates of the end points for both graphs.

(iv)	Deduce the solution(s) of the equation h	(x	$) = h^{-1} ($	$\begin{bmatrix} x \end{bmatrix}$).	[2]
------	--	----	----------------	-----------------------------------	----	-----

2	Solution
(iv)	From GC, $h(x) = x \implies x = 2$
	$\therefore x = 2$ or $x = 0$ or $x = 4$.

[1]

(v) The function g is defined as follows.

$$g: x \mapsto \ln((x-3)^2+1), \qquad x \in \mathbb{R}.$$

Given that the composite function gh exists, find the exact range of gh. [2]

Let's Try Now 3 CJC Prom

3 CJC Promo 9758/2022/Q10(b)

Functions g and h are defined by

$$g: x \mapsto \frac{1}{1-x^2}, \qquad x \in \mathbb{R}, x > 1,$$

$$h: x \mapsto 1-2x, \qquad x \in \mathbb{R}.$$

(i)	Explain why the composite function gh does not exist.	[2]
(ii)	Find $hg(x)$.	[1]

- (iii) Find the range of hg(x). [2]
- (iv) By using the result in part (ii), or otherwise find $(hg)^{-1}(4)$. [3]

3 CJC Promo 9758/2022/Q10(b)

Functions g and h are defined by

$$g: x \mapsto \frac{1}{1-x^2}, \qquad x \in \mathbb{R}, \, x > 1,$$

$$h: x \mapsto 1-2x, \qquad x \in \mathbb{R}.$$

(i) Explain why the composite function gh does not exist.

Q3	Solution
(i)	For gh to exist, $R_h \subseteq D_g$.
	$\mathbf{R}_{\mathrm{h}} = (-\infty, \infty)$
	$D_g = (1, \infty)$
	Since $R_h \not\subseteq D_g$, gh does not exist.

(ii) Find
$$hg(x)$$
.

[1]

[2]

[2]

Q3	Solution
(ii)	$hg(x) = h\left(\frac{1}{1-x^2}\right) = 1 - 2\left(\frac{1}{1-x^2}\right) = 1 - \frac{2}{1-x^2}$

(iii) Find the range of hg(x).

 Q3
 Solution

 (iii)
 Method O: Composite Function

 $D_{hg} = D_g = (1, \infty)$ y = hg(x)

 y = 1 y = hg(x)

 y = 1 x = 1

 $R_{hg} = (1, \infty)$ x = 1

 Method O: Mapping Method

(iv) By using the result in part (ii), or otherwise find $(hg)^{-1}(4)$. [3]

Q3	Solution
(iv)	Hence
	Let $(hg)^{-1}(4) = a$
	4 = hg(a)
	$4 = 1 - \frac{2}{1 - a^2}$
	$\frac{2}{1-a^2} = -3$
	$2 = -3 + 3a^2$
	$3a^2 = 5$
	$a^2 = \frac{5}{3}$
	$a = \sqrt{\frac{5}{3}} \text{or} -\sqrt{\frac{5}{3}}$
	Since $D_{hg} = D_g = (1, \infty), \ a = \sqrt{\frac{5}{3}}$

Т

<u>Otherwise</u>
Let $y = 1 - \frac{2}{1 - x^2}$
$\frac{2}{1-x^2} = 1-y$
$1 - x^2 = \frac{2}{1 - y}$
$x^2 = 1 - \frac{2}{1 - y}$
$x = \sqrt{1 - \frac{2}{1 - y}}$ or $-\sqrt{1 - \frac{2}{1 - y}}$
Since $D_{(hg)^{-1}} = R_{hg} = (1, \infty), x = \sqrt{1 - \frac{2}{1 - y}}$
$\therefore (hg)^{-1}(x) = \sqrt{1 - \frac{2}{1 - x}}$
$(hg)^{-1}(4) = \sqrt{1 - \frac{2}{1 - 4}} = \sqrt{\frac{5}{3}}$