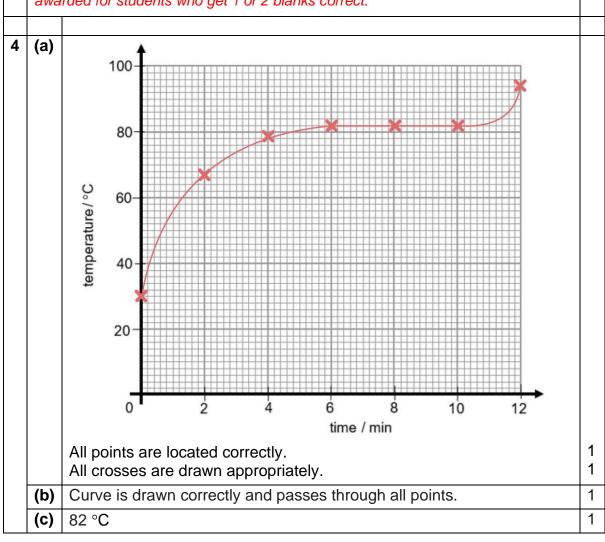
Northland Secondary School Secondary 4 Normal Academic Science Physics Preliminary Examination 2022 Marking Scheme

Setter	Mr Lim Yong Liang			
Vetter	Mr Aaron Rajoo			

Paper 1


1	2	3	4	5	6	7	8	9	10
D	С	В	D	С	Α	В	Α	С	С
11	12	13	14	15	16	17	18	19	20
В	В	В	Α	Α	Α	С	В	В	С

Paper 2 [Section A]

1	(a)	Gravitational potential energy = mgh						
'	(α)	= 7 x 10 x 10						
		$= \frac{700 \text{ J}}{1000 \text{ J}} [1 \text{ mark for answer}]$	1					
	/l-\		'					
	(b)	By COE, loss in GPE = gain in KE						
		Gain in KE = 700 J						
		$700 \text{ J} = \frac{1}{2} m v^2$						
		$700 \text{ J} = \frac{1}{2}(7)v^2$ [1 mark for correct application of equation]	1					
		$v^2 = 200$						
		v = 14.1 m/s (3s.f) [1 mark for answer]						
			1					
	(c)	The speed of the object would still be the same as the answer in (b),	1					
	\	since the loss in GPÉ is still at 700 J as the height remains at 10 m.						
		Note: Student has to give the correct explanation in order for the mark to be						
		awarded; as long as student is able to state that the height remains the same.						
2	(a)	100 m represents 3 wavelengths.						
		Thus, 1 wavelength = 100 ÷ 3						
		= <u>33.3 m</u> [1 mark for answer]	1					
	(b)	It takes 49 seconds to complete 7 waves (from A to B).						
	(D)	Thus, the period of a single wave = $49 \div 7$						
		= 7 s [1 mark for answer]	1					
		- <u>r s</u> [r mark for answer]	<u>'</u>					
	(c)	$v = \frac{\lambda}{r}$						
		Γ						
		$= \frac{33.3}{7} [1 \text{ mark for correct application of equation}]$	1					
		= <u>4.76 m/s</u> (3s.f) [1 mark for answer]	1					

3		arrangement	movement	2
	solid	packed closely in an orderly arrangement	vibrates about in its fixed positions	
	liquid	packed closely in a disorderly arrangement	slides over/across one another	
	gas	packed <u>far apart</u> in a <u>random</u> arrangement	moves rapidly and randomly in all directions	

Note: For full credit, student needs to get all 3 blanks correct. 1 mark would be awarded for students who get 1 or 2 blanks correct.

Paper 2 [Section B]

5	(a)	Work is done on the barbell as the barbell moves in the direction of the						
		force applied by the F1 driver.						
		Note: Student has to give the correct explanation (sound and logical) in order						
		for the mark to be awarded.						
	(b)							
		= (50 + 75) x 10 = <u>1250 N</u> [1 mark for answer]	1					
			'					
	(c)	$P = \frac{F}{A}$						
		$= \frac{1250}{2 \times 0.2} [1 \text{ mark for correct application of equation}]$	1					
		= 3125 N/m ² [1 mark for answer]	1					
	(d)	Design A is preferred, as Design A adopts a broader base. [1 mark for correct choice and reasoning]	1					
		This makes the car more stable. [1 mark for correct conclusion]	1					
	(e)	(i) average speed = $\frac{\text{total distance}}{\text{total time}}$						
		$=\frac{5063}{105}$						
		= <u>48.2 m/s</u> (3s.f) [1 mark for answer]	1					
		(ii) average acceleration = $\frac{v-u}{}$						
		(ii) average acceleration = $\frac{v-u}{t}$ = $\frac{75-0}{10}$						
		$=\frac{10}{10}$						
		= <u>7.5 m/s²</u> [1 mark for answer]	1					
6	(a)	material chosen: dull white canvas sheet	1					
		reason 1: white is a poor absorber of heat, thus it is less likely to cause the makeshift shelter from being too warm.	1					
		reason 2: canvas sheet is a poor conductor of heat as compared to the aluminium plate; thus it is less likely to take in heat via conduction as compared to the aluminium plate.	1					
		Note: Marks are awarded for each individual component; if student of choose aluminium plate as the material chosen, at max 2 marks may awarded.						
	(b)	(i) Conduction	1					
		(ii) Convection	1					
	(c)	As the water near the base of the pot gets heated, it expands in volume,	-					
	(0)	becomes less dense than the surrounding water and rises.	1					
		Cooler and denser water near the top sinks to replace it; the cooler water then gets heated up and rises. This repeats and results in a continuous convection current.	1					
	(d)	internal potential energy: increase	1					
	` ′	internal kinetic energy: no change						
		Note: Student has to get both parts correct to get full credit for this question.						

7	(a)	(i)	$R = \frac{V}{I}$					
			$=\frac{1}{8}$					
			$= \frac{4 \Omega}{1 \text{ mark for answer}}$					
		(ii)	Potential difference = 12 V - 8 V					
			= <u>4 V</u> [1 mark for answer]	1				
		(iii)	Potential difference across 3 Ω resistor					
			= Potential difference across 6 Ω resistor					
			= <u>4 V</u> [1 mark for answer]	1				
		(iv)	$I = \frac{V}{R}$					
			$=\frac{4}{6}$					
			$=\frac{0.667 \text{ A}}{0.667 \text{ A}}$ (3s.f) [1 mark for answer]	1				
	(b)	(i)	Total energy = 1.5kW x 1.5h x 14					
			= 31.5 kWh [1 mark for correct calculation of energy]	1				
			Total cost = 30 cents x 31.5 kWh					
			= 945 cents					
			= <u>\$9.45</u> [1 mark for answer]	1				
		(ii)	The earth wire has to be connected to the metallic casing of the					
			electric iron. [1 mark for correct part identified]	1				
			When there is a fault where the live wire comes into contact with					
			the metal casing, the metal casing becomes live. The earth wire					
			prevents the user from being electrocuted by drawing away the	1				
			excess current into the earth. [1 mark for correct explanation of safety					
			aspect]					