Anderson Serangoon Junior College 2020 H1 Physics Prelim Solutions

Paper 2 (80 marks)

1ai	EITHER
	By conservation of energy,
	Loss in k.e. = Gain in g.p.e.
	$\frac{1}{2}m(2.0^2-v^2)=mg\Delta h$
	$\frac{1}{2}(2.0^2 - v^2) = 9.81(0.13)$
	$v = 1.204 = 1.2 \text{ m s}^{-1}$
	OR Tables dissections on the share as a sitter
	I aking direction up the slope as positive,
	acceleration along slope, $a_{slope} = -g \sin 30^{\circ}$
	Using $v^2 = u^2 + 2as$, we have
	$v^2 = 2.0^2 + 2(-g \sin 30^\circ)(0.13/\sin 30^\circ)$
	$v = 1.204 = 1.2 \text{ m s}^{-1}$
1aii	At the top of the ramp
. an	horizontal component of velocity = $v \cos 30^\circ = 1.2 \cos 30^\circ$
	vertical component of velocity = $v \sin 30^\circ = 1.2 \sin 30^\circ$
	Using $s_y = u_y t + \frac{1}{2} a_y t^2$, and taking downward as positive,
	$0.13 = (-1.2 \sin 30^{\circ})t + \frac{1}{2}(9.81)t^{2}$
	<i>t</i> = 0.2351 s
	$d = (1.2 \cos 30^{\circ})(0.2351)$
	= 0.2443 = 0.24 m
16:	Considering momentum in the direction of right angles to the direction of the initial
ומו	considering momentum in the direction at right-angles to the direction of the initial
	By Conservation of linear momentum.
	EITHER total initial momentum = total final momentum
	OR total initial momentum in the direction at right-angles to the direction of the initial
	path of ball A = 0
	$0 = 4.0 \times 6.0 \sin \theta - 12 \times 3.5 \sin 30^{\circ}$
	$\theta = 61.04 = 61^{\circ}$
41."	
	Considering momentum along the direction of the initial path of ball A:
	By Conservation of linear momentum
	total initial momentum – total final momentum
	$4.0 \times V = 4.0 \times 6.0 \cos 61.04^{\circ} + 12 \times 3.5 \cos 30^{\circ}$
	$v = 11.998 = 12 \text{ m s}^{-1}$
1biii	total initial k.e. = $\frac{1}{2}$ (4)(12) ² = 288 J
	total final k.e. = $\frac{1}{2}$ (4)(6.0) ² + $\frac{1}{2}$ (12)(3.5) ² = 145.5 J
	Since the total kinetic energy before and after collision is different, the collision is
	inelastic.

2ai	 arrows correctly labelled and form a closed loop angles labelled correctly
2aii	EITHER use sine rule: $\frac{T}{\sin (90^{\circ} - 25^{\circ})} = \frac{W}{\sin[(90^{\circ} - 18^{\circ}) + 25^{\circ}]}$ $\Rightarrow T = 474.8 = 470 \text{ N}$ OR considering equilibrium of forces: $\Sigma F_{Y} = 0 \Rightarrow R \sin 25^{\circ} + T \cos 18^{\circ} = W = 520$ $\Sigma F_{X} = 0 \Rightarrow R \cos 25^{\circ} = T \sin 18^{\circ}$ Solving, $T = 474.8 = 470 \text{ N}$
2bi	For the oil droplet to be equilibrium, it means that the electric force is upwards. Since this is a negatively charged droplet, the direction of electric field is downwards. Since electric field points from high to low potential, metal plate A is of a higher potential.
2bii	Since oil droplet is in equilibrium, weight = electric force mg = qE 2.6 × 10 ⁻¹⁴ (9.81) = (8 × 1.60 × 10 ⁻¹⁹)(<i>E</i>) $E = 1.99 \times 10^5 \text{ N C}^{-1}$

3a	elastic energy stored = $\frac{1}{2}$ (1400)(0.10) ² = 7.0 J
3bi	Using conservation of energy, Loss in EPE of spring = Gain in GPE of mass + WD against friction $7.0 = 2 \times 9.81 \times h_0 + 3.0 \times h_0$ Solving the equation, $h_0 = 0.309 = 0.31$ m
3bii	As the mass loses energy due to frictional forces on its way up and down, the elastic potential energy when the mass next comes to a stop will be lesser than at the start. Hence, the compression in the spring will be less than 10 cm.

4a	The direction of the velocity/momentum is always changing.
	Hence, there is a <u>rate of change</u> of velocity/momentum.
	Thus, by Newton's second law, there must have a <u>resultant force</u> acting on it.
4bi	Though all have the same angular speed, their linear speeds are proportional to their
	distances from the centre of the circle.
	No, they would <u>not be at the same linear speed.</u>
4bii	$\omega = (5.5 \times 2 \pi)/60 = 0.57596 = 0.58 \text{ rad s}^{-1}$
4biii	centripetal force required = $m r \omega^2$
	$= 32 \times 3.25 \times 0.57596^2$
	= 34.500 = 35 N
	The maximum friction is <u>larger</u> than the required centripetal force. Hence, he <u>will not fall</u>
	off.

5bii	For parallel combination,
	$1/960 = 1/1600 + 1/R_{\rm T}$
	$R_{\rm T}$ = 2.4 k Ω
	From the graph, temperature = 11°C
	(accept 10.75 to 11.25 °C)
5ci	Using scenario 2 (2 nd row),
	It can be deduced that resistance of $R_3 = 3.0 \Omega$
	Lising scenario 3 (3 rd row)
	resistance of R_2 + resistance of R_2 = 8.0 O
	Therefore, resistance of $R_2 = 5.0 \Omega$
	Using scenario 1 (1 st row),
	resistance of R_1 + resistance of R_2 + resistance of R_3 = 10 Ω
	Therefore, resistance of $R_1 = 2.0 \Omega$
5	
5011	effective resistance between Z and B is $(1/2.0 + 1/5.0)^{-1} = 1.43 \Omega$
	effective resistance between 7 and Y is $1.43 \pm 3.0 = 4.43.0$
	Therefore, using potential divider rule,
	p.d. between W and Y = 3.0 /(4.43) × 12 = 8.13 V

6a	At $t = 0$ s,
	the only vertical force on the parachutist is his weight, hence his vertical acceleration is
	9.81 m s ⁻ ².
	Note: do not allow for calculation using gradient
	At $t = 6.0$ s, draw tangent and find gradient of tangent to graph.
	vertical acceleration = $\frac{59.0-30.0}{12.4-1.0}$ = 2.5 m s ⁻²

	60 1 1 1 1 1 1 1 1 1 1
	(12.4, 59.0)
	v/ms ⁻¹
	10+++++++++++++++++++++++++++++++++++++
	0 4 0.0 0 12 10 20 24 20 t/s
6h	r_{0} of big squares -11
00	total vertical distance $-11 \times (10 \times 4) - 440 \text{ m}$
6c	point C (vertical speed first starts to decrease)
6d	The (vertical) resultant force is given by weight – (vertical) air resistance
	As speed increases, (vertical) air resistance increases with speed and hence (vertical)
	resultant force decreases.
	The speed continues to increase until (vertical) resultant force equals to zero at point
	B (where (vertical) air resistance equals to weight).
	The parachutist moves at constant speed from B to C.
6ei	change in momentum, $\Delta p = m(v - u)$
	= 85(20-50)
	$= -2550 = -2600 \text{ kg m s}^{+}$
6eii	average vertical resultant force = $\Delta p/t$ = - 2550 / 2
	= – 1275 = – 1300 N
	Note: allow for positive answer.
60111	Taking downward as positive
oem	a verse vertical resultant force - weight average vertical air resistance
	average vertical air resistance – weight – average vertical resultant force
	= 85 (0.81) = (-1275)
	= 2108.85 - 2100 N
6f	The parachutist comes to a complete stop over a longer period reducing the force of

	The force of impact on the parachutist is also distributed across various parts of the body (instead of a single part), reducing the risk of injury.
7a	Newton's law of gravitation states that the mutual force of attraction between any two point masses is proportional to the product of the masses and inversely proportional to the square of their separation.
7b	gravitational force on the satellite provides centripetal force.
	By Newton's 2 nd law, $\frac{GMm_{\text{satellite}}}{r^2} = m_{\text{satellite}} r \omega^2$
	Since $\omega = \frac{2\pi}{\pi}$ the above equation becomes
	$\frac{GM}{r^2} = r \left(\frac{2\pi}{T}\right)^2$
	Rearranging the equation, $T^2 = \frac{4\pi^2 r^3}{GM}$
	$=\frac{39.5\ r^3}{GM}$
7ci	A geostationary orbit has an orbital plane that is the same as the Equator. The period of a geostationary orbit is 24 hours. The satellite in a geostationary orbit moves from west to east (in the same direction as the rotation of the Earth).
7cii	Substituting $T = 24 \times 60 \times 60$ into the equation in (b) , we have
	$r^{3} = \frac{6007}{39.5} = \frac{6.07 \times 10^{-10} \times 5.97 \times 10^{-10} \times (24 \times 60 \times 60)^{-1}}{39.5}$
	$r = 4.2219 \times 10^7$ = 4.22×10 ⁷ m (3 s.f.)
7ciii	linear speed of the satellite at geostationary orbit = $r\omega = 4.2219 \times 10^7 \times \frac{2\pi}{24 \times 60 \times 60}$ = 3070.25 = 3100 m s ⁻¹
7civ	By conservation of energy, loss in k.e. of satellite = gain in g.p.e. of satellite $\frac{1}{2}$ (655) ($v_{min}^2 - 3070.25^2$) = 3.45×10 ¹⁰ v_{min} = 10713 = 1.07×10 ⁴ m s ⁻¹ (3 s.f.)
7cv	There is work done against <u>air resistance</u> as the satellite moves through the atmosphere that was not accounted for.
7di	disrupts the working of communication satellites/ damages components on satellites
7dii	magnetic force on charge particle provides centripetal force.

Γ

