

CHIJ SECONDARY

Sec 4 Preliminary Examination 2024

Chemistry 6092 Mark Scheme

Updated on 05/09/2024

Paper 3 (40 marks)

			Answers	Marks	Total
1	(a)	(i)	Results		
			 correct headings and units [1] 		
			• burette readings to 2 d.p. [1]		
			• accuracy within ±0.2 cm ³ [2]	5	
			or ± 0.3 cm ³ [1] of actual titre values		
			• concordance within $+0.1 \text{ cm}^3$ [1]		
		(ii)	Calculation of average volume using best 2 values to 2 d.p.	1	
	(b)		Volume of Q = X cm ³		
			No. of moles of $Q = X/1000 \times 0.100$		
			= 0.0001 X mol [1]		
			No. of moles of of K_2CO_3 in 25 cm ³	2	
			$= 0.0001 \mathbf{X} \div 2$		
			= 0.00005 X mol [1]		
	(C)		No. of moles of K ₂ CO ₃ in 1 dm ³		
			= 1000/25 × 0.00005 X mol	1	
			= 0.002 X mol	1	
	(d)	(i)	Mass concentration of of K ₂ CO ₃		
			= 0.002 X mol × 138	1	
			= 0.276 X g/dm ³	•	
					18
		(ii)	Mass of H ₂ O in 1dm ³ = 8.00 – 0.276 X g	1	
		(iii)	No. of moles of H ₂ O		
		()	$= (8.00 - 0.276 \text{X}) \text{ g} \div 18$	1	
			= (0.00 0.270 x) g · 10	•	
		(iv)	x = 0.09178 ÷ 0.046 ≈ 2	1	
				1	
	(e)		Every 2 points is 1 mark:		
			1. Measure the mass [reject weight, penalize once] of an empty		
			test-tube/ boiling tube/ evaporating dish/ crucible [reject beaker/		
			conical flask etc.] (p) using an electronic mass balance [reject		
			weighing scale		
			2. Add the solid sample to the test-tube, measure the initial mass of		
			the test-tube and its contents (q) [accept measure the mass of		
			hydrated K_2CO_3 , if no apparatus mentioned point 1 not awarded]	_	
			[reject measuring mass of solution]	5	
			3. Calculate the mass of hydrated K_2CO_3 used by taking $q - p$		
			4. <u>Heat</u> the sample (at regular / 1-minute intervals) [point only		
			awarded it appropriate apparatus for heating was mentioned		
			earlier; accept evaporate (to dryness)]		
			5. until the mass of the remaining solid / residue is constant / to		
			aryness / all the water has evaporated [reject to saturation]		
			b. Ivieasure the mass of the remaining residue and test-tube (\mathbf{r})		
			[reject measure the mass of the test-tube after heating] [accept		

		Answers	Marks	Total
		 measure the mass of anhydrous K₂CO₃ as ecf if point 1 not mentioned] 7. Calculate the mass of the residue r - p [reject p - r] 8. Calculate the number of moles of K₂CO₃ by taking (r - p)/138. 9. Calculate the number of moles of H₂O by taking (q - r)/18. 10. The value is x is the number of moles of H₂O ÷ number of moles of K₂CO₃. OR 1. Using a burette/measuring cylinder/pipette, measure out 25.0 cm³ of solution P 2. into a conical flask. Set up using rubber stopper with delivery tube, connected to gas syringe [award point if set-up is drawn and labelled] 3. Add solution Q / HCI 4. in excess 5. Measure the volume of gas [reject amount/mass] 6. Calculate the number of moles of CO₂ by taking v/24000 [reject finding no. of moles by mass/M_r if never mention to measure the mass of gas collected using electronic mass balance] 7. The number of moles of K₂CO₃ is also v/24000 8. The value of x can be determined using steps (c) to (d)(ii) (Max. 4 marks, because the method is not very different from the original question) 		
2	(a)	A lilac/purple/violet flame was observed.	1	
	(b)	The white solid melted to form a colourless liquid / water droplets were observed on the sides of the test-tube / a white residue remains [1] A gas was evolved that relights a glowing splint. [1]	2	
	(c)	 Test 1 Upon adding potassium iodide, the yellow solution turns yellow/brown/reddish-brown/dark orange. [1] Upon adding starch, a blue-black solution forms. [1] Test 2 A white precipitate forms. [1] Test 3 No visible change observed. [1] 	4	9
	(d)	Nature: Oxidising agent (no mark) Reasoning: In Test 1, when potassium iodide is added, the solution changes to brown, [1] indicating that Y oxidised potassium iodide to form iodine. [1]	2	
3	(a)	 Table temperatures recorded to 1 d.p. [1] correct trend: temperature decrease from t=2 to t=5.5 [1] (accept if first 2 temperatures are the same) accuracy: temperature within 1°C difference at t=0, t=0.5 and t=1, and 66.0±3.0°C for highest temperature reading [1] 	3	13
	(b)	 Graph correct axes labels and units, including scale [1] temperature to 1 d.p., time to 1 d.p. or nearest whole number [1] correctly plotted values [1] best-fit lines [1] 	4	

			Mark	Scheme
		Answers	Marks	Total
(c)		Vertical line correctly drawn at 1.5 min [1] Temperature rise = $67.5 - 30.0 = 37.5^{\circ}C$ [1]	2	
(d)	(i)	Heat energy released = 25g × 37.5°C × 4.2 = 3937.5 J ≈ 3940 J	1	
	(ii)	Amount of $CuSO_4 = 0.8 \times 25/1000$ = 0.02 mol	1	
	(iii)	Enthalpy change = 3.9375kJ ÷ 0.02 mol = -196.875 kJ/mol = -197 kJ/mol	1	
(e)		 Any 1: Use a lid over the Styrofoam cup to minimize heat loss to the surroundings. Use a burette/pipette to measure the volume of T (accept: 25 cm³ of T) more accurately. Use a data logger (reject: machine) with a temperature probe to measure the temperatures more accurately. Use a magnetic stirrer (reject: electronic stirrer, stirring machine) to ensure more consistent stirring (even distribution of heat energy). 	1	