Qn	Δnc	Suggested solution	
1	C	The area of an A4-sized paper is (0.210 m)	$(0.297 \text{ m}) = 0.0624 \text{ m}^2$
'		Since A4-sized paper is typically 70 to 100 g	
		a single sheet of A4 paper is between 4 g at	
2	В		
~	Ъ	$\eta = \frac{kr^2}{v} \rightarrow \eta = \frac{(93.7)(0.83/1000)^2}{0.065} = 9.93$	$x 10^{-4} N s m^{-2}$
		v 0.065	
		$\Box \eta \Box k 2\Box r \Box v$	
		$\frac{\Box \eta}{\eta} = \frac{\Box k}{k} + \frac{2\Box r}{r} + \frac{\Box v}{v}$	
		•	
		$\frac{\Box \eta}{\eta} = \frac{(0.1)}{(93.7)} + \frac{2(0.01)}{(0.83)} + \frac{(0.002)}{(0.065)}$	
		η (93.7) (0.83) (0.065)	
		$\Box \eta = 5.55 \text{ x } 10^{-5} \text{ N s m}^{-2} \approx 0.6 \text{ x } 10^{-4} \text{ N s m}^{-2}$	2
		$\eta = (9.9 \pm 0.6) \times 10^{-4} \text{ N s m}^{-2}$	
3	В	Area X represents the displacement as the	hall travels unwards and area V represents
J	D	the displacement as the ball travels down	•
		displacement of the ball must be zero so	
		opposite sign.	
		(A is a wrong statement. C and D are correct	ct statements with only respect to this graph
		in which air resistance is negligible and do r	, , , , , , , , , , , , , , , , , , , ,
		B is correct regardless of air resistance be	
		areas are the same.)	
4	D	At the instant when the stone passes the	
		edge of the cliff on its way down, its	s ↓?
		velocity will be 10 m s ⁻¹ downwards.	•
		-	u 10 m s-1
		Taking downwards positive, consider only	*
		the motion of the stone in the last 1.2 s, as	v ?
		shown on the right.	r ↓ :
		V = U + at	a ∎ 9.81 m s-2
		$v = 10 + (9.81)(1.2) = 21.8 \text{ m s}^{-1}$	Ť
			<i>t</i> =1.2 s
		$v^2 = u^2 + 2as$	
		475 = 100 + 2(9.81)s	
		s = 19 m (2 s.f.)	
5	В	Consider the resultant force on the whole sy $(54 - 6) = (6 + 2)^2$	/stem.
		(54-6) = (6+2)a	
		$a=6.0 \text{ m s}^{-2}$	(c) 26 N
6	٨	resultant force on the 6 kg mass = $ma = (6)$	
6	Α	For all collisions, total momentum ($p = mv$) is conserved $\Rightarrow A$, C or D .	
		For an elastic collision, total kinetic energy ($E_k = \frac{1}{2}mv^2$) is conserved $\Rightarrow \mathbf{A}$.
7	С	When the ball is in contact with the surface, resultant vertical force = 0	
		When it leaves the surface, resultant vertica	

Qn	Ans	Suggested solution	
8	С	F	
		Ē	
		By definition of a couple, the couple is the product of one of the parallel and equal	
		forces and the perpendicular distance between the two forces.	
9	В	Taking moments about X,	
_		(weight of load)(0.8) + (180)(1.5) = (220)(3)	
		Weight of load = 490 N	
10	С	By conservation of energy,	
		Increase in KE = WD by constant force = Fs	
11	Α	For the first fall:	
		1. The kinetic energy must be zero at the beginning and end of the fall \Rightarrow A or C or D	
		2. The kinetic energy cannot be zero at the middle of the fall \Rightarrow A or C 3. The total energy must be equal to 120 kJ at all positions \Rightarrow A or B or D	
		4. There is no extension of the bungee cord in the initial part of the fall and therefore	
		there is only very little extension, hence very little EPE, at the middle of the fall \Rightarrow A.	
		The EPE should not quadruple from the middle of the fall to the bottom of the fall as	
		that will mean the bungee cord start to stretch from the beginning of the fall.	
12	С	Consider the work done in one second which is the output power <i>P</i> .	
		$P = \frac{mgh}{t} = mgv = (1400)(9.81)(1.6)$	
		t = t	
		$\eta = \frac{P}{\text{input power}} \times 100\% = 20\%$	
		$\eta = \frac{1}{100} \times 100\% = 20\%$	
		(1400)(9.81)(1.6)	
		Input power = $\frac{(1400)(9.81)(1.6)}{0.2}$ = 110 kW	
13	С	E = V + Ir	
		V = -rI + E	
		Gradient of V- I graph = - r	
		Gradien of graph = $\frac{2.8 - 1.0}{1.4 - 2.9} = -1.2$	
		\Rightarrow - 1.2 = - <i>r</i>	
		\Rightarrow r = 1.2 Ω	

Qn	Ans	Suggested solution	
14	D		
		Resistance is defined as the ratio $V_{//}$, and not the inverse-gradient of the I-V graph.	
		The resistance at various points on an I-V graph may either be found by calculating the	
		values of $V_{//}$ at the particular point or finding the inverse-gradient of the straight line	
		drawn from origin to that point.	
		At about 1.2 V, the I-V graphs for the diode and filament lamp intersect. Hence, they	
		will have the same value of $V_{//}$ or resistance.	
		[B] is incorrect, as the ratio V_1 changes even though it is a straight line graph after 0.8	
		V. This is because the straight line does not begin from the origin.	
		[C] is incorrect as the resistance of the filament is half that of the resistor's at 1.0 V	
15	С	Power dissipated in the cables $= I^2 R$	
		$=\left(\frac{P}{V}\right)^2 R$	
		(V)	
16	Α	$P_A = \frac{120^2}{R} \implies R_A = 14.4 \ \Omega$	
		$P_B = \frac{240^2}{R} \implies R_B = 57.6 \ \Omega$	
		Λ	
		Since in series circuit, current must be the same across the 2 bulbs.	
		Bulb B will be brighter since it has higher power dissipation (i.e. higher resistance.)	
17	Α	The three resistors are connected in parallel between points P and Q. Hence total	
		resistance	
		$R_T = (1 + \frac{1}{2} + \frac{1}{3})^{-1} = 0.55 \ \Omega$	
40	_	2 3	
18	В	The voltmeter reads zero because the reason could be any of those given in options A,	
		C or D. If it is only the filament of the third bulb that has blown, the voltmeter will read a certain value and not zero.	
10	P		
19	D	UV radiation has a smaller wavelength than Radiowaves.	

Qn	Ans	Suggested solution	
20	D	At equilibrium points, velocity is maximum. At amplitude, velocity is zero.	
		o direction of wave travel	
		P is on its way upwards, hence velocity is positive.	
		Q is on its way downwards, hence velocity is negative.	
21	В	Only transverse wave can be polarized.	
22	Α	$\begin{split} &I\alpha \ A^2 \ (\text{intensity proportional to square of amplitude }) \\ &\text{When both } S_1 \ \text{and } S_2 \ \text{are opened, the amplitude at M is 2A. When only one source is present, the amplitude at M is just A.} \\ &(2A)^2 \alpha \ 2I \\ &4A^2 = k(2I) \\ &\text{Hence, } A^2 = k(I/2) \\ &A^2 \alpha \ \frac{I}{2} \end{split}$	
23	С	Any two points either side of the centre have a phase difference of 180° (or π).	
24	D	The points when wavefronts intersect are points of constructive interference.	
25	Α	Use Left Hand Rule, direction of force is perpendicular to current and B-field.	
26	С	Right hand grip rule	
27	C		
28	A		
29	D	$E_{1} \text{ (photon absorbed)} = E_{2} + E_{3} \text{ (photons emitted)}$ $h c / \lambda_{1} = h c / \lambda_{2} + h c / \lambda_{3}$ $1 / \lambda_{1} = 1 / \lambda_{2} + 1 / \lambda_{3}$ $1 / \lambda_{3} = 1 / \lambda_{1} - 1 / \lambda_{2}$ $= (\lambda_{2} - \lambda_{1}) / \lambda_{1} \lambda_{2}$	
30	D	Transitions ending at the same level gave rise to visible light.	