Tutorial 7B Self-Review Suggested Solutions

S1 D

 $\varphi = -GM/r$

 $\varphi_{\rm Y} = \frac{1}{2} \varphi_{\rm X} = \frac{1}{2} (-800) = -400 \text{ kJ kg}^{-1}$

Remember that since gravitational force is attractive in nature, and potential at infinity is taken to be zero, the gravitational potential at a point is always negative.

You should develop the "feel" that when an object is brought nearer to source mass, the GPE will be more negative, when the object is brought away from the source mass, the GPE will increase towards zero.

Can you sketch the GPE- distance graph?

Work done by external force = change in gravitational potential energy

 $= m (\varphi_{\rm Y} - \varphi_{\rm X})$ = 3 [-400 - (-800)]

= +1200 kJ (the positive sign indicates that the mass gains GPE)

S2 Increase in GPE = final GPE – initial GPE

= -[G(Mm)/(6,370,000 + 92,000)] - [-G(Mm)/(6,370,000)]

 $= 7.22 \times 10^{8} \text{ J}$

The trickier questions often give the "height of the mass above surface of the Earth" When applying the formula for gravitational force or potential energy, you should always consider the distance between the two masses i.e. (Earth radius + height).

S3

	Lowe and Rounce, 3rd Edition. Pg 86, Ex 12.3. Q2.
(a)	Gravitational potential of the moon at its surface
	moon = - G Mnoon Record
	-(6.67×10-11) (7.7×1022kg)
	(1.7 ×106 m)
	= - 3.02 × 106 kg J +
- ,	Negative sign is Necessary.
СЫ	By C.O.E, (assuming no skie -> start from reat -> go to reat).
4	\therefore WD = marease in P.E $\phi_{\infty} = 0$
	$= \Delta U = Uf - Ui = m \phi_f - m \phi_i$
	$= -m\phi_i(=\phi_{moon})$
	= -(1.5 × 103 kg) (-3.02 × 106 J kg-1)
	= 4.53 × 109 J
28	75

Decuma					No. No. No. No.		- 1 + 1	
ussume	That	the	mer	eonte	came	trom	infinitely	far away
	C	V= ?						1=00
neutr	n (r	J				-		meteorite
5100								
otal ene	ngy is	conser	ved			0		
otal ene €	ngy is K:Einitio	conser dy at	ved os -	+ G	·P·Einitian	y at as	= K·Efin	al at surface t
siao ?otal ene }	ngy is K:Einitio	conser dy at	ved os -	+ G	·P·Einitian) W at a	∍ K·E _{fin}	al at surface +
Fotal ene	$k \in E_{initia}$ $C = \frac{1}{2}$	conser aly at	ved os -	+ G	·P·Eintian) Wy at as	∍ K·E _{fin} Gʻ	al at surface + P.E final at surface
sito Fotal ene }) ($K \cdot E_{initia}$ $D = \frac{1}{2}$	conserved v_{y} at v_{z} v_{z}	00 - C1	+ G MyA r GM r	·P·Eintia	2 iy at a	> K-E _{fin} G'	al at surface + P.E final at surfac
sito Fotal ene }) ($k \in \frac{1}{2}$ $k = \frac{1}{2}$	conter at v $v = v^2$	ved - Gi - Z	+ G MyA r GM r 2(6.67	·P·Einitian × 10-11 >(2 ly at a 2.5 × 10	> K.E _{fin} G'	al at surface + P.E final at surfac

Alternatively, you could take: Decrease in GPE = lecrease in KE from infinity to surface.

Always remember that we set gravitational potential = 0 at infinity.

Make sure you are familiar with the definition of gravitational potential, gravitational potential energy and be able to explain why the gravitational potential is always negative.

S5

сл

Firstly, since $GPE = -\frac{GMm}{r}$, we can figure out that the GPE of the second satellite (being at twice the distance away), is -1.6 MJ.

Next, recall that total energy of a satellite is related to the GPE by a factor of 2. More specifically $TE = GPE + KE = \frac{1}{2}GPE$, so total energy of second satellite is -0.8 MJ.

Note that the <u>energy analysis is specifically on satellites in orbits</u>, which is different from projecting a mass away from the Earth (see S3). Can you also sketch the KE-radius, GPE-radius and Total energy-radius graphs? (refer to lecture example on page 28)