

Method 1: (Graphical Method) – Preferred and efficient method 1 (ii)

From the graph, for $-4x^2 + 12|x| + 7 \le 4x + 7$,

The intersection points have x-coordinates -4 and 2respectively.

$$x \le -4$$
 or $x = 0$ or $x \ge 2$

Method 2: (Algebraic Method) – Not preferred for this question

$$-4x^2 + 12|x| + 7 \le 4x + 7$$

$$|12|x| \le 4x + 4x$$

$$12|x| \le 4x + 4x^2$$

$$|x| \le \frac{x + x^2}{3}$$

$$-\frac{x+x^2}{3} \le x \le \frac{x+x^2}{3}$$

$$-(x+x^{2}) \le 3x \quad \text{and} \quad 3x \le x + x^{2}$$

$$x+x^{2}+3x \ge 0 \qquad x^{2}-2x \ge 0$$

$$x(x+4) \ge 0 \qquad x(x-2) \ge 0$$

$$x \le -4 \text{ or } x \ge 0 \qquad x \le 0 \text{ or } x \ge 2$$

$$x + x^2 + 3x > 0$$

$$x^2 - 2x \ge 0$$

$$x(x+4) \ge 0$$

$$x(x-2) \ge 0$$

$$x \le -4$$
 or $x \ge 0$

$$x \le 0$$
 or $x \ge 2$

Combining $x \le -4$ or $x \ge 0$ and $x \le 0$ or $x \ge 2$ on a number line, $x \le -4$ or x = 0 or $x \ge 2$.

2 (i)

- 2 $(-a, 0) \rightarrow \text{vertical asymptote } x = -a$
- $(a, 0) \rightarrow \text{vertical asymptote } x = a$

Minimum point $(0,-a^2) \rightarrow$ Maximum point $(0,-\frac{1}{a^2})$

- The tangents to the curve of $y = \frac{1}{f(x)}$ tends to a horizontal line / becomes parallel with the x axis when $x \to \pm \infty$.
- Let us consider an arithmetic progression with a = 12 and d = 2, where n is the number of odd days. Then $u_n = 12 + (n-1)(2)$. Let $u_n = 42$, then 12 + (n-1)(2) = 42 gives n = 16. Hence it requires 16 odd numbered days to complete 42 km. Starting on 1st day, the last day is given by 1 + (16-1)(2) = 31. Therefore Mary completed 42 km on the 31^{st} day of training. (shown)

(ii) Let us consider a GP, with a = 12, $r = \left(1 + \frac{x}{100}\right)$ and n = 31

for Leo to first run 42 km

Using
$$u_n = ar^{n-1}$$

$$12\left(1+\frac{x}{100}\right)^{31-1}=42$$

using GC, x = 4.26 (2 d.p.)

(iii) Total distance covered by Mary

- =2×distance covered during 1st 15 odd numbered days
- + distance covered on 31st day

Total distance covered =
$$\left(2\left[\frac{15}{2}(2(12)+(15-1)\times2)\right]+42\right)$$

$$+\frac{12(1-(1+0.042643)^{31})}{1-(1+0.042643)}$$

$$=822+745.516$$

$$=1567.516$$

$$=1570 (3s.f.)$$

$$\frac{\mathrm{d}T_{in}}{\mathrm{d}t} = 0, \ \frac{\mathrm{d}T_{out}}{\mathrm{d}t} = k(T - \theta), \ k > 0$$

$$\frac{dT}{dt} = \frac{dT_{in}}{dt} - \frac{dT_{out}}{dt} = -k(T - \theta), \text{ where } k > 0$$

$$\frac{1}{T-\theta} \frac{\mathrm{d}T}{\mathrm{d}t} = -k$$

Integrating with respect to t both sides,

$$\int \frac{1}{T - \theta} \, \mathrm{d}T = \int -k \, \, \mathrm{d}t$$

 $\ln |T - \theta| = -kt + C$, where C is an arbitrary constant

$$ln(T - \theta) = -kt + C$$
, since $T > \theta$.

$$T - \theta = e^{C} e^{-kt}$$

$$T = Ae^{-kt} + \theta$$
, where $A = e^{C}$

 $T = Ae^{-kt} + \theta$, where $A = e^{C}$. Given that $\theta = 25$, $T = Ae^{-kt} + 25$.

When t = 0, T = 175,

$$175 = Ae^0 + 25$$

$$\therefore A = 150$$

$$\frac{\mathrm{d}T}{\mathrm{d}t} = -150ke^{-kt}$$

when
$$t = 0$$
, $\frac{dT}{dt} = -3$,

$$\therefore -150k = -3 \Rightarrow k = \frac{1}{50}$$

$$T = 150e^{-0.02t} + 25$$

For the apple pie to cool to 40° C, T = 40,

$$40 = 150e^{-0.02t} + 25$$

$$150e^{-0.02t} = 15$$

$$e^{-0.02t} = 0.10$$

$$t = 115.13$$

 $=115 \min (3 sf)$

5 (i)

$$\widehat{ACB} = \pi - \frac{2}{3}\pi - \theta = \frac{\pi}{3} - \theta$$

By Sine Rule,

$$\frac{BC}{\sin B\hat{A}C} = \frac{AB}{\sin A\hat{C}B}$$

$$BC = \frac{AB \sin B \hat{A}C}{\sin A \hat{C}B}$$

$$= \frac{2 \sin \theta}{\sin \left(\frac{\pi}{3} - \theta\right)}$$

$$= \frac{2 \sin \theta}{\sin \frac{\pi}{3} \cos \theta - \cos \frac{\pi}{3} \sin \theta}$$

$$= \frac{2 \sin \theta}{\frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta}$$

$$= \frac{4 \sin \theta}{\sqrt{3} \cos \theta - \sin \theta}$$
(ii) Given that θ is a sufficiently small angle,

$$BC = \frac{4\sin\theta}{\sqrt{3}\cos\theta - \sin\theta}$$

$$\approx \frac{4\theta}{\sqrt{3}\left[1 - \frac{\theta^2}{2}\right] - \theta}$$

$$\approx 4\theta \left[\sqrt{3} - \theta\right]^{-1}$$

$$= \frac{4}{\sqrt{3}}\theta \left[1 - \frac{\theta}{\sqrt{3}}\right]^{-1}$$

$$= \frac{4\sqrt{3}}{3}\theta \left[1 + \frac{1}{\sqrt{3}}\theta\right]$$

$$= \frac{4\sqrt{3}}{3}\theta + \frac{4}{3}\theta^2 + \dots$$

(iii)
$$e^{a\theta} \ln(1+\theta)$$
$$= \left[1 + a\theta + \frac{(a\theta)^2}{2!} + \dots\right] \left[\theta - \frac{\theta^2}{2} + \dots\right]$$
$$= \theta - \frac{\theta^2}{2} + a\theta^2 + \dots$$
$$= \theta + \left(a - \frac{1}{2}\right)\theta^2 + \dots$$

Given that the term in θ^2 are equal in (ii) & (iii),

$$a - \frac{1}{2} = \frac{4}{3}$$

$$a = \frac{11}{6}$$
6 (i) $(\sqrt{r+2} + \sqrt{r})(\sqrt{r+2} - \sqrt{r})$

$$= \left[\sqrt{(r+2)}\right]^2 - (\sqrt{r})^2$$

$$= \left[(r+2) - r\right]$$

$$= 2 \text{ (Shown)}$$

$$\frac{1}{\sqrt{3} + \sqrt{5}} + \frac{1}{\sqrt{4} + \sqrt{6}} + \frac{1}{\sqrt{5} + \sqrt{7}} + \dots + \frac{1}{\sqrt{n} + \sqrt{n+2}}$$

 $= \sum_{r=3}^{n} \left(\frac{1}{\sqrt{r} + \sqrt{r+2}} \right)$ $= \sum_{r=3}^{n} \frac{1}{2} (\sqrt{r+2} - \sqrt{r}), \text{ from above}$

$$\begin{vmatrix} \sqrt{5} - \sqrt{3} \\ + \sqrt{6} - \sqrt{4} \\ + \sqrt{7} - \sqrt{5} \end{vmatrix}$$

$$= \frac{1}{2} \times \begin{cases} +\sqrt{n} - \sqrt{n-2} \\ +\sqrt{n+1} - \sqrt{n-1} \\ +\sqrt{n+2} - \sqrt{n} \end{cases}$$

$$= \frac{1}{2} (\sqrt{n+2} + \sqrt{n+1} - \sqrt{4} - \sqrt{3})$$

$$= \frac{1}{2} (\sqrt{n+2} + \sqrt{n+1} - 2 - \sqrt{3})$$

$$(ii) \qquad \frac{1}{\sqrt{a} + \sqrt{a+2}} + \dots + \frac{1}{\sqrt{98} + \sqrt{100}} = 1 + \frac{3}{2} (\sqrt{11} - \sqrt{7}).$$

$$\sum_{r=a}^{98} \frac{1}{\sqrt{r} + \sqrt{r+2}} = 1 + \frac{3}{2} (\sqrt{11} - \sqrt{7})$$

$$\sum_{r=3}^{98} \frac{1}{\sqrt{r} + \sqrt{r+2}} - \sum_{r=3}^{a-1} \frac{1}{\sqrt{r} + \sqrt{r+2}} = 1 + \frac{3}{2} (\sqrt{11} - \sqrt{7})$$

$$\frac{1}{2} (\sqrt{98+2} + \sqrt{98+1} - 2 - \sqrt{3}) - \frac{1}{2} (\sqrt{a-1+2} + \sqrt{a-1+1} - 2 - \sqrt{3})$$

$$=1 + \frac{3}{2}(\sqrt{11} - \sqrt{7})$$

$$\frac{1}{2}(\sqrt{100} + \sqrt{99} - 2 - \sqrt{3}) - \frac{1}{2}(\sqrt{a+1} + \sqrt{a} - 2 - \sqrt{3})$$

$$=1 + \frac{3}{2}(\sqrt{11} - \sqrt{7})$$

$$(10 + 3\sqrt{11} - 2 - \sqrt{3}) - (\sqrt{a+1} + \sqrt{a} - 2 - \sqrt{3}) = 2 + 3(\sqrt{11} - \sqrt{7})$$

$$8 + 3\sqrt{11} - \sqrt{3} - \sqrt{a+1} - \sqrt{a} + 2 + \sqrt{3} = 2 + 3\sqrt{11} - 3\sqrt{7}$$

$$\sqrt{a+1} + \sqrt{a} = 8 + 3\sqrt{7}$$
Using GC, $a = 63$.

7 (i) Let $u = \tan^{-1}(x^2)$, $\frac{dv}{dx} = x$
Then $\frac{du}{dx} = \frac{2x}{1 + (x^2)^2}$, $v = \frac{x^2}{2}$

$$\int x \tan^{-1}(x^{2}) dx$$

$$= \frac{x^{2}}{2} \tan^{-1}(x^{2}) - \int \frac{x^{3}}{1+x^{4}} dx$$

$$= \frac{x^{2}}{2} \tan^{-1}(x^{2}) - \frac{1}{4} \int \frac{4x^{3}}{1+x^{4}} dx$$

$$= \frac{x^{2}}{2} \tan^{-1}(x^{2}) - \frac{1}{4} \ln(1+x^{4}) + C, \quad 1+x^{4} > 0$$
where C is an arbitrary constant

$$y$$

$$y = \frac{\pi(3x-2)}{4}$$

$$y = x \tan^{-1}(x^{2})$$

The two curves intersect at x = 1

 $\left(\frac{2}{3},0\right)$

Area of R =
$$\int_{0}^{1} x \tan^{-1}(x^{2}) dx$$
 - Area of triangle
= $\int_{0}^{1} x \tan^{-1}(x^{2}) dx - \frac{1}{2}(\frac{1}{3} \times \frac{\pi}{4})$
= $\left[\frac{x^{2}}{2} \tan^{-1}(x^{2}) - \frac{1}{4} \ln(1 + x^{4})\right]_{0}^{1} - \frac{\pi}{24}$
= $\frac{1}{2}(\frac{\pi}{4}) - \frac{1}{4} \ln 2 - \frac{\pi}{24}$
= $\left(\frac{\pi}{12} - \frac{1}{4} \ln 2\right)$ units²

<u>ALT</u>

Area of R =
$$\int_{0}^{\frac{2}{3}} x \tan^{-1}(x^{2}) dx + \int_{\frac{2}{3}}^{1} \left[x \tan^{-1}(x^{2}) - \frac{\pi(3x - 2)}{4} \right] dx$$

$$= \left[\frac{x^{2}}{2} \tan^{-1}(x^{2}) - \frac{1}{4} \ln(1 + x^{4}) \right]_{0}^{\frac{2}{3}}$$

$$+ \left[\frac{x^{2}}{2} \tan^{-1}(x^{2}) - \frac{1}{4} \ln(1 + x^{4}) - \frac{\pi}{4} \left(\frac{3x^{2}}{2} - 2x \right) \right]_{\frac{2}{3}}^{1}$$

$$= \left[\frac{2}{9} \tan^{-1} \left(\frac{4}{9} \right) - \frac{1}{4} \ln \left(\frac{97}{81} \right) \right]$$

$$+ \left[\left[\frac{1}{2} \left(\frac{\pi}{4} \right) - \frac{1}{4} \ln 2 - \frac{\pi}{4} \left(-\frac{1}{2} \right) \right] \right]$$

$$+ \left[-\left[\frac{2}{9} \tan^{-1} \left(\frac{4}{9} \right) - \frac{1}{4} \ln \left(\frac{97}{81} \right) - \frac{\pi}{4} \left(\frac{2}{3} - \frac{4}{3} \right) \right] \right]$$

$$= \frac{\pi}{8} - \frac{1}{4} \ln 2 + \frac{\pi}{8} + \frac{\pi}{4} \left(-\frac{2}{3} \right)$$

$$= \left(\frac{\pi}{12} - \frac{1}{4} \ln 2 \right) \text{ units}^{2}$$

(iii) Required volume

$$= \pi \int_{0}^{1} \left[x \tan^{-1} \left(x^{2} \right) \right]^{2} dx - \frac{1}{3} \pi \left(\frac{\pi}{4} \right)^{2} \left(\frac{1}{3} \right)$$
$$= 0.109 \text{ units}^{3}$$

ALT

Required volume

$$= \pi \int_{0}^{\frac{2}{3}} \left[x \tan^{-1} \left(x^{2} \right) \right]^{2} dx + \pi \int_{\frac{2}{3}}^{1} \left[x \tan^{-1} \left(x^{2} \right) \right]^{2} - \left[\frac{\pi \left(3x - 2 \right)}{4} \right]^{2} dx$$

 $= 0.109 \text{ units}^3$

8 (a) Since the coefficients of the polynomial equation are all real, (i) complex roots occurs in complex conjugate pairs.

Since $z_1 = -1 + \sqrt{3}i$ is a complex root, its complex conjugate $z_2 = -1 - \sqrt{3}i$ is also a root of the equation. The third root is a real root.

Since

$$\begin{bmatrix} z - \left(-1 + \sqrt{3}i\right) \end{bmatrix} \begin{bmatrix} z - \left(-1 - \sqrt{3}i\right) \end{bmatrix}
= \left[\left(z + 1\right) - \sqrt{3}i \right] \left[\left(z + 1\right) + \sqrt{3}i \right]
= \left(z + 1\right)^2 - \left(\sqrt{3}i\right)^2 = z^2 + 2z + 4$$

Let the third root be $z = k, k \in \mathbb{R}$

$$z^3 + 3z^2 + az + b = (z - k)(z^2 + 2z + 4)$$
.

Comparing coefficient of z:

$$a = -2k + 4$$

Comparing coefficient of z^0 :

$$b = -4k$$

Comparing coefficient of z^2 :

$$3 = 2 - k \Rightarrow k = 2 - 3 = -1$$

∴
$$b = 4, a = 6$$

Hence the other roots are $z_2 = -1 - \sqrt{3}i$ and $z_3 = -1$.

(a)
$$z_1 = -1 + \sqrt{3}i = 2\left[\cos\left(\frac{2\pi}{3}\right) + \sin\left(\frac{2\pi}{3}\right)\right]$$

$$z_2 = -1 - \sqrt{3}i = 2\left[\cos\left(-\frac{2\pi}{3}\right) + \sin\left(-\frac{2\pi}{3}\right)\right]$$

$$z_3 = -1 = 1(\cos \pi + i \sin \pi)$$

Let P, Q and R represent the complex numbers z_1, z_2 and z_3 respectively.

(b)
$$w = \left(\frac{1}{2+i\alpha}\right) \cdot \left(\frac{2-i\alpha}{2-i\alpha}\right) = \frac{2-i\alpha}{4+\alpha^2}$$

$$w^* = \frac{2+i\alpha}{4+\alpha^2}$$

$$ww^* = |w|^2 = \frac{4 + \alpha^2}{(4 + \alpha^2)^2} = \frac{1}{4 + \alpha^2}$$
 ---(1)

$$w + w^* = \frac{4}{4 + \alpha^2} = 4 ww^*$$
 (Proved). --- (2)

From equation (2), w = x + yi, where $x, y \in \mathbb{R}$,

$$(x + yi) + (x - yi) = 4(x^2 + y^2)$$

$$2x = 4(x^2 + y^2)$$
 --- (3)

$$\Rightarrow 2x^2 + 2y^2 - x = 0$$

$$\Rightarrow 2\left(x^2 - \frac{1}{2}x\right) + 2y^2 = 0$$

$$\Rightarrow \left(x - \frac{1}{4}\right)^2 - \frac{1}{16} + y^2 = 0$$

$$\Rightarrow \left(x - \frac{1}{4}\right)^2 + y^2 = \left(\frac{1}{4}\right)^2 - -- \text{(Cartesian Equation)}$$

Hence w lies on a circle with centre at $\left(\frac{1}{4},0\right)$ and radius $\frac{1}{4}$ units.

9 (i)
$$\pi_1 : \mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} + \lambda_1 \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix} + \mu_1 \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}$$

$$\pi_2 : \mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} + \lambda_2 \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix} + \mu_2 \begin{pmatrix} 1 \\ -3 \\ 12 \end{pmatrix}$$

By referring to the equations of π_1 and π_2 , we observe that a common point is

(4, -1, 3) and the vector $\begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix}$ is parallel to both planes. Hence a point on l is

(4, -1, 3) and a vector parallel to l is $\begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix}$.

Equation of $l: \mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} + \beta \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix}, \beta \in \mathbb{R}$

(ii)
$$\pi : \mathbf{r} \bullet \begin{pmatrix} k \\ 3k+7 \\ 1 \end{pmatrix} = k-4$$

$$l : \mathbf{r} = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} + \beta \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix} = \begin{pmatrix} 4+3\beta \\ -1-\beta \\ 3+7\beta \end{pmatrix}, \beta \in \mathbb{R}$$
Since
$$\begin{pmatrix} 4+3\beta \\ -1-\beta \\ 3+7\beta \end{pmatrix} \begin{pmatrix} k \\ 3k+7 \\ 1 \end{pmatrix}$$

$$= 4k+3k\beta-3k-7-3k\beta-7\beta+3+7\beta$$

$$= k-4,$$

any point that lies on l also lies on the plane, so l lies in π for any constant k.

Alternative solution:

$$\begin{bmatrix} 3 \\ -1 \\ 7 \end{bmatrix} \cdot \begin{pmatrix} k \\ 3k+7 \\ 1 \end{bmatrix} = 3k-3k-7+7=0$$

Since the normal is perpendicular to the line l, line l is parallel to π .

$$\begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} k \\ 3k+7 \\ 1 \end{pmatrix} = k-4$$

Hence the point (4,-1,3) lies on π . Hence line l lies on π .

Let π_3 be π for a particular value of k.

Since C(3, -2, 7) lies on π_3 ,

$$\begin{pmatrix} 3 \\ -2 \\ 7 \end{pmatrix} \bullet \begin{pmatrix} k \\ 3k+7 \\ 1 \end{pmatrix} = k-4$$

$$3k - 6k - 14 + 7 = k - 4$$
$$k = -\frac{3}{4}$$

$$k = -\frac{3}{4}$$

$$\pi_{3}: \mathbf{r} \cdot \begin{pmatrix} \frac{3}{4} \\ 3\left(-\frac{3}{4}\right) + 7 \\ 1 \end{pmatrix} = -\frac{3}{4} - 4$$

$$\mathbf{r} \cdot \begin{pmatrix} \frac{3}{4} \\ \frac{19}{4} \\ 1 \end{pmatrix} = -\frac{19}{4} \Rightarrow \mathbf{r} \cdot \begin{pmatrix} -3 \\ 19 \\ 4 \end{pmatrix} = -19$$

$$\mathbf{3}$$
(iii)

Normal of π_1 is parallel to $\begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix} \times \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}$

Normal of
$$\pi_2 = \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 7 \\ 1 \end{pmatrix}$$

Shortest distance of B(1, t, -7) from π_1 is

$$\frac{\left[\begin{pmatrix} 1 \\ t \\ -7 \end{pmatrix} - \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} \right] \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix}}{\sqrt{1+9}} = \frac{\left(\begin{pmatrix} -3 \\ t+1 \\ -10 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} \right]}{\sqrt{10}} = \frac{1}{\sqrt{10}} |3t|$$

Shortest distance of B(1, t, -7) from π_2 is

$$\frac{\left[\begin{pmatrix} 1 \\ t \\ -7 \end{pmatrix} - \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} \right] \cdot \begin{pmatrix} 0 \\ 7 \\ 1 \end{pmatrix}}{\sqrt{50}} = \frac{\left| \begin{pmatrix} -3 \\ t+1 \\ -10 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 7 \\ 1 \end{pmatrix} \right|}{\sqrt{50}} = \frac{1}{\sqrt{50}} |7t-3|$$

Given
$$\frac{1}{\sqrt{10}} |3t| = \frac{1}{\sqrt{50}} |7t - 3|$$

From GC, t = 0.219 or 10.281 (3 decimal places)

$$= \int_{-4a}^{4a} y_1 \, dx - \int_{-4a}^{4a} y_2 \, dx$$

At
$$x = 4a$$
, $t = 0$ or $4\pi^2$.

At
$$x = -4a$$
, $t = 2\pi^2$

$$\begin{aligned}
&= \int_{-4a}^{4a} y \, dx - \int_{-4a}^{4a} y \, dx \\
&= \int_{2\pi^2}^{0} 3a \sin\left(\frac{t}{2\pi}\right) \left(-\frac{2}{\pi} a \sin\left(\frac{t}{2\pi}\right)\right) \, dt \\
&- \int_{2\pi^2}^{4\pi^2} 3a \sin\left(\frac{t}{2\pi}\right) \left(-\frac{2}{\pi} a \sin\left(\frac{t}{2\pi}\right)\right) \, dt \\
&= \frac{12}{2\pi} a^2 \int_{0}^{2\pi^2} \sin^2\left(\frac{t}{2\pi}\right) \, dt + \frac{12}{2\pi} a^2 \int_{2\pi^2}^{4\pi^2} \sin^2\left(\frac{t}{2\pi}\right) \, dt \\
&= \frac{3}{\pi} a^2 \int_{0}^{4\pi^2} 2\sin^2\left(\frac{t}{2\pi}\right) \, dt \\
&= \frac{3}{\pi} a^2 \int_{0}^{4\pi^2} \left[1 - \cos\left(\frac{t}{\pi}\right)\right] \, dt \\
&= \frac{3}{\pi} a^2 \left[t - \pi \sin\left(\frac{t}{\pi}\right)\right]_{0}^{4\pi^2} \\
&= \frac{3}{\pi} a^2 \left[4\pi^2 - \pi \sin\left(\frac{4\pi^2}{\pi}\right)\right] \\
&= 12a^2\pi
\end{aligned}$$
(iii)
$$\frac{dx}{dt} = -4a\left(\frac{1}{2\pi}\right) \sin\left(\frac{t}{2\pi}\right) \qquad \frac{dy}{d\theta} = 3a\left(\frac{1}{2\pi}\right) \cos\left(\frac{t}{2\pi}\right) \\
&= -\frac{2a}{\pi} \sin\left(\frac{t}{2\pi}\right) \qquad = \frac{3a}{2\pi} \cos\left(\frac{t}{2\pi}\right)$$

$$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$$

$$= \frac{\frac{3}{2\pi} a \cos\left(\frac{t}{2\pi}\right)}{-\frac{2}{\pi} a \sin\left(\frac{t}{2\pi}\right)} = -\frac{3}{4} \cot\left(\frac{t}{2\pi}\right)$$

When $t = 2\pi p$,

$$x = 4a\cos p$$
, $y = 3a\sin p$

Gradient of the normal to the orbit is $\frac{4}{3} \tan p$.

Equation of the normal at $(4a\cos p, 3a\sin p)$ is

$$y - 3a\sin p = \frac{4}{3}\tan p(x - 4a\cos p)$$

$$y = \frac{4}{3} (\tan p) x - \frac{16}{3} a \sin p + 3a \sin p$$

$$y = \frac{4}{3} (\tan p) x - \frac{7}{3} a \sin p$$

For the space probe to land on the planet, $x = -\sqrt{7}a$, y = 0

$$\frac{4}{3}(\tan p)\left(-\sqrt{7}a\right) - \frac{7}{3}a\sin p = 0$$

$$-\frac{a}{3}\left(4\sqrt{7}\tan p + 7\sin p\right) = 0$$

$$4\sqrt{7}\tan p + 7\sin p = 0$$

$$\sin p \left(\frac{4\sqrt{7}}{\cos p} + 7 \right) = 0$$

$$\sin p = 0, \text{ or } \cos p = -\frac{4\sqrt{7}}{7} < -1 \text{ (no solution)}$$

$$p = 0$$
, π or 2π

Hence
$$t = 0$$
, $2\pi^2$ or $4\pi^2$

Hence there is no solution for p. Hence the space probe will land on the planet Sandrew if the space probe is launched at t = 0 or $t = 2\pi^2$ or $t = 4\pi^2$.

11(i) For $Mr^2 + cr + k = 0$ to have real and repeated roots,

Discriminant = 0

$$c^2 - 4Mk = 0$$

$$c^2 = 4Mk$$

$$c = 2\sqrt{Mk}$$
, since $c > 0$

$$r = \frac{-c \pm \sqrt{c^2 - 4Mk}}{2M}$$

$$= -\frac{c}{2M}, \text{ since } c^2 - 4Mk = 0$$

$$= -\frac{2\sqrt{Mk}}{2M}$$

$$= -\frac{\sqrt{Mk}}{M}$$

Hence, the real and repeated root is $r = -\frac{c}{2M} = -\frac{\sqrt{Mk}}{M}$

(ii) When $x = x_0$ when t = 0,

$$c_1 = x_0$$

$$x = (x_0 + c_2 t)e^{at}$$
 --- (1)

Differentiating (1) with respect to *t*:

$$\frac{dx}{dt} = (x_0 + c_2 t)(a)e^{at} + c_2 e^{at}$$

$$= e^{at} [(x_0 + c_2 t)a + c_2]$$

$$= e^{at} [ax_0 + c_2 (1 + at)] - - - (1)$$

Since the particle was released from rest, t = 0 and $\frac{dx}{dt} = 0$

 $0 = (x_0)(a) + c_2$ $c_2 = -ax_0$

(iii) From Eq (1) in (ii), $x = (x_0 - ax_0 t)e^{at}$

 $\frac{dx}{dt} = e^{at} \left[ax_0 - ax_0 \left(1 + at \right) \right]$ $= ax_0 e^{at} \left[1 - 1 - at \right]$ $= -a^2 x_0 t e^{at} - -(2)$

For stationary value of x, $\frac{dx}{dt} = 0$

For $x_0 > 0$, $e^{at} > 0$ for $t \ge 0$

 $-a^2x_0te^{at}=0$

 $\Rightarrow t = 0$.

Hence there is only one stationary value of x for $t \ge 0$.

For t > 0, $x_0 > 0$, $e^{at} > 0$, $\frac{dx}{dt} < 0$

For t > 0, $x_0 > 0$, $e^{at} > 0$, $\frac{dx}{dt} < 0$

Since $\frac{dx}{dt} = 0$ at t = 0 and $\frac{dx}{dt} < 0$ for t > 0, , x is a decreasing function for all $t \ge 0$.

(v) No. From the graph in (iv), x, the displacement of the object, can never be negative.