
## TUTORIAL 11: TEMPERATURE AND IDEAL GAS QUIZ

| 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|
|   |   |   |   |   |   |

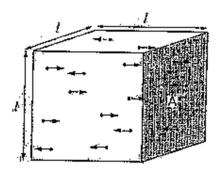
- **1.** The absolute temperature of an ideal gas is directly proportional to which of the following properties, when taken as an average, of the molecules of that gas?
  - A speed B momentum C mass D kinetic energy
- **2.** A mass of an ideal gas of volume V, at pressure P undergoes a cycle of changes as shown in the diagram below, where  $T_{A_1}$ ,  $T_B$  and  $T_C$  are the temperatures at states A, B, and C respectively. Which of the following best describes the relationship between  $T_{A_1}$ ,  $T_B$ , and  $T_C$ ?
  - **A**  $T_A = T_B, T_A < T_C$  **B**  $T_A < T_B < T_C$  **C**  $T_B < T_A < T_C$ **D**  $T_A < T_C, T_B < T_C$



**3.** The molecules of an ideal gas at thermodynamic (absolute) temperature *T* have a root-mean-square speed, *c<sub>r.m.s.</sub>*. The gas is heated to temperature 2*T*. What is the new root-mean-square speed of the molecules?

**A** 
$$\sqrt{2} c_{r.m.s}$$
 **B**  $2 c_{r.m.s}$  **C**  $2\sqrt{2} c_{r.m.s}$  **D**  $4 c_{r.m.s}$ 

**4.** How many moles of air must escape from a  $10m \times 8.0m \times 5.0m$  room when the temperature is raised from 0°C to 20°C? Assume the pressure remains unchanged at one atmosphere while the room is heated. (1 atm = 1 x 10<sup>5</sup> Pa)


**A**  $1.3 \times 10^3$  **B**  $1.2 \times 10^3$  **C**  $7.5 \times 10^2$  **D**  $3.7 \times 10^2$ 

**5.** The density of helium at 273 K and 100 kPa is 0.178 kgm<sup>-3</sup>. What is the root-mean-square speed of its particles?

**A** 130 ms<sup>-1</sup> **B** 232 ms<sup>-1</sup> **C** 753 ms<sup>-1</sup> **D** 1300 ms<sup>-1</sup>

- **6.** In deriving the equation  $p = 1/3 \rho < c^2$ , which of the following is not taken as a valid assumption?
  - A The volume of the molecules is negligible compared with the volume of the gas.
  - **B** The duration of a collision is negligible compared with the time between collisions.
  - **C** Collisions with the walls of the container and with other molecules cause no change in the average kinetic energy of the molecules.
  - **D** The molecules suffer negligible change of momentum on collision with the walls of the container.

7 (a) Consider a cubicle box of side I which contains N molecules, each of mass m, all moving horizontally with speed u at right angles to wall A.



When a molecule hits a wall, it bounces off with no loss of speed and travels in the opposite direction. Deduce

- (i) The momentum of a molecule just before a collision with the wall,
- (ii) The change in momentum of a molecule when it collides with the wall,
- (iii) The time taken by one molecule between collisions with wall A,
- (iv) The total number of collisions per unit time made with wall A by all the molecules,
- (v) The rate of change of momentum for all the molecules colliding with wall A

[7]

(b) Use your answer to part (a) to show that the pressure p on wall A is given by

$$p = \frac{Mu^2}{V}$$

Where M is the total mass of all the molecules and V is the internal volume of the box. [2]

(c) The conditions considered in (a) are highly improbable. Explain briefly how the conditions may be altered to provide a better model of an ideal gas. State, without proof, how the equation in (b) might be modified.

## **Temperature and Ideal Gas Quiz Solutions**

| 1 | 2 | 3 | 4 | 5 | 6 |
|---|---|---|---|---|---|
| D | D | А | В | D | D |

1 Ans: D

2 Ans: D

There are no values on the graph to suggest that A is the same or different from B.

3 Ans: A

Since KE  $\alpha T$ ,  $v^2 \alpha T$ ,  $c_{r,m,s} \alpha \sqrt{T}$ 

$$\frac{c_1}{\sqrt{T_1}} = \frac{c_2}{\sqrt{T_2}}$$

$$c_2 = c_1 \sqrt{\frac{T_2}{T_1}} = c_{r.m.s} \sqrt{\frac{2T}{T}} = \sqrt{2}c_{r.m.s}$$

4 Ans: B

Using pV = nRT, where p and V constant,

At 0°C,  

$$n_{1} = \frac{pV}{RT_{1}} = \frac{(1 \times 10^{5})(10 \times 8.0 \times 5.0)}{8.31(273.15)} = 1.76 \times 10^{4} \text{ mol}$$

$$n_{1}T_{1} = n_{2}T_{2}$$

$$n_{2} = n_{1}\frac{T_{1}}{T_{2}} = 1.76 \times 10^{4} \frac{273.15}{20 + 273.15} = 1.64 \times 10^{4} \text{ mol}$$

Therefore, moles that escape =  $(1.76-1.64) \times 10^4 = 1.2 \times 10^3$  mol

## 5 D

Using p =  $1/3 \rho < c^2 >$ 

## 6

7(a)

D

Every collision with the wall resulted in a large change in momentum, not negligible.

| (i)   | mu                     | [1] |
|-------|------------------------|-----|
| (ii)  | 2mu                    | [1] |
| (iii) | 2l/u                   | [1] |
| (iv)  | Nu/(2I)                | [2] |
| (v)   | 2mu x Nu/(2I) = Nmu²/I | [2] |

(b)  $P = Force/Are = Nmu^2/l^3 = Mu^2/V$  [2]

(c) Molecules cannot be expected to move only in the horizontal direction. [1]

A better model is to allow the molecules to have <u>equal probability</u> to move in  $\underline{x}$ ,  $\underline{y}$  and  $\underline{z}$  directions. [2]

A better equation is 
$$p = M < c^2 > /(3V)$$
, where  $< c^2 > = < u_x^2 > + < u_y^2 > + < u_z^2 >$  [1]