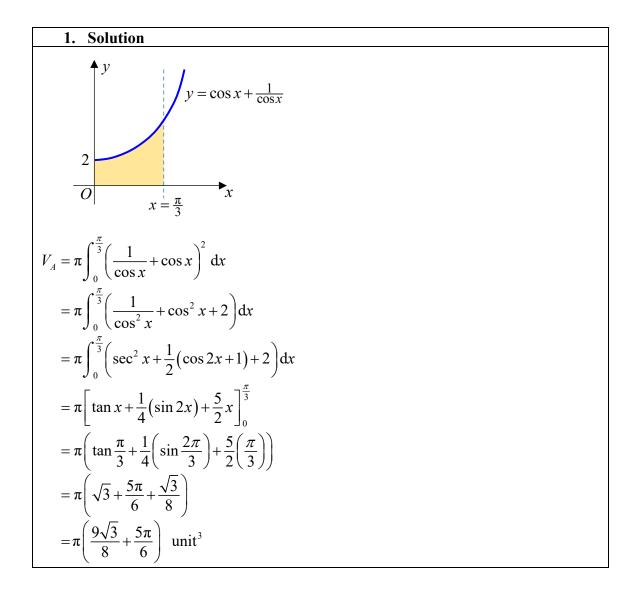
2023 HCI C2 H2 Mathematics Prelim P2 Solutions



2 a. Solution
$u = 1 - x^3 \implies \frac{\mathrm{d}u}{\mathrm{d}x} = -3x^2$
$\int \frac{x^5}{\sqrt{1-x^3}} dx = -\frac{1}{3} \int \frac{x^3}{\sqrt{1-x^3}} (-3x^2) dx$
$= -\frac{1}{3} \int \frac{1-u}{\sqrt{u}} \mathrm{d}u$
$= -\frac{1}{3} \int \frac{1}{\sqrt{u}} - \sqrt{u} \mathrm{d}u$
$= -\frac{2}{3}u^{\frac{1}{2}} + \frac{2}{9}u^{\frac{3}{2}} + C$
$= -\frac{2}{3}(1-x^3)^{\frac{1}{2}} + \frac{2}{9}(1-x^3)^{\frac{3}{2}} + C$

2b. Solution
Let $u = x^{3}$ and $v' = \frac{x^{5}}{\sqrt{1 - x^{3}}}$
:. $u' = 3x^2$ and $v = -\frac{2}{3}(1-x^3)^{\frac{1}{2}} + \frac{2}{9}(1-x^3)^{\frac{3}{2}}$
$\int \frac{x^8}{\sqrt{1-x^3}} \mathrm{d}x$
$=\int x^3 \left(\frac{x^5}{\sqrt{1-x^3}}\right) dx$
$= x^{3} \left(-\frac{2}{3} \left(1 - x^{3} \right)^{\frac{1}{2}} + \frac{2}{9} \left(1 - x^{3} \right)^{\frac{3}{2}} \right)$
$-\int 3x^2 \left(-\frac{2}{3}(1-x^3)^{\frac{1}{2}}+\frac{2}{9}(1-x^3)^{\frac{3}{2}}\right) dx$
$= -\frac{2}{3}x^{3}(1-x^{3})^{\frac{1}{2}} + \frac{2}{9}x^{3}(1-x^{3})^{\frac{3}{2}}$
$-\frac{2}{3}\int (-3x^2)(1-x^3)^{\frac{1}{2}} dx + \frac{2}{9}\int (-3x^2)(1-x^3)^{\frac{3}{2}} dx$
$= -\frac{2}{3}x^{3}(1-x^{3})^{\frac{1}{2}} + \frac{2}{9}x^{3}(1-x^{3})^{\frac{3}{2}}$
$-\frac{4}{9}(1-x^3)^{\frac{3}{2}} + \frac{4}{45}(1-x^3)^{\frac{5}{2}} + C$

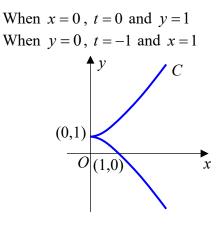
3ai. Solution $arg(-2z_1) = arg(-2) + arg(z_1)$ $= \pi + \theta$

3aii. Solution	
$z_1 - 2a$	
=a+(a-3)i-2a	↓Im
=-a+(a-3)i	-a O a Re
$\arg(z_1-2a)$	$ \theta = \pi + \theta$
$= \arg[-a + (a - 3)i]$	$\sum_{a=2}^{n} z_1 \equiv (a, a-3)$
$= -\pi + \theta $	u-5
$= -\pi + (-\theta)$	$z_1 - 2a \equiv (-a, a - 3)$
$= -\pi - \theta$	

3b. Solution

$z_1 z_2 = (a + (a - 3)i)(1 + 3i)$
=(a-3a+9)+(3a+a-3)i
=(-2a+9)+(4a-3)i
$\therefore \operatorname{Im}(z_1 z_2) = 4a - 3$
$ z_1 z_2 ^2 = z_1 ^2 z_2 ^2 = (a^2 + (a-3)^2)(1^2 + 3^2)$
$=10(2a^2-6a+9)$
$\therefore \frac{\left z_{1}z_{2}\right ^{2}}{\operatorname{Im}\left(z_{1}z_{2}\right)} \leq 10$
$\frac{10(2a^2 - 6a + 9)}{4a - 3} \le 10$
$\frac{2a^2 - 6a + 9}{4a - 3} \le 1$
$\frac{2a^2 - 6a + 9}{4a - 3} - 1 \le 0$
$\frac{2a^2 - 10a + 12}{4a - 3} \le 0$
14 5
$\frac{2(a^2 - 5a + 6)}{4a^2} \le 0$
2(a-2)(a-3) - + - +
$\frac{2(a-2)(a-3)}{4a-3} \le 0 - - + - + - + - + - + - + - + - -$
$\therefore a < \frac{3}{4} \text{ or } 2 \le a \le 3$
Since $-\frac{\pi}{2} < \arg z_1 < 0$, \therefore Im $(z_1) = a - 3 < 0$
Also, it is given that $a > 0$
Hence $0 < a < 3$
\therefore required range of values of a is
$0 < a < \frac{3}{4}$ or $2 \le a < 3$

4a. Solution



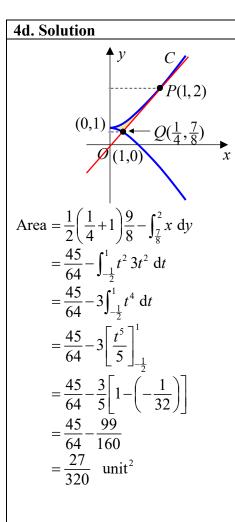
4b. Solution $\frac{dx}{dt} = 2t, \quad \frac{dy}{dt} = 3t^{2}$ $\therefore \quad \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t^{2}}{2t} = \frac{3}{2}t$ When $t = 1, \quad x = 1, \quad y = 2$ and $\frac{dy}{dx} = \frac{3}{2}$ $\therefore \text{ equation of tangent at } P \text{ is}$ $y - 2 = \frac{3}{2}(x - 1)$ $y = \frac{3}{2}x + \frac{1}{2} \quad \dots(*)$

4c. Solution

Substitute $x = t^2$ and $y = t^3 + 1$ into (*):: $t^3 + 1 = \frac{3}{2}t^2 + \frac{1}{2}$ $2t^3 + 2 = 3t^2 + 1$ $2t^3 - 3t^2 + 1 = 0$ $(t-1)(2t^2 - t - 1) = 0$ (t-1)(2t+1)(t-1) = 0 $\therefore t = -\frac{1}{2}$ or t = 1 (reject since this is P) When $t = -\frac{1}{2}$, $x = \frac{1}{4}$ and $y = \frac{7}{8}$ Hence coordinates of Q is $\left(\frac{1}{4}, \frac{7}{8}\right)$. Alternatively: Solving $y = \frac{3}{2}x + \frac{1}{2}$ and $y = \pm x^{\frac{3}{2}} + 1$ since $t = \pm \sqrt{x}$ Notice that the tangent meets at Q at $y = -x^{\frac{3}{2}} + 1$. $\frac{3}{2}x + \frac{1}{2} = -x^{\frac{3}{2}} + 1$ $3x + 1 = -2x^{\frac{3}{2}} + 2$ $4x^3 - 9x^2 + 6x - 1 = 0$ $(x-1)(4x^2-5+1) = 0$ $\left(x-1\right)^2\left(4x-1\right)=0$ x = 1 (rej) or $x = \frac{1}{4}$

$$y = -\left(\frac{1}{4}\right)^{\frac{3}{2}} + 1 = \frac{7}{8} \text{ or } y = \frac{3}{2}\left(\frac{1}{4}\right) + \frac{1}{2} = \frac{7}{8}$$

Hence coordinates of *Q* is $\left(\frac{1}{4}, \frac{7}{8}\right)$.



Some alternative methods: $\frac{1}{2}\left(\frac{1}{2}+1\right)\left(2-\frac{7}{2}\right) - \int_{0}^{2} (y-1)^{\frac{2}{3}} dy$

$$\frac{1}{2}\left(\frac{1}{4}+1\right)\left(2-\frac{1}{8}\right) - \int_{\frac{7}{8}}^{\frac{7}{8}} (y-1)^{3} dy$$

$$\frac{OR}{\int_{0}^{1} x^{\frac{3}{2}} + 1 dx - \int_{0}^{\frac{1}{4}} -x^{\frac{3}{2}} + 1 dx - \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{3}{2}x + \frac{1}{2} dx$$

$$\frac{OR}{\int_{-\frac{1}{2}}^{1} (t^{3}+1)(2t) dt - \int_{\frac{1}{4}}^{\frac{1}{2}} \frac{3}{2}x + \frac{1}{2} dx$$
(Full credit is awarded for this method only if the graph in part (a) is accurate

5a. Solution		
$ \begin{pmatrix} 2\\s\\1 \end{pmatrix} \times \begin{pmatrix} 1\\-2\\3 \end{pmatrix} = \begin{pmatrix} 3s+2\\-5\\-4-s \end{pmatrix} $		

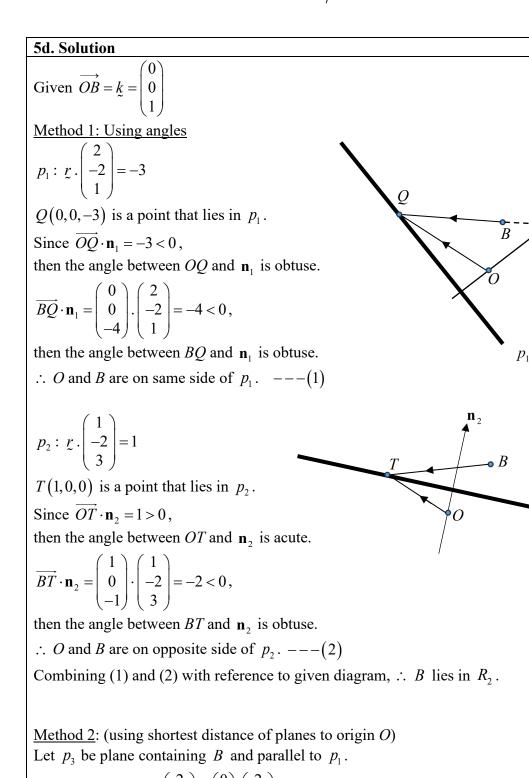
5b. Solution

 $xz-\text{plane} \Rightarrow y = 0$ $2x + z = -3 \dots (1)$ $x + 3z = 1 \dots (2)$ $2 \times (2) - (1):$ $5z = 5 \Rightarrow z = 1$ $\therefore x = -2$ $\therefore \overrightarrow{OA} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$

Hence coordinates of A is (-2,0,1).

5c. Solution

 $p_{1}: \underbrace{r}_{\cdot} \cdot \begin{pmatrix} 2\\s\\1 \end{pmatrix} = -3$ In standard form, $p_{1}: \underbrace{r}_{\cdot} \cdot \frac{1}{\sqrt{2^{2} + s^{2} + 1^{2}}} \begin{pmatrix} 2\\s\\1 \end{pmatrix} = \frac{1}{\sqrt{2^{2} + s^{2} + 1^{2}}} (-3) = \frac{-3}{\sqrt{s^{2} + 5}}$ \therefore shortest distance between O and p_{1} is $\left| \frac{-3}{\sqrt{s^{2} + 5}} \right| = \frac{3}{\sqrt{6}}$ $\frac{3}{\sqrt{s^{2} + 5}} = \frac{3}{\sqrt{6}}$ $\frac{6}{\sqrt{s^{2} + 5}} = 1$ $\frac{6}{s^{2} + 5} = 1$ $\frac{6}{s^{2} + 5} = 1$ $s = \pm 1 \quad (\text{reject } s = 1 \text{ since } s < 0)$ $\therefore s = -1$



 p_2

Equation of
$$p_3$$
 is $r \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 1$

 \therefore equation of p_3 in standard form is

$$p_3: \underline{r}. \frac{1}{\sqrt{2^2 + (-2)^2 + 1^2}} \begin{pmatrix} 2\\ -2\\ 1 \end{pmatrix} = \frac{1}{\sqrt{2^2 + (-2)^2 + 1^2}} = \frac{1}{3} > 0$$

© HCI 2023

Since equation of p_1 in standard form is $p_1: r \cdot \frac{1}{3} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \frac{-3}{3} = -1 < 0$, $\therefore p_1$ and p_3 are on opposite sides of origin $O. \dots(1)$ Let p_4 be plane containing B and parallel to p_2 . Equation of p_4 is $r \cdot \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = 3$ \therefore equation of p_4 in standard form is $p_4: r \cdot \frac{1}{\sqrt{1^2 + (-2)^2 + 3^2}} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \frac{3}{\sqrt{1^2 + (-2)^2 + 3^2}} = \frac{3}{\sqrt{14}} > 0$ Since equation of p_2 in standard form is $p_2: r \cdot \frac{1}{\sqrt{14}} \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix} = \frac{1}{\sqrt{14}} > 0$, $\therefore p_2$ and p_4 are on same side of origin $O. \dots(2)$ Combining (1) and (2) with reference to given diagram, $\therefore B$ lies in R_2 .

6. Solution

Group the two first prize awardees as one object, and the two second prize awardees as another object.

1st Prize 2nd Prize GOH SSSS

There are 7 units to be arranged in a row.

Within the unit of 1st Prize and the unit of 2nd Prize, the respective prize winners may arrange themselves.

Number of ways required = 7!2!2! = 20160

Solution

For this arrangement, it means the guest of honour's seat opposite is an empty seat. Thus the 8 students sit at the 8 remaining chairs.

Number of seating arrangement = 8! = 40320

7. Solution

Let X be the number of students who study H2 Biology out of 40 students.

DO NOT WRITE IN THIS MARGIN

 $X \sim B\left(40, \frac{p}{100}\right)$ $P(9 \le X \le 20) = 0.25$ $P(X \le 20) - P(X \le 8) = 0.25$ Obtain graphs of these below using GC: $y = P(X \le 20) - P(X \le 8) \text{ and } y = 0.25$ $Y_{2=0.25}$ $Y_{2=0.25}$ p = 56.5(3 s.f.)

Solution

Let *A* be the number of students out of 6 students out of the 4th to 9th interviewees who study H2 Biology. $A \sim B(6, 0.6)$ Required probability

 $= (0.4)^{2} (0.6) P(A = 2)(0.6)$ = 0.00796 (3 s.f.)

8a. Solution

3a + b = 1 -- (*)E(S) = 6a + 4b = 2.56 -- (*) 3a + 2b = 1.28 Subtracting one eqn from the other, $b = 1.28 - 1 = 0.28 = \frac{7}{25}$

8bi. Solution

From part (a), $a = \frac{6}{25}$ P($S_1 + S_2 \ge 6$ |one of the scores is 3)

$$= \frac{P((S_1 + S_2 = 3) \cap (S_1 = 3 \text{ OR } S_2 = 3))}{P(S_1 = 3 \text{ OR } S_2 = 3)}$$

= $\frac{P(S_1 = 3, S_2 = 4) + P(S_1 = 4, S_2 = 3) + P(S_1 = 3, S_2 = 3)}{P(S_1 = 3, S_2 \neq 3) + P(S_1 \neq 3, S_2 = 3) + P(S_1 = 3, S_2 = 3)}$
= $\frac{2\left(\frac{6}{25}\right)\left(\frac{7}{25}\right) + \left(\frac{6}{25}\right)^2}{2\left(\frac{6}{25}\right)\left(\frac{19}{25}\right) + \left(\frac{6}{25}\right)^2} = \frac{120}{264} = \frac{5}{11} = 0.455 \text{ (3 s.f.)}$

8bii. Solution

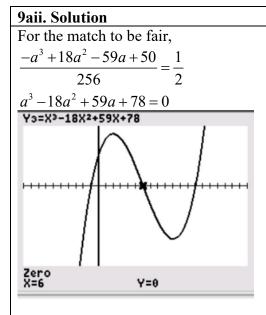
From part (a), $a = \frac{6}{25}$ Var(2S - E(Y)) = Var(2S) (:: E(Y) is a constant and Var(constant) = 0) = 4Var(S) $= 4(E(S^2) - 2.56^2)$ $= 4(a + 4a + 9a + 16b - 2.56^2)$ = 4(14a + 16b - 6.5536)= 5.1456

8biii. Solution E(Y - E(Y)) = E(Y) - E(E(Y))= E(Y) - E(Y)= 0

9ai. Solution	
P(A wins)	

GIN

$$= \left(\frac{a-1}{8}\right) \left(\frac{a-2}{8}\right) + \left(\frac{a-1}{8}\right) \left(\frac{10-a}{8}\right) \left(\frac{a-3}{8}\right) + \left(\frac{9-a}{8}\right) \left(\frac{a-2}{8}\right) \left(\frac{a-3}{8}\right) \\ = \frac{a^2 - 3a + 2}{8^2} + \frac{-a^3 + 14a^2 - 43a + 30}{8^3} + \frac{-a^3 + 14a^2 - 51a + 54}{8^3} \\ = \frac{8a^2 - 24a + 16}{8^3} + \frac{-2a^3 + 28a^2 - 94a + 84}{8^3} \\ = \frac{-2a^3 + 36a^2 - 118a + 100}{512} \\ = \frac{-a^3 + 18a^2 - 59a + 50}{256}$$



From the GC, a = -1, 6 or 13 a = 6Since a > 0, we reject a = -1. When a = 13, for k = 1, 2, 3, we have $10 \le a - k \le 12$ $\frac{10}{8} \le \frac{a - k}{8} \le \frac{12}{8}$ Since probability > 1, we reject a = 13.

When a = 6, for k = 1, 2, 3, we have $3 \le a - k \le 5$. $\frac{3}{8} \le \frac{a - k}{8} \le \frac{5}{8}$

9b. Solution
Using part (a) with substitution of $a = 7$,
$P(A \text{ wins } 2^{nd} \text{ set } A \text{ wins the match})$
$=\frac{\frac{6}{8}\times\frac{5}{8}+\frac{2}{8}\times\frac{5}{8}\times\frac{4}{8}}{\frac{176}{256}}$
$=\frac{35}{44}=0.795$ (3 s.f.)

10a. Solution

$$W \sim N(250, \sigma^2)$$

 $Z = \frac{W - 250}{\sigma} \sim N(0, 1)$
 $P(W < 245) = 0.05$
 $P\left(Z < \frac{245 - 250}{\sigma}\right) = 0.05$
 $\frac{-5}{\sigma} = -1.644853626$
 $\sigma = 3.039784161$
 $= 3.0398$ (to 5 s.f.) (shown)

10b. Solution

 $W_{1} + W_{2} + \dots + W_{6} \sim N(1500, 55.44172647)$ $F \sim N(300, 2.5^{2})$ $5F \sim N(1500, 156.25)$ Let $D = 5F - (W_{1} + W_{2} + \dots + W_{6})$ $D \sim N(0, 211.6917265)$ $P(0 < D \le 20) = 0.4153730399$ = 0.415 (to 3 s.f.)

10c. Solution Let $M = \frac{(W_1 + W_2 + \dots + W_n) + (F_1 + F_2 + \dots + F_n)}{2n}$ $E(M) = \frac{250n + 300n}{2n} = 275$

$\operatorname{Var}(M) = \frac{(3.039784161)^2 n + (2.5)^2 n}{4n^2}$
$4n^2$
_ 3.872571936
<i>n</i>
$M \sim N\left(275, \ \frac{3.872571936}{n}\right)$
$Z = \frac{M - 275}{\sqrt{\frac{3.872571936}{n}}} \sim N(0, 1)$
\sqrt{n}

Method 1:

$$P(M \ge 278) < 0.015$$

$$P(Z \ge 1.524479216\sqrt{n}) < 0.015$$

$$P(Z < 1.524479216\sqrt{n}) > 0.985$$

$$1.524479216\sqrt{n} > 2.170090375 - --(*)$$

$$n > 2.026341439$$

$$n \ge 3$$
∴ smallest value of $n = 3$

... sindlest value of *n*

 \therefore smallest value of n = 3

<u>Method 2</u>: $P(M \ge 278) < 0.015$

From GC, $n \ge 3$

PRESS 4	TO EDIT F	UN
Х	Y1	
1	0.0637	
2	0.0155	
3	0.0041	
4	0.0011	
5	3.3E ⁻⁴	
6	9.4E15	

11a. Solution Let m = x - 27, $\sum m = -81$ and $\sum m^2 = 2070.8$. An unbiased estimate of the population mean, $\overline{x} = \overline{m} + 27$ $= \frac{-81}{120} + 27$ = 26.325 g An unbiased estimate for the population variance, $s_x^2 = \frac{1}{119} \left(\sum m^2 - \frac{\left(\sum m\right)^2}{120} \right)$ $= \frac{1}{119} \left(2070.8 - \frac{\left(-81\right)^2}{120} \right)$ = 16.94222689= 16.9 g² (to 3 s.f.)

11b. Solution

Let μ and σ^2 be the population mean and variance of *X*. $H_0: \mu = 27$ $H_1: \mu < 27$ Under H_0 , since n = 120 is large, then by Central Limit Theorem, $\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$ approximately. Test statistic: $Z = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{n}}} \sim N(0,1)$ approximately. Level of significance: 5% Reject H_0 if *p*-value ≤ 0.05 Assuming H_0 is true, using GC, *p*-value = 0.0362134031 = 0.0362 (to 3 s.f.). Since *p*-value = 0.0362 < 0.05, we reject H_0 and conclude that at the 5% level of significance, there is sufficient evidence to say that the population mean mass of polypropylene per 100g that were broken down is less than 27g.

11c. Solution

It is the probability of wrongly concluding that the population mean mass of polypropylene per 100g that was broken down by Fungus A was less than 27g when the population mean mass is, in fact, 27 g, is 0.05.

11d. Solution

Since the sample size of 120 is large enough, University M can use Central Limit Theorem to approximate the distribution of the sample mean mass of polypropylene per 100g that were broken down to be a normal distribution, hence University M does not need to know the distribution of the mass of polypropylene per 100g that were broken down.

 $\frac{11e. \text{ Solution}}{\text{Given } n = 50, \ \sigma^2 = 4^2.}$

Under H₀, since n = 50 is large, then by Central Limit Theorem, $\overline{Y} \sim N\left(27, \frac{4^2}{50}\right)$

approximately.

Test statistic:
$$Z = \frac{\overline{Y} - 27}{\sqrt{\frac{4^2}{50}}} \sim N(0,1)$$

Level of significance: 5% Reject H_0 if *p*-value ≤ 0.05

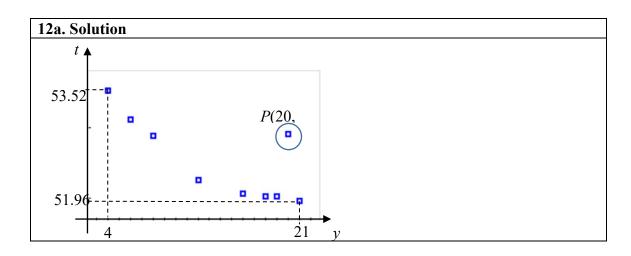
Given that H_0 is not rejected at 5% level of significance,

$$\frac{\overline{y} - 27}{\sqrt{\frac{4^2}{50}}} > -1.644853626$$

$$\frac{\overline{y} - 27}{\sqrt{\frac{4^2}{50}}} > -0.9304697224$$

$$\overline{y} > 26.06953028$$

∴ set of values = { $\overline{y} \in \mathbb{R}$: 26.1 < $\overline{y} < 100$ } (to 3 s.f.)



DO NOT WRITE IN THIS MARGIN

12b. Solution

A linear model is inappropriate as it will predict that record time will be 0 seconds or below in the future.

12c. Solution

The scatter diagram shows that as y increases, t decreases and concaves upward.

In Model A, as *y* increases, *t* decreases and the curve concaves downward. In Model B, as *y* increases, *t* decreases and the curve concave upward.

Hence Model B is more accurate than Model A.

12d. Solution	NORMAL FLOAT AUTO REAL RADIAN MP	
Using Model B, from GC,		
r = 0.9789506164	y=a+bx	
= 0.979 (to 3 s.f.)	a=51.61243028 b=8.230175402 r ² =0.9583443094 r=0.9789506164	
Regression line of t on $\frac{1}{y}$:		
$t = 51.61243028 + \frac{8.230175402}{y}$		
$\therefore a = 51.612, b = 8.2302$ (to 5 s.f.)		

12e. Solution In year 2025, y = 25 $t = 51.61243028 + \frac{8.230175402}{25}$ = 51.94163729= 51.9 s (to 3 s.f.)

Since the year 2025 (y = 25) is outside of the data range $4 \le y \le 21$, the estimate is not reliable.

12f. Solution

When t = 52.45, $52.45 = 51.61243028 + \frac{8.230175402}{y}$ y = 9.826257093= 10 (to nearest integer) Since y is the only independent variable, neither the regression line of y on t nor the regression line of $\frac{1}{y}$ on t should be used.

© HCI 2023