1. (a) solubility / (g/100g)

$$KNO_3(s) = K^+(aq) + NO_3^-(aq)$$
 $\Delta H > 0 ---(*)$

When the temperature is increased, the <u>equilibrium position of (*) shifts right to favour endothermic reaction</u> so as to <u>absorb some heat</u>.

Hence, the solubility of KNO₃ increases with increasing temperature.

- (b) The <u>method does not apply to solid that decomposes on heating</u> as it will result in <u>greater</u> mass loss.
- (c) 1. Using a 50 cm³ burette/measuring cylinder, add 50 cm³ of water into a small beaker.
 - 2. Place the small beaker containing water into water-bath with thermostat set at 30 °C.
 - 3. Using a spatula, add KNO₃(s) into the water. Stir to dissolve all solid.
 - 4. Repeat step 3 until some solid remains undissolved.
 - 5. **Stir** the mixture **until temperature of solution reaches 30 °C**. Let the mixture stand in the water–bath at 30 °C for some time.
 - 6. Using an <u>electronic weighing balance</u>, <u>measure and record the mass of an empty</u>, <u>dry crucible</u>.
 - 7. Using a <u>dry</u> <u>filter funnel and filter paper</u>, <u>filter</u> the mixture and <u>collect the filtrate in the</u> crucible.
 - 8. Using a **Bunsen Burner**, heat the filtrate to dryness.
 - 9. Using an <u>electronic weighing balance</u>, <u>measure and record the mass of crucible with solid residue</u>.
 - 10. Repeat step 1 to 9 at 40°C, 50°C, 60°C and 70°C.
- (d) mass of KNO₃ dissolved in 50 cm³ of water = (y x) g

solubility of KNO₃ dissolved in 100 g of water =
$$\frac{(y-x)}{50} \times 100 = [2(y-x)]$$
 g /100g

- (e) Use <u>oven/heat resistant gloves</u> or <u>tongs to handle the hot beaker/crucible</u>.

 <u>OR Cool hot crucible before handling</u>.
- 2. (a) (i) It is to <u>quench the reaction by removing H₂SO₄/H⁺ in the reaction mixture via acid-carbonate reaction.</u>
 - (ii) $I_2(aq) + 2S_2O_3^{2-}(aq) \rightarrow 2I^{-}(aq) + S_4O_6^{2-}(aq)$
 - (iii) Since <u>H₂SO₄ is a catalyst</u>, it will be <u>regenerated</u> such that [<u>H₂SO₄] will remain constant throughout the reaction</u>.

Hence, it is not necessary to use H₂SO₄ in large excess in order to make [H₂SO₄] constant.

2. (b) (i) volume of $Na_2S_2O_3/cm^3$

- (ii) Order with respect to [iodine] = $\mathbf{0}$
- (iii) Order with respect to [propanone] = $\underline{1}$
- (iv) Rate = $k [H^{\dagger}]$ [propanone]
- (c) (i) $\Delta H_{\rm r} = \sum E(\text{bonds broken}) \sum E(\text{bonds formed})$ = $\left[(+410) + (+151) \right] - \left[(+240) + (+299) \right]$ = $+22.0 \text{ kJ mol}^{-1}$
 - (ii) The <u>bond energy values quoted from the *Data Booklet* are only average value</u> derived form the full range of molecules that contains the particular bonds.

<u>0R</u>

The <u>reactants are in aqueous states</u> while the <u>bond energies from the Data Booklet are for gaseous species</u>.

(iii) Energy/ kJ mol⁻¹

Ea

(CH₃)₂CO

+ HI + H⁺

Reaction

coordinate

(d) (i) $n = \frac{pV}{RT} = \frac{\left(101 \times 10^3\right)\left(50 \times 10^{-3}\right)}{\left(8.31\right)\left(300\right)} = 2.03 \approx 2 \text{ mol}$

(c) CH₃OH

(f) Both have simple molecular/covalent structures.

<u>Smaller amount of energy</u> is required to <u>overcome the less extensive hydrogen bonds</u> <u>between 2-hydroxyphenylamine molecules than that between 4-hydroxyphenylamine</u> since <u>2-hydroxyphenylamine is able to form intramolecular hydrogen bonds</u> due to close proximity of the -OH and -NH₂ groups.

Hence, **2-hydroxyphenylamine has a lower melting point** than 4-hydroxyphenylamine.

(b) In <u>neopentane</u>, there is <u>only 1 type of replaceable/substitutable H atoms</u>. Hence, <u>only 1 type of monochlorinated product</u> will be formed, giving a better yield of neopentylchloride.

In <u>pentane</u>, there is <u>3 types of replaceable/substitutable H atoms</u> and hence, <u>a mixture of 3 types of monochlorinated product</u> will be formed, giving a low yield of 1-chloropentane.

5. (a)

- (b) Element X: <u>chlorine/Cl</u>
 Element Y: <u>fluorine/F</u>
 Element Z: <u>phosphorus/P</u>
- (c) (i) The <u>hydrogen bonds between N_2H_4 molecules is stronger than the permanent dipole-permanent dipole interaction between ZY_3 molecules.</u>

Hence, N₂H₄ deviates more from ideality than ZY₃.

- 6. (a) (i) It is more difficult to remove H⁺ from negatively charged anion than from molecule.

 Hence, it is less likely to form "OOC-R-COO" than HOOC-R-COO" and pK_{a.2} is higher.
 - (ii) <u>p-p orbital overlap</u> results in the <u>delocalisation of lone pair</u> of electrons <u>on O</u> atom <u>over the two O</u> and <u>into benzene ring of (COOH)C₆H₄COO</u>. This <u>disperses the negative charge and stabilises (COOH)C₆H₄COO more.</u>

Hence, (COOH) C_6H_4COOH is a stronger acid and has a lower p $K_{a,1}$.

- (b) (i) To obtain the maximum buffering capcity (*i.e.* pH = p K_a) of the acidic buffer of HOOC-R-COO-/OOC-R-COO, the volume of NaOH required is **22.5 cm**³.
 - (ii) Since HOOC-R-COOH = 2NaOH,

amount of HOOC -R - COOH used =
$$\frac{1}{2} \times \left(0.200 \times \frac{30}{1000} \right) = 0.00300 \text{ mol}$$

[HOOC -R - COOH] used = $0.00300 \div \frac{25}{1000} = \underline{0.120 \text{ mol dm}^{-3}}$

(iii) System: weak acid

At initial pH of 2.7,
$$\left[H^{+}\right]_{1} = \sqrt{c \times K_{a,1}}$$

$$K_{a} = \frac{\left[H^{+}\right]^{2}}{c} = \frac{\left(10^{-2.7}\right)^{2}}{0.120} = \frac{3.32 \times 10^{-5} \text{ mol dm}^{-3}}{c}$$

(iv) $pK_{a,1} = -\log_{10}(3.32 \times 10^{-5}) = 4.48$

∴ Identity of unknown acid = suberic acid

(c) (i) Compound : <u>M</u>

Reagent and conditions: acidified KMnO4(aq), heat under reflux

6. (c) (ii) (A) <u>L</u> and <u>N</u>

(B) <u>L</u>, <u>M</u> and <u>N</u>

(C) <u>M</u> and <u>N</u>

(iii) Type of mechanism: electrophilic addition

$$RCH_{2}C \xrightarrow{C} CH_{2} + \xrightarrow{\delta+} H \xrightarrow{S} Br \xrightarrow{slow} RCH_{2}C \xrightarrow{C} CH_{3} + \vdots Br \xrightarrow{fast} RCH_{2}C \xrightarrow{C} CH_{3}$$

- 7. (a) Cu: [Ar] 3d¹⁰ 4s¹
 - (b) (i) $[CuCl_4]^{2-}$
 - (ii) Since \underline{Cl} has a larger size/radius than F⁻, there will be steric hindrance around \underline{Cu}^{2+} . Hence, \underline{Cu}^{2+} cannot accommodate more than four \underline{Cl} ions.
 - (c) Observation in step I: pale blue ppt formed.

Equation : $Cu^{2+}(aq) + 2OH^{-}(aq) \rightarrow Cu(OH)_{2}(s)$

Observation in step II: Pale blue ppt dissolves to give a dark blue solution.

Equation : $Cu(OH)_2(s) + 4NH_3(aq) + 2H_2O(l) \rightarrow [Cu(NH_3)_4(H_2O)_2]^{2+}(aq) + 2OH^-(aq)$

(d) (i) Since $K_{\text{stab, 2}}$ is the largest among the three, ion **S** is $[Cu(H_2O)_2(en)_2]^{2+}$

- (d) (iii) If N_2H_4 is used, an <u>unstable 3-membered ring complex will be formd</u> due to <u>ring strain</u>, resulting in the <u>bond angle in the complex to be too small</u>.
- (e) Stronger ligand displaces weaker ligand to give a more stable complex by forming stronger dative bond. Since $H_2NCH_2CH_2NH_2$ displaces NH_3 and NH_3 displaces H_2O , the ligand strength of $H_2O < NH_3 < H_2NCH_2CH_2NH_2$.