1 (a) Length of semi-major axis, a = 13. Length of semi-minor axis, b = 5.

Distance from centre to focus, $c = \sqrt{a^2 - b^2} = \sqrt{13^2 - 5^2} = 12$.

Centre of ellipse: (12, 0)

Since the principal axis is along the x-axis, one of the foci has to be (0, 0), the origin.

(b) $e = \frac{c}{a} = \frac{12}{13}$. Then the polar equation of the ellipse is $r = \frac{k}{1 - \frac{12}{13}\cos\theta}$ for some k.

When $\theta = 0$, $r = \frac{13k}{13 - 12(1)} = 13k$. When $\theta = \pi$, $r = \frac{13k}{13 - 12(-1)} = \frac{13}{25}k$.

So
$$13k + \frac{13}{25}k = 2a = 26 \implies k = \frac{25}{13}$$
.

Hence, the polar equation of the ellipse is $r = \frac{25}{13 - 12 \cos \theta}$.

2 $y = \ln(x^4 + 1) \Rightarrow x^2 = \sqrt{e^y - 1}$

Volume of bowl = $\pi (1^2) \left(\frac{1}{5} + \ln 2 \right) - \pi \int_0^{\ln 2} x^2 dy$ = $\pi \left(\frac{1}{5} + \ln 2 \right) - \pi \int_0^{\ln 2} \sqrt{e^y - 1} dy$

Let
$$u^2 = e^y - 1 \Rightarrow 2u \frac{du}{dy} = e^y$$
.

When y = 0, u = 0. When $y = \ln 2$, u = 1.

Then
$$\int_0^{\ln 2} \sqrt{e^y - 1} \, dy = \int_0^1 u \cdot \frac{2u}{e^y} \, du$$

$$= \int_0^1 \frac{2u^2}{u^2 + 1} du$$

$$= 2 \int_0^1 \left(1 - \frac{1}{u^2 + 1} \right) du$$

$$= 2 \left[u - \tan^{-1} u \right]_0^1$$

$$= 2 \left(1 - \frac{\pi}{4} - 0 \right) = 2 - \frac{\pi}{2}$$

Volume of bowl = $\pi \left(\frac{1}{5} + \ln 2 \right) - \pi \left(2 - \frac{\pi}{2} \right)$ = $\pi \left(\frac{\pi}{2} + \ln 2 - \frac{9}{5} \right)$ units³

(a)
$$\frac{dy}{dx} = \frac{(1+\cos\theta)\cos\theta - \sin\theta\sin\theta}{-(1+\cos\theta)\sin\theta - \sin\theta\cos\theta} = \frac{\cos\theta + \cos^2\theta - \sin^2\theta}{-\sin\theta - 2\sin\theta\cos\theta}$$

When $\frac{dy}{dx} = -1$, $\cos \theta + \cos 2\theta = \sin \theta + \sin 2\theta$ (double-angle formulas).

(b) Using factor formula,

$$2\cos\frac{3\theta}{2}\cos\frac{\theta}{2} = 2\sin\frac{3\theta}{2}\cos\frac{\theta}{2}$$

$$\left(\cos\frac{3\theta}{2} - \sin\frac{3\theta}{2}\right)\cos\frac{\theta}{2} = 0$$

$$\Rightarrow \cos\frac{3\theta}{2} = \sin\frac{3\theta}{2} \quad \text{or} \quad \cos\frac{\theta}{2} = 0 \text{ (no solutions for } 0 < \frac{\theta}{2} < \frac{\pi}{2})$$

$$\tan\frac{3\theta}{2} = 1 \Rightarrow \frac{3\theta}{2} = \frac{\pi}{4} \text{ or } \frac{5\pi}{4}$$

$$\theta = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$$

4

$$U_{n} = \sum_{r=1}^{n} \underbrace{\frac{2}{n}}_{\text{width of rectangle}} \cdot \underbrace{f\left(\frac{2r}{n}\right)}_{\text{height of } r^{\text{th}}}$$
(a)

= Total area of the n rectangles

Since f is a strictly decreasing function, the total area will be an

underestimate of the actual area under the curve from x = 0 to 2. So $U_n < I$.

Also, the total area of the *n* rectangles approaches the actual area, which is denoted by the definite integral $\int_0^2 f(x) dx$. Therefore, for the limiting case, $U_\infty = I$.

(b) V_n is an over-estimate of I. Therefore, $V_n > I$.

(c) Let
$$f(x) = \frac{1}{2(x+1)}$$
.

$$\lim_{n \to \infty} \left(\frac{1}{n+2} + \frac{1}{n+4} + \frac{1}{n+6} + \dots + \frac{1}{3n} \right) = U_{\infty}$$

$$= I$$

$$= \int_{0}^{2} \frac{1}{2(x+1)} dx$$

$$= \frac{1}{2} \ln 3$$

(b)
$$|iz + k| = |i| |z - ki| = |z - ki|$$

 $\min |iz + k| = \sqrt{(2 + k)^2 + 2^2} - 2\sqrt{2}$
 $= \sqrt{4 + 4k + k^2 + 4} - 2\sqrt{2}$
 $= \sqrt{k^2 + 4k + 8} - 2\sqrt{2}$

(c)
$$\angle OAT = \tan^{-1} \frac{4}{6} = \tan^{-1} \frac{2}{3} \approx 0.588 \text{ rad}$$

 $\angle OAC = \tan^{-1} \frac{2}{4} = \tan^{-1} \frac{1}{2}$
 $\angle CAS = \sin^{-1} \frac{CS}{AC} = \sin^{-1} \frac{2\sqrt{2}}{\sqrt{4^2 + 2^2}} = \sin^{-1} \frac{2}{\sqrt{10}}$
Therefore, $\angle OAS = \angle CAS - \angle OAC = \sin^{-1} \frac{2}{\sqrt{10}} - \tan^{-1} \frac{1}{2} \approx 0.221$

So $-0.588 \le \arg(z+6) \le 0.221$ (3 s.f.).

- (d) Multiplying w with $e^{i\theta}$ rotates the point W representing w about the origin anticlockwise by an angle of θ . If the point upon rotation does not lie on the locus of z, we require |w| to be greater than $\max(|z-0|) = 4$. Hence |w| > 4.
- 6 (a)(i) $^{17}P_{11} = 4.940103168 \times 10^{11}$
 - (ii) $^{12}P_6 \times 5! = 79833600$ (the last row is filled by the 5 particular people in 5! ways; the 12 seats in the front 3 rows can be filled by the remaining 6 people in $^{12}P_6$ ways)
 - (iii) ${}^{3}C_{2} \times {}^{7}C_{1} = 21$ (the 2 married couples can be chosen from the 3 in ${}^{3}C_{2}$ ways; the 1 other person can be chosen from the remaining 7 people in ${}^{7}C_{1}$ ways)
 - (b)(i) Treat the married couple and family of 4 as one unit each; together with the 2 women, there are 4 units to arrange in a circle. For each circular arrangement, the married couple and family of 4 can each be further arranged in 2! and 4! ways respectively.

 $(4-1)! \times 2! \times 4! = 288$

(ii) First, find the number of circular arrangements with the married couple seated together. Next, find the number of circular arrangements with the married couple seated together and the 2 women seated directly opposite each other. Subtract the second from the first.

 $(7-1)! \times 2! - 1 \times 4 \times 2! \times 4! = 1440 - 192 = 1248$

7 (a)
$$\ln(y+1) = 1 - \sin x$$

$$\frac{1}{y+1}\frac{\mathrm{d}y}{\mathrm{d}x} = -\cos x \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = -(y+1)\cos x$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)\cos x - (y+1)(-\sin x) = -\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + (y+1)\sin x$$

When x = 0, $y + 1 = e^{1-\sin 0} = e \implies y = e - 1$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\mathrm{e}$$

$$\frac{d^2y}{dx^2} = -(-e) - e.0 = e$$

Maclaurin's series for *y* is $e-1+(-e)x + \frac{1}{2}ex^2 = e-1-ex + \frac{1}{2}ex^2$

(b) Given x is small such that x^3 and higher powers of x can be neglected,

$$\ln(y+1) = 1 - \sin x \approx 1 - x$$

$$y+1 \approx e^{1-x} = e \cdot e^{-x} = e \left(1 + \left(-x\right) + \frac{\left(-x\right)^2}{2} + \dots\right)$$

$$y = e - 1 - ex + \frac{1}{2}ex^2 \text{ (verified)}$$

(c)
$$\int_{-1}^{1} e^{1-\sin x} dx \approx \int_{-1}^{1} \left(e - ex + \frac{1}{2} ex^{2} \right) dx = \left[ex - \frac{1}{2} ex^{2} + \frac{1}{6} ex^{3} \right]_{-1}^{1} = \frac{7}{3} e^{1-\sin x} dx$$

(d) From the sketch, it is clear that

$$\int_{-1}^{1} e^{1-\sin x} dx < \int_{-1}^{1} \left(e - ex + \frac{1}{2} ex^{2} \right) dx$$

therefore, the answer in (iii) is an over-estimation.

- **8** (a) Possible sketch: A graph with a turning (or sharp) point as *x*-intercept
 - (b) $f(x_3) = -0.28383 < 0$ and f(3) = 8.88751 > 0. The root is in $(x_3, 3)$.

$$x_4 = \frac{x_3 f(3) - 3f(x_3)}{f(3) - f(x_3)} \approx 1.47254 = 1.47 \text{ (2 d.p.)}$$

$$f(x_4) = -0.16086 < 0$$
. Root is in $(x_4, 3)$.

$$x_5 = \frac{x_4 f(3) - 3f(x_4)}{f(3) - f(x_4)} \approx 1.499696 = 1.50 \text{ (2 d.p.)}$$

$$f(1.495) = -0.1012 < 0$$
, $f(1.505) = -0.07407 < 0$. There is no change of sign.

Therefore, the required accuracy correct to 2 decimal places have not been achieved.

(c) The initial value needs to be larger than the x-coordinate of the turning point of f.

$$f'(x) = x(2 \ln x + 1) = 0 \Rightarrow x = 0 \text{ or } x = e^{-\frac{1}{2}}.$$
 Turning point occurs at $x = \frac{1}{\sqrt{e}}$.

Set of values of
$$u_1$$
 is $\left\{u_1:u_1>\frac{1}{\sqrt{e}},\,u_1\in\mathbb{R}\right\}$.

(d)
$$u_{n+1} = u_n - \frac{f(u_n)}{f'(u_n)}$$

= $u_n - \frac{u_n^2 \ln(u_n) - 1}{u_n(2\ln(u_n) + 1)}$

(e) Using the recurrence relation,

 $u_2 = 2$, $u_3 = 1.62859 \approx 1.63$, $u_4 = 1.53734 \approx 1.54$, $u_5 = 1.53161 \approx 1.53$, $u_6 = 1.53158 \approx 1.53$ The required root is 1.53 (2 d.p.).

(a) Asymptote:
$$y = \frac{b}{a}x$$
, Perpendicular line passing through $F: y = -\frac{a}{b}(x-c)$.

$$\frac{b}{a}x = -\frac{a}{b}(x-c)$$

$$\left(\frac{b}{a} + \frac{a}{b}\right)x = \frac{ac}{b}$$

$$x = \frac{ac}{b} \left(\frac{ab}{a^2 + b^2} \right)$$

$$= \frac{a^2c}{a^2 + b^2} = \frac{a^2}{\sqrt{a^2 + b^2}} \text{ (since } c^2 = a^2 + b^2\text{)}$$

$$\frac{x^2}{a^2} - \frac{(mx+k)^2}{b^2} = 1$$

$$b^2x^2 - a^2(m^2x^2 + 2mkx + k^2) = a^2b^2$$

$$(a^2m^2-b^2)x^2+2a^2mkx+a^2(b^2+k^2)=0$$

If the line is a tangent to H, discriminant = 0.

$$(2a^2mk)^2 - 4(a^2m^2 - b^2)a^2(b^2 + k^2) = 0$$

$$a^2m^2k^2 - (a^2m^2 - b^2)(b^2 + k^2) = 0$$

$$a^{2}m^{2}k^{2} - (a^{2}m^{2}b^{2} - b^{4} + a^{2}m^{2}k^{2} - b^{2}k^{2}) = 0$$
$$-a^{2}m^{2}b^{2} + b^{4} + b^{2}k^{2} = 0$$

$$k^2 = a^2 m^2 - b^2$$
 (shown)

(b) A line passing through (c, 0) and perpendicular to tangent is $y = -\frac{1}{m}(x-c)$.

The foot of perpendicular is the intersection between this line and the tangent.

$$y = -\frac{1}{m}(x-c) \Rightarrow my = -x+c \Rightarrow (my+x)^2 = c^2 --- (1)$$

$$y = mx + k \Rightarrow (y - mx)^2 = k^2 = a^2m^2 - b^2 --- (2)$$
Adding (1) and (2),
$$m^2y^2 + 2mxy + x^2 + y^2 - 2mxy + m^2x^2 = a^2m^2 + c^2 - b^2$$

$$(m^2 + 1)(x^2 + y^2) = a^2m^2 + a^2 \quad [\text{since } c^2 = a^2 + b^2]$$

$$= a^2(m^2 + 1)$$

$$x^2 + y^2 = a^2$$

The tangents cannot become the asymptotes, so we need to exclude this limiting case. The two points to be excluded both have *x*-coordinates $\frac{a^2}{\sqrt{a^2+b^2}}$.

10 (a)

+	1	2	3
1	2	3	4
2	3	4	5
3	4	5	6

Let *T* be Tim's score.

$$P(T \ge 3) = 1 - P(T \le 2) = 1 - \frac{1}{9} = \frac{8}{9} (= 0.889 (3sf))$$

(b) (i)
$$X = \{1, 2, 3\}$$

$$P(X=1) = P(1111) = \left(\frac{1}{3}\right)^{4} = \frac{1}{81}$$

$$P(X=2) = P(1112) \times {}^{4}C_{1} + P(1122) \times {}^{4}C_{2} + P(1222) \times {}^{4}C_{3} + P(2222)$$

$$= \left(\frac{1}{3}\right)^{4} \times 4 + \left(\frac{1}{3}\right)^{4} \times 6 + \left(\frac{1}{3}\right)^{4} \times 4 + \left(\frac{1}{3}\right)^{4}$$

$$= \frac{4}{81} + \frac{6}{81} + \frac{4}{81} + \frac{1}{81}$$

$$= \frac{15}{81}$$

$$P(X=3)=1-P(X \le 2)=\frac{65}{81}$$

x	1	2	3
P(X=x)	1	<u>15</u>	<u>65</u>
	81	81	81

(ii)
$$E(X) = \sum_{x=1}^{3} xP(X = x) = \frac{1}{81} + \frac{30}{81} + \frac{195}{81} = \frac{226}{81} \text{ (shown)}$$

$$E(X^{2}) = \sum_{x=1}^{3} x^{2} P(X = x)$$

$$= \frac{1}{81} + \frac{60}{81} + \frac{585}{81} = \frac{646}{81} (= 7.98 (3sf))$$

$$Var(X) = E(X^{2}) - (E(X))^{2} = 0.191 (3sf)$$

(c)
$$P(\text{total is } 8 \cap (X = 3)) = P(3311) \times {}^{4}C_{2} + P(3221) \times \frac{4!}{2!}$$
$$= \left(\frac{1}{3}\right)^{4} \times 6 + \left(\frac{1}{3}\right)^{4} \times 12 = \frac{18}{81}$$

$$P(\text{total is } 8 | (X = 3)) = \frac{P(\text{total is } 8 \cap (X = 3))}{P(X = 3)} = \frac{\frac{18}{81}}{\frac{65}{81}} = \frac{18}{65} (= 0.277 (3 \text{sf}))$$

11 (a)
$$L_n = L_{n-1} + \frac{\lambda}{100} L_{n-1} - R = \left(1 + \frac{\lambda}{100}\right) L_{n-1} - R$$

so $a = 1 + \frac{\lambda}{100}$ and $b = -R$

(b) Try
$$L_n = ka^n + p$$
 where k, p are constants

$$\therefore L_{n-1} = ka^{n-1} + p$$

so
$$ka^{n} + p = a(ka^{n-1} + p) + b = ka^{n} + ap + b$$

$$\Rightarrow p - ap = b$$

$$\Rightarrow p = \frac{b}{1-a}$$

Given $L_0 = C$,

$$C = ka^0 + p = k + \frac{b}{1-a} \Rightarrow k = C - \frac{b}{1-a}$$

Therefore,
$$L_n = \left(C - \frac{b}{1-a}\right)a^n + \frac{b}{1-a}$$
.

(c) Repayment scheme terminates if
$$C - \frac{b}{1-a} < 0$$

$$\Rightarrow C - \frac{-R}{-\lambda/100} < 0$$

$$\Rightarrow \frac{R}{\lambda/100} > C$$

$$\Rightarrow R > \frac{\lambda C}{100}$$

(d) (i)
$$L_n = \left(50000 - \frac{5000}{0.08}\right) (1.08)^n + \frac{5000}{0.08}$$

 $= 62500 - 12500 (1.08)^n$
 $L_n < 0 \Rightarrow n > \frac{\ln 5}{\ln 1.08} = 20.9$

Repayment takes 21 years.

(ii)
$$L_{21} = -422.92$$

 $21 \times 5000 - 422.92 = 104577.08$
Total repayment is \$104 577.