

Catholic Junior College JC1 Promotional Examinations Higher 2

CANDIDATE NAME

CLASS

1T

PHYSICS

Paper 2: Structured Questions

Candidates answer on the Question Paper No Additional Materials are required 9749/2 30 September 2022 2 hours

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. Answer **all** questions.

The number of marks is given in brackets [] at the end of each question or part question.

FOR EXA	FOR EXAMINER'S USE			Y
		L1	L2	L3
Q1	/ 11			
Q2	/ 10			
Q3	/ 10			
Q4	/ 12			
Q5	/9			
Q6	/ 15			
Q7	/ 13			
PAPER 2	/ 80			

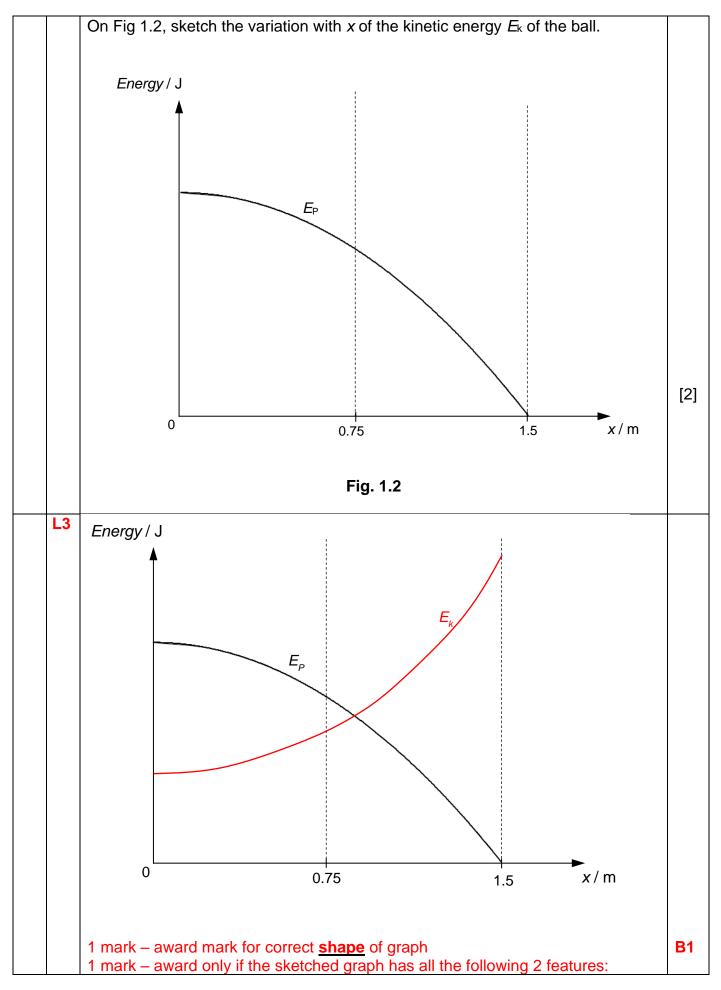
MARK SCHEME

DATA

speed of light in free space	С	=	3.00 x 10 ⁸ m s ⁻¹
permeability of free space	μ_0	=	$4\pi \ x \ 10^{-7} \ H \ m^{-1}$
permittivity of free space	E0	=	8.85 x 10 ⁻¹² F m ⁻¹
			(1/(36π)) x 10 ⁻⁹ F m ⁻¹
elementary charge	е	=	1.60 x 10 ⁻¹⁹ C
the Planck constant	h	=	6.63 x 10 ⁻³⁴ J s
unified atomic mass constant	и	=	1.66 x 10 ⁻²⁷ kg
rest mass of electron	m _e	=	9.11 x 10 ⁻³¹ kg
rest mass of proton	<i>m</i> _P	=	1.67 x 10 ⁻²⁷ kg
molar gas constant	R	=	8.31 J K ⁻¹ mol ⁻¹
the Avogadro constant	NA	=	6.02 x 10 ²³ mol ⁻¹
the Boltzmann constant	k	=	1.38 x 10 ⁻²³ mol ⁻¹
gravitational constant	G	=	6.67 x 10 ⁻¹¹ N m ² kg ⁻²
acceleration of free fall	g	=	9.81 m s ⁻²

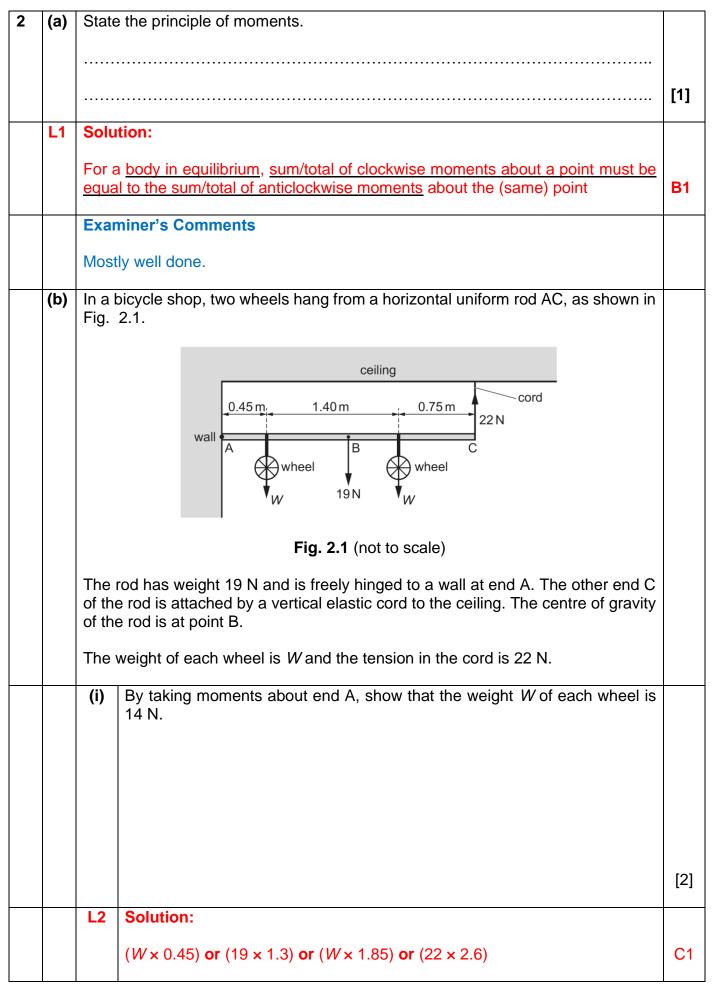
3

Formulae


uniformly accelerated motion	S = V ² =	= ut + ½ at² = u² + 2as
work done on / by a gas	W =	= p∆V
hydrostatic pressure	<i>p</i> =	= $ ho gh$
gravitational potential	ϕ =	$= -\frac{Gm}{r}$
temperature	T/K =	= T/°C + 273.15
pressure of an ideal gas	p =	$= \frac{1}{3} \frac{Nm}{V} \langle C^2 \rangle$
mean translational kinetic energy of an ideal gas molecule	E :	$=\frac{3}{2}kT$
displacement of particle in s.h.m.	<i>x</i> =	= x ₀ sin ωt
velocity of particle in s.h.m.		= $V_0 \cos \omega t$
	:	$= \pm \omega \sqrt{x_0^2 - x^2}$
electric current	I :	= Anvq
resistors in series	R =	$= R_1 + R_2 +$
resistors in parallel		$= 1/R_1 + 1/R_2 + \dots$
electric potential	<i>V</i> =	$= \frac{Q}{4\pi\varepsilon_o r}$
alternating current / voltage	X =	= x ₀ sin ωt
magnetic flux density due to a long straight wire	В :	$= \frac{\mu_o I}{2\pi d}$
magnetic flux density due to a flat circular coil	В =	$= \frac{\mu_o NI}{2r}$
magnetic flux density due to a long solenoid	B	= µ _o nI
radioactive decay	<i>x</i> =	$= x_0 \exp(-\lambda t)$
decay constant	λ =	$= \frac{\ln 2}{\frac{t_1}{2}}$

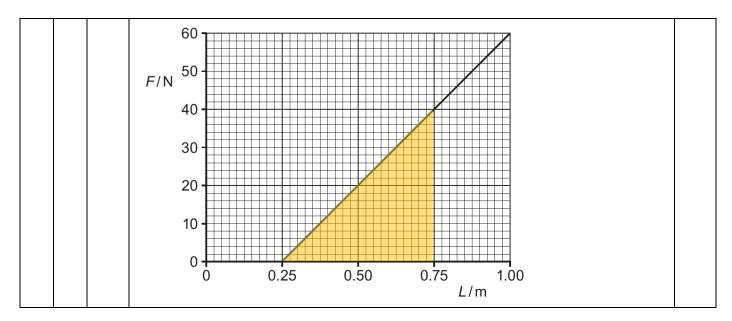
A ball of mass 0.50 kg leaves the edge of a table with a horizontal velocity v, as (a) 1 shown in Fig. 1.1. ball V_ path of ball 1.25 m table part (c) floor 1.5 m Fig. 1.1 The height of the table is 1.25 m. The ball travels a distance of 1.50 m horizontally before hitting the floor. Air resistance is negligible. For the ball, Show that the horizontal velocity v is 3.0 m s⁻¹, (i) [2] L2 Solution: Assume downwards and rightwards directions as positive. Consider horizontal motion, $S_x = U_x t$ $1.5 = vt \quad \Rightarrow \quad t = \frac{1.5}{v} \quad ----(1)$ M1

Answer all the questions in the spaces provided.


		Consider vertical motion,	
		$s_y = u_y t + \frac{1}{2}a_y t^2$	
		$1.25 = 0 + \frac{1}{2}(9.81)t^2 (2)$	M 1
		Sub (1) into (2),	
		$1.25 = \frac{1}{2} (9.81) \left(\frac{1.5}{v}\right)^2$	
		$2^{(v)}$ (v) v = 2.97 or 3.0 m s ⁻¹	A0
		Examiner's Comments	
		Mostly well done.	
	(ii)	Calculate the velocity just as it hits the floor,	
		magnitude of velocity = m s ⁻¹	
		direction of velocity =	[3]
	L2	Solution:	
		Assume downwards and rightwards directions as positive. Let v_1 be the magnitude of velocity just as it hits the floor.	
		Consider vertical motion,	
		$V_y^2 = u_y^2 + 2a_y s_y$	
		$v_y^2 = 0 + 2(9.81)(1.25)$	M1
		$v_y = 4.95 \text{ m s}^{-1}$	
		$\therefore v_1 = \sqrt{3.0^2 + 4.95^2}$	
		= 5.788 = 5.79 or 5.8 m s ⁻¹	A1
		Let θ be the angle below the horizontal,	
		$e v_x$	
<u> </u>		V _v [Turn over	1

		V 405	
		$\tan \theta = \frac{V_y}{V_x} = \frac{4.95}{3}$	
		v _x 3	A1
		θ = 58.8° below the horizontal	
		Examiner's Comments	
		Concrelly well done	
		Generally well done. Many students did not obtain credit for the answer on direction of velocity.	
		Most students did not give the answer on the direction of velocity accurately and clearly. For example answers such as "from the horizontal" or "to horizontal" are not accepted. The accepted answers are "below the horizontal" or "clockwise below the horizontal". The context of the question is not related to bearing or compass, answers stating "south of east" or "east of south" are not accepted.	
	(iii)	Using the floor as reference where the potential energy of the ball is zero, calculate the kinetic energy and potential energy of the ball at the top of the table.	
		kinetic energy =J	
		potential energy =J	[2]
	L1	Solution:	
		Kinetic energy $=\frac{1}{2}mv^2 = \frac{1}{2}(0.50)(3)^2 = 2.25 \text{ J}$	A1
		Potential energy = $mgh = (0.50)(9.81)(1.25) = 6.13 \text{ J}$	A1
		Examiner's Comments	
		Mostly well done.	
		However, a handful of students thought that K.E. at top of table is zero even though the ball has velocity when projected horizontally at the top of the table.	
(b)		horizontal distance, along the floor, from the bottom of the table is <i>x</i> . Fig. 1.2 <i>is</i> the variation with <i>x</i> of the potential energy E_p of the ball.	

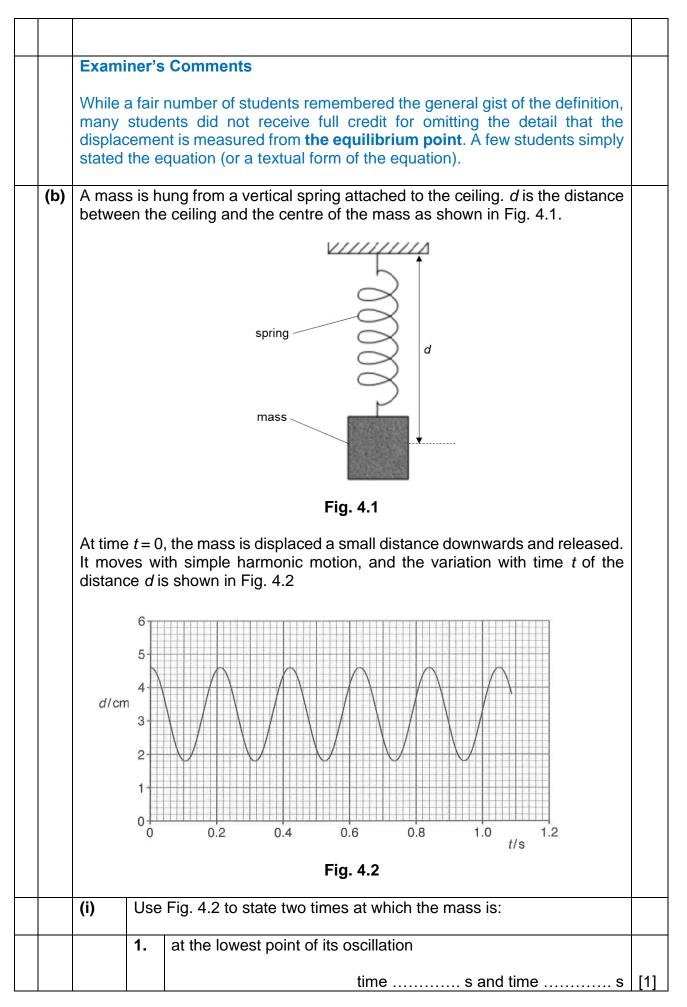
[Turn over


	 E_k graph start below E_p but not 0. E_k graph ends at x = 1.5 m with a value higher than the initial E_p value at x = 0. 	B1
	Additional Notes to determine the expressions for E_P and E_K (for student learning):	
	$E_{\rm P} = mg\Delta h = mg(1.25 - s_{\rm y}) (1)$	
	Taking downwards as positive, $s_y = u_y t + \frac{1}{2}a_y t^2 = 0 + \frac{1}{2}gt^2$ $s_y = \frac{1}{2}gt^2$ (2)	
	Since $s_x = u_x t \implies x = 2.97t$ or $t = \frac{x}{2.97}$ (3)	
	Subs (2) & (3) into Eqn (1) $E_{\rm P} = mg \left(1.25 - \frac{1}{2}g \left(\frac{x}{2.97}\right)^2 \right) = (0.5)(9.81) \left(1.25 - \frac{1}{2}(9.81)\frac{x^2}{8.82} \right)$	
	$E_{\rm P} = 6.13 - 2.73 x^{2}$ $E_{\rm K} = \text{Total Energy} - E_{\rm P} = (\text{Initial } E_{\rm P} + \text{Initial } E_{\rm K}) - E_{\rm P}$ $E_{\rm K} = (2.25 + 6.13) - (6.13 - 2.73 x^{2})$ $E_{\rm K} = 2.25 + 2.73 x^{2}$	
	Examiner's Comments Averagely well done.	
	The common mistake is that many students sketch the K.E. graph starting at 0 J and ending at the same value as the Initial EP. This in incorrect. Assuming no loss of energy to air resistance, the loss in G.P.E will be entirely converted to gain in K.E. Since the ball has an initial K.E., the final K.E. will be higher than the value of the Initial EP.	
(c)	On Fig 1.1, draw the path of the ball if air resistance was not negligible.	[2]
L2	Solution:	
	Shorter range Strike ground at a steeper angle Examiner's Comments	B1 B1
	Mostly well done.	

[Turn over

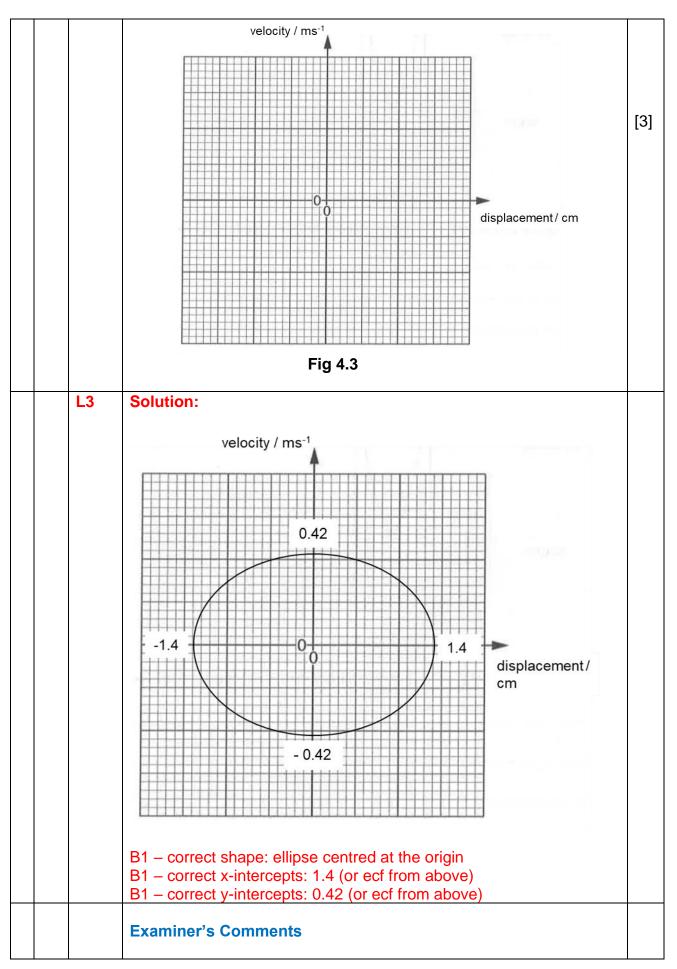
		$(W \times 0.45) + (19 \times 1.3) + (W \times 1.85) = (22 \times 2.6)$	M1
		<i>W</i> = 14 N	A0
		Examiner's Comments	
		Mostly well done.	
	(ii)	Determine the magnitude and the direction of the force acting on the rod at end A.	
		magnitude =N	[0]
	L1	direction =	[2]
		magnitude = 19 + 14 + 14 - 22 = 25 N	A1
		direction = vertically upwards	A1
		Examiner's Comments	
		Mostly well done.	
(C)		unstretched length of the cord in (b) is 0.25 m. The variation with length <i>L</i> of ension <i>F</i> in the cord is shown in Fig. 2.2. $\int_{f/N}^{0} \int_{0}^{0} \int_{0$	

(i)	State and explain whether Fig. 2.2 suggests that the cord obeys Hooke's law.	
		[2]
L2	Solution:	
	The extension is zero when the force is zero	B1
	graph is a straight line and (so) Hooke's law obeyed	B1
	Examiner's Comments	
	The question required how the figure suggests whether the cord obeys hooke's law. Most of the students did not make clear reference to the features of the graph (straight line) in the responses, or passing through the point where when the force is 0 N, there is no extension.	
(ii)	Calculate the spring constant <i>k</i> of the cord.	
	<i>k</i> = N m ⁻¹	[2]
L2	Solution:	
	k = gradient = 60 / (1.00 - 0.25)	M1
	$k = 80 \text{ N m}^{-1}$	A1
	Examiner's Comments	
	Mostly well done.	
(iii)	On Fig. 2.2, shade the area that represents the work done to extend the cord when the tension is increased from $F = 0$ to $F = 40$ N.	[1]
L2	Solution:	

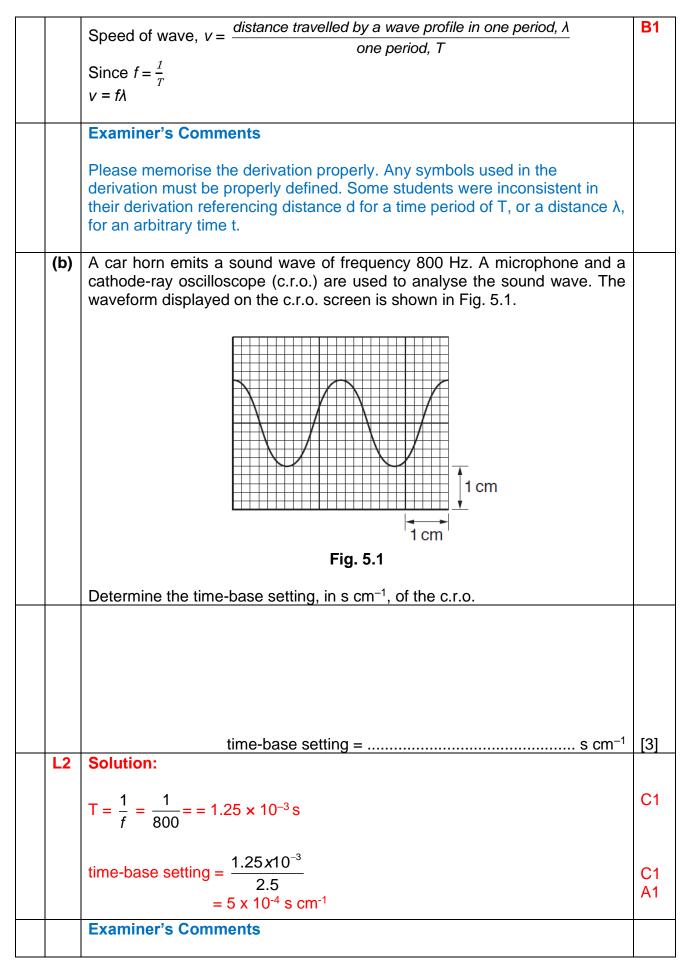


•	(-)	(1)	Define any itational notantial at a paint	,		
3	(a)	(i)	Define gravitational potential at a point.			
				[2]		
		L1	Solution:	[_]		
			It is the work done per unit mass by external agent in	B1		
			bringing (small test) mass from infinity (to the point).	B1		
		(ii)	Use your answer in (i) to explain why the gravitational potential near an			
			isolated mass is always negative.			
				[2]		
		1.4				
		L1	Solution:	D4		
			Gravitational potential at infinity is 0.	B1		
			There is negative work done by the external agent as the force by the external agent and displacement by mass are in opposite directions.	B1		
			external agent and displacement by mass are in opposite directions.			
	(b)	A ro	cket is launched from the surface of a planet and moves along a radial path,			
	()		as shown in Fig. 3.1.			
			A B rocket			
			planet 4R			
		n	nass M			
			Fig.3.1			
			planet may be considered to be an isolated sphere of radius R with all of			
			nass M concentrated at its centre. Point A is a distance R from the surface			
		of th	ne planet. Point B is a distance 4 <i>R</i> from the surface.			
		(1)	Observations the difference on the stational station of the first statio			
		(i)	Show that the difference in gravitational potential $\Delta \phi$ between points A and B is given by the expression			
			B is given by the expression			
			2014			
			$\Delta \phi = \frac{3GM}{10R}$			
			where G is the gravitational constant.			
				[4]		
				[1]		

	L2	Solution:	
		$\phi = -GM = -GM$	
		$\phi_{B} = \frac{-GM}{(R+4R)} = \frac{-GM}{5R}$	
		$\phi_A = \frac{-GM}{(R+R)} = \frac{-GM}{2R}$	
		$\varphi_A - \frac{1}{(R+R)} - \frac{1}{2R}$	
		$\Delta \phi = \phi_{\rm B} - \phi_{\rm A}$	
		-GM -GM	
		$=\frac{-GM}{5R}-\frac{-GM}{2R}$	B1
		$=\frac{-2GM-(-5GM)}{}$	
		= $10R$	
		$=\frac{3GM}{10R}$	
		$=\frac{10R}{10R}$	A0
	(ii)	The rocket motor is switched off at point A. During the journey from A to B, the rocket has a constant mass of 4.7×10^4 kg and its kinetic energy	
		changes from 1.70 TJ to 0.88 TJ.	
		For the planet, the product GM is 4.0×10^{14} N m ² kg ⁻¹ . It may be assumed	
		that resistive forces to the motion of the rocket are negligible.	
		Use the expression in (b)(i) to determine the distance from A to B.	
		distance –	[0]
	L3	distance = m	[3]
	23		
		By Conservation of energy	
		Gain in GPE = loss in KE	
		Gain in GPE	
		$\mathbf{m}\Delta\phi = m\frac{3GM}{10R}$	
			C1
		$m\frac{3GM}{10R} = (1.7 - 0.88)x10^{12}$	
		$(4.7x10^4)\frac{3(4x10^{14})}{10R} = 8.2x10^{11}$	
			C 1
		$R = \frac{3x(4.7x10^4)(4x10^{14})}{8.2x10^{11}x10}$	
		$= 6.88 \times 10^6$ m (radius of earth)	
			A1


 		1						
 (-)	Distance from A to $B = 4R - R = 3R = 3 \times 6.88 \times 10^6 = 2.1 \times 10^7 \text{ m}$ A spherical planet has mass 6.00 × 10 ²⁴ kg and radius 6.40 × 10 ⁶ m. The planet							
(c)	A spherical planet has mass 6.00×10^{24} kg and radius 6.40×10^{9} m. The planet may be assumed to be isolated in space with its mass concentrated at its centre.							
	may be assumed to be isolated in space with its mass concentrated at its centre.							
	A satellite of mass 340 kg is in a circular orbit about the planet at a height							
	9.00×10^5 m above its surface.							
	Determine the satellite's orbital speed.							
	orbital speed = m s ⁻¹	[2]						
 L2	Solution:							
	The gravitational force provides the centripetal force							
	F _{grav} = F _c							
	$\frac{GMm}{R^2} = \frac{mv^2}{R}$							
	R^2 R							
	GM							
	$v = \sqrt{\frac{GM}{R}}$							
	$6.67 \times 10^{-11} \times 6 \times 10^{24}$							
	$= \sqrt{\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{(6.4 \times 10^6 + 9 \times 10^5)}}$	M1						
	$\gamma (0.4 \times 10^{3} \text{ m s}^{-1})$ = 7.4 x 10 ³ m s ⁻¹							
	= /.4 X 10° 111 S '	A1						

4	(a)	Define simple harmonic motion	
			[2]
	L1	Solution:	
		the motion of an object such that its acceleration is proportional to its displacement from a fixed equilibrium point	B1
		and is always directed towards that point	B1


	L1	Solution:	
		0s, 0.21 s, 0.42 s, 0.63s, 0.84 or 1.05 s	A1
		Examiner's Comments	
		Fairly well done, with several students missing out the fact that the d is measured from the ceiling, and the lowest point of the oscillation is the largest value of d. A few did not read off the graph carefully.	
	2.	moving upwards with maximum speed	
		times and times	[1]
	L2	Solution:	
		0.05 s, 0.26 s, 0.47 s, 0.68 s, 0.89 s	A1
		Examiner's Comments	
		Fairly well done, though some student included times when the object was moving downwards at maximum speed, rather than upwards.	
		This is mostly due to making a similar mistake as Part 1, and not understanding that moving upwards is represented as a decrease in the value of d. A few did not read off the graph carefully as well.	
(ii)	Det	ermine, for the mass:	
	1.	the angular frequency ω	
		angular frequency = rad s ⁻¹	[2]
L2	Sol	ution:	
		jular frequency	
		π/T π/0.21 [M1 for correct determination/identification of T]) rad s ⁻¹	M1 A1
		miner's Comments	

		Moll done with a four students not reaching any literation for set	
		Well done, with a few students not receiving credit either for not recalling the formula for angular frequency correctly or reading the period off the graph incorrectly.	
		2. the maximum speed	
			,
		maximum speed = m s ⁻¹ [2]	1
	L2	Solution:	
		maximum speed v_0 = ωx_0	
		$= (30) \left(\frac{4.6 \cdot 1.8}{2} \times 10^{-2} \right) $ [M1 for correct determination of amplitude] = 0.42 m s ⁻¹	1
		A1	1
		Examiner's Comments	
		A majority of students knew the formula for maximum speed, though a few used the speed-time or speed-displacement formula instead. While a few used the formulae correctly, many substituted incorrect values because they did not know that the displacement value is measured from the equilibrium position.	
		For those who used the maximum speed formula, the common errors preventing them from getting the full marks were either using incorrect methods to find the amplitude, or neglected to convert cm to m.	
	(iii)	Use your answer to (b)(ii)2 to sketch, on the axes of Fig. 4.3, a graph of how the velocity of the mass varies with the displacement from the equilibrium position.	
		Label the axes with the appropriate scale and values.	

	 A majority knew that this question was asking them to draw an ellipse, those who did not drew the other graphs from the chapter e.g. sinusoidal curves or parabolas which will receive 0 marks regardless of the intercept values For those who drew an ellipse, some marks were deducted for awkward/lazy scales, poorly drawn/incomplete ellipses and/or omitted/incorrect values of the intercept. 	
(iv)	A periodic external force is applied to the spring-mass system in the vertical direction. State the frequency of the periodic external force when the system oscillates with maximum amplitude.	
	frequency = Hz	[1]
L2	Solution: Maximum amplitude occurs (resonance) when driving frequency = natural frequency Therefore, driving frequency = 1/T = 1/0.21 = 4.8 Hz (shown)	A1
	Examiner's Comments A fair number did not recognize that this question is related to resonance, and the resonance frequency = driving frequency = natural frequency of the system. A few used $v = f\lambda$ even though this has nothing to do with waves.	

5	(a)	A wave of frequency f and wavelength λ has speed v.	
		Using the definition of speed, deduce the equation $v = f\lambda$.	
			[1]
	L1	Solution:	

	Some students attempted a solution using $v = f\lambda$, but wavelength cannot be determined via the CRO. Such solutions were penalized accordingly.	
(c)	The intensity I of the sound at a distance r from the car horn in (b) is given by the expression	
	$I = \frac{k}{r^2}$	
	where <i>k</i> is a constant.	
	Fig. 5.2 shows the car in (b) on a road.	
	O Y TOAD	
	Fig. 5.2	
	An observer stands at point O. Initially the car is parked at point X which is 120 m away from point O. The car then moves directly towards the observer and stops at point Y, a distance of 30 m away from O.	
	The car horn continuously emits sound when the car is moving between points X and Y.	
	The sound wave at point O has amplitude A_X when the car is at X and has amplitude A_Y when the car is at Y.	
	Calculate the ratio $\frac{A_{\rm Y}}{A_{\rm X}}$.	
	rotio	[0]
10	ratio =	[2]
L2	Solution:	
	$\frac{I_{\alpha}A^{2}}{I_{y}} = \left(\frac{r_{Y}}{r_{X}}\right)^{2} = \left(\frac{A_{X}}{A_{Y}}\right)^{2}$	

	Det	$\frac{A_{\rm Y}}{A_{\rm X}} = \frac{120}{30}$	C1
	Rat	$A_X = 4.0$	A 1
	Exa	miner's Comments	
		ne students were unable to link amplitude of wave to distance. The other takes came from students who made computation errors in the steps.	
(d)	(i)	Describe what is meant by a polarized wave.	
		·····	
			[2]
		Solution:	
	L1	Polarisation is a phenomenon where the <u>oscillations</u> in a transverse wave are <u>confined to one direction</u> only, the direction being at <u>right angles to the direction of propagation</u> of the wave.	B1 B1
		Examiner's Comments	
		Many did not memorise the definition.	
	(ii)	State why a sound wave cannot be polarized.	
			F 4 3
	L2	Solution:	[1]
		Sound wave is a longitudinal wave where oscillations in the wave are along the direction of energy transfer.	B1
		Only transverse wave can be polarized.	
		Examiner's Comments	
		Mostly well done.	

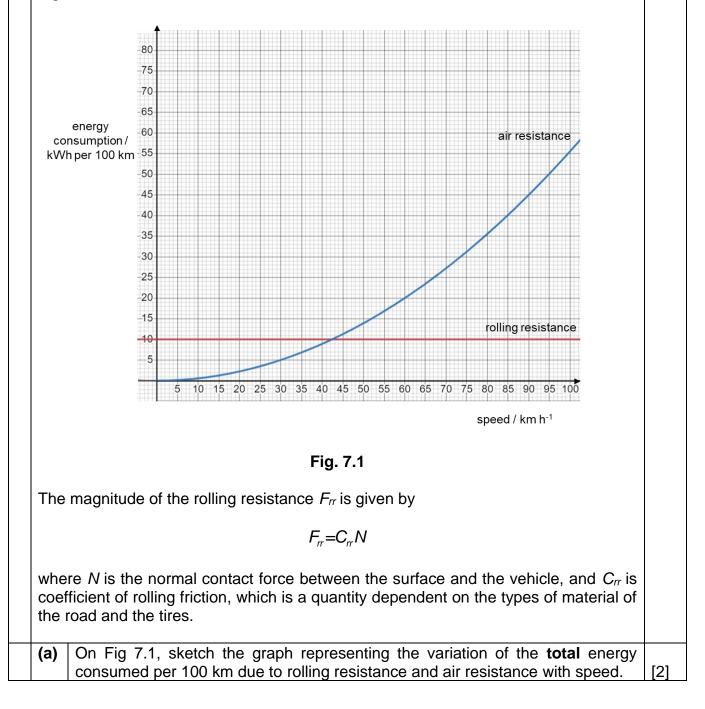
6	(a)	State the conditions required for the formation of a stationary wave.	

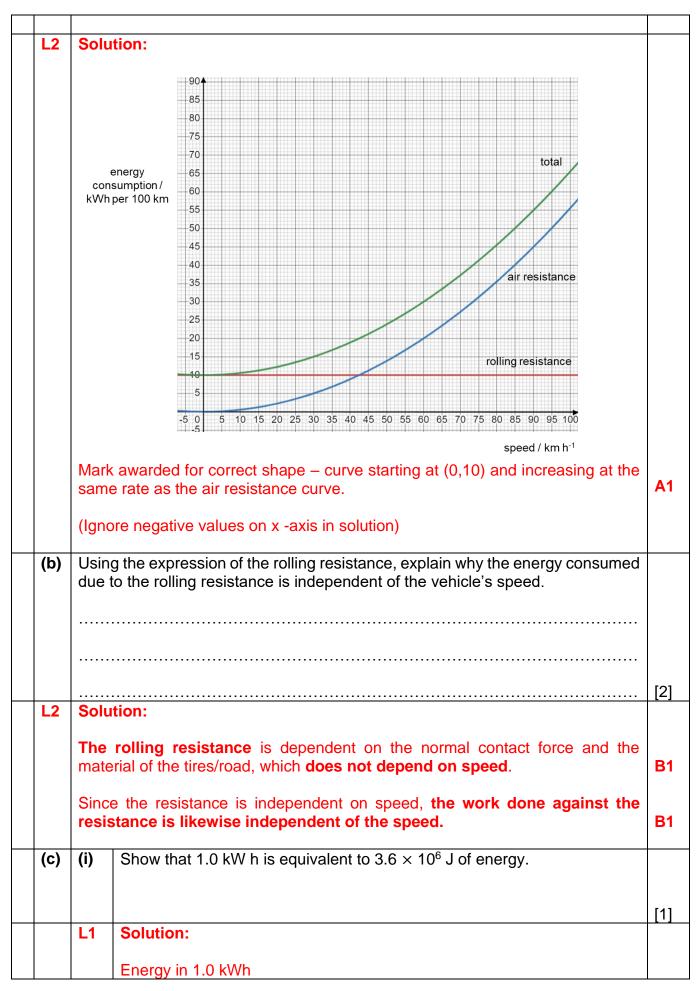
			Т
L1	Solu	tion:]
	Colu		
	-	b) progressive waves travelling (at the same speed) in opposite stions overlap and the	E
		es (are of the same type and) have the same frequency/wavelength and litude .	E
	Exan	niner's Comments:	1
	wave	ents should make an effort to memorise the conditions for a stationary e. The majority missed out key conditions and hence did not score the full	
(b)	Mark	s. rizontal string is stretched between two fixed points X and Y. The string is	
(0)	made	e to vibrate vertically so that a stationary wave is formed. At one instant, particle of the string is at its maximum displacement, as shown in Fig. 6.1.	
		string	
	X	/	
		P 2.0 m	
		4 2.0111	
		Fig.6.1.	
		d Q are two particles of the string. The string vibrates with a frequency of z. Distance XY is 2.0 m.	
	(i)	State what is meant by an antinode of the stationary wave.	
			T
			[
	L1	Solution:	
		It is a position where there is maximum amplitude.	E
		Examiner's Comments:	
		Many students incorrectly use the word "displacement" rather than	
		"amplitude". Students need to recognize that oscillations within a loop has	
	1	varying amplitudes and the antinode has the max amplitude when	
	(ii)	comparing oscillations within the loop. State the number of antinodes in the stationary wave.	-

	number =	[1]
L1	Solution:	
	5 antinodes	A1
	Examiner's Comments:	
(:::)	Majority were able to identify the 5 antinodes.	
(iii)	Determine the minimum time taken for the particle P to travel from its lowest point to its highest point.	
	time taken –	[2]
L2	time taken =s	
	$T = \frac{1}{40} = 2.5 \times 10^{-2}$	
	40 40	C1
	time taken = $\frac{2.5 \times 10^{-2}}{2}$	
	$= 1.3 \times 10^{-2} \text{ s}$	
		A1
	Examiner's Comments:	
	Students need to recognize that the time taken for the particle P to travel from its lowest point to highest point is half a period of oscillation. Most	
	were able to complete this part successfully.	
(iv)	State the phase difference, with its unit, between the vibrations of particle	
	P and of particle Q.	
	phase difference =	[1]
L1	Solution:	A 4
	180° or <i>π</i> rad Examiner's Comments:	A1
	Majority of students were not able to recognize that the particles across	
	adjacent loops are oscillating in phase. Note that within a loop, the particles are oscillating in phase with one another.	
(v)	Determine the speed of a progressive wave along the string.	
(-)		
	speed =m s ⁻¹	[2]
L2	Solution:	
	$\mathbf{v} = f\lambda$	
	$\lambda = 2.0 / 2.5 (= 0.80 \text{ m})$ v = 0.80 × 40	C1

		r		
		=	32 m s ⁻¹	A1
		Exa	miner's Comments:	
		Stuc	dents should recognize that there are 2.5 wavelengths on the string.	
			t students have no issues completing this question.	
(c)			open at both ends. A loudspeaker, emitting sound of a single	
	trequ	iency	, is placed near one end of the tube, as shown in Fig. 6.2.	
			tube	
		/		
	lo	udspea		
			0.60 m ►	
			Fig. 6.2	
	Thes	speed	d of the sound in the tube is 340 m s ^{-1} . The length of the tube is 0.60 m.	
	A sta	tiona	ry wave is formed with an antinode A at each end of the tube and two	
	antin		inside the tube. e the distance between a node and an adjacent antinode.	
			distance = m	[1]
	L2	Solu	ution:	
			1λ	
			tube	
		k	pudspeaker	
		K	0.60 m	
		0.6/	6 = 0.1 m	B1
			miner's Comments:	
		N400	the wall done. Students are able to recognize the position of the redee	
			tly well done. Students are able to recognize the position of the nodes ig 6.2, that they lie between the antinodes.	
	(ii)	Dete	ermine, for the sound in the tube,	
		1.	the wavelength,	
			wavelength = m	[1]
		L2	Solution: $\lambda = 0.4 \text{ m}$	A1
			Examiner's Comments:	

		Mostly well done. Students are able to recognize that between a node and antinode, that is one quarter wavelength and hence find what one wavelength is.	
	2.	the frequency.	
			[2]
	L2	frequency = Hz	[2]
		solution: $v = f\lambda$ $f = \frac{340}{0.4}$ $= 850 \text{ Hz}$	C1 A1
		Examiner's Comments:	
		Mostly well done by students. ECF was allowed for wrong values of wavelength.	
(iii		ermine the minimum frequency of the sound from the loudspeaker produces a stationary wave in the tube.	
		minimum frequency =Hz	[2]
L2		ution: mum frequency occurs at fundamental frequency	
		_ tube	
		A N A	
	lo	0.60 m	
		a wavelength = 0.6 m	
	f = 3	2 × 0.60 = 1.2 m 340/1.2	C1
		283 Hz miner's Comments:	A1
	did func wav For	e a number of students were not able to complete this question. They not recognize the shape of the stationary wave for minimum or lamental frequency. They need to know the relationship between elength and frequency that when one decreases, the other increases. the open tube, at minimum frequency, we can fit half a wavelength the tube.	


7 Read the passage below and answer the questions that follow.


Resistive Forces and Fuel Consumption in Vehicles

With the increasing cost of fuel, increasing the efficiency of fuel use in vehicles has become more pertinent to manufacturers and drivers. While some of the energy generated by the fuel in the engine goes into accelerating the vehicle from rest, a larger percentage of the energy is lost to the resistive forces acting against the motion of the vehicle.

There are two main types of resistive forces acting on a moving vehicle: the rolling resistance acting against the tires as they turn and the air resistance acting against the vehicle as it moves. Overcoming both forces use up some of the energy provided by the fuel in the engine, but to different extents depending on the speed of the vehicle.

For a certain vehicle of unladen mass 1000 kg, the variation of the energy consumed per 100 kilometres of travel due to these resistive forces with its speed is shown in Fig. 7.1.

		1		1
			= Pt = (1000 W)(3600 s) = 3.6×10^6 J (shown)	M1 A0
		(ii)	Using the definition of work done and data from Fig 7.1, calculate the magnitude of the rolling resistance F_{rr} acting on the vehicle.	
			<i>F_{rr}</i> = N	[2]
		L2	Solution:	
			Since work done = force x displacement	
			Force of rolling resistance	
			 Work done against rolling resistance/displacement 10 kW h / 100 km 	844
			$= (10 \times 3.6 \times 10^{6} \text{ J})/(100 \times 1000 \text{ m})$	M1
			= 360 N	A1
		(iii)	Hence, determine the coefficient of rolling resistance C_{rr} for this vehicle	
			<i>C</i> _{<i>rr</i>} =	[2]
		L1	Solution:	
			Since $F_n = C_n N$ and the normal contact force = mg since the vehicle is in equilibrium in the vertical direction	M1
			$C_{rr} = F_{rr}/N = 360/(1000 \times 9.81) = 0.037$	A1
	(ما)	Daar		
	(d)		ed on the information provided in the passage, explain why energy umption per 100 km is higher	
		(i)	when the vehicle is driven at a constant high speed,	
<u> </u>	•			

		[2]
L2	Solution:	
	At high speeds, the air resistance acting on the vehicle increases	B1
	since more energy is consumed to overcome air resistance at this high speed, fuel consumed increases	B1
(ii)	when the vehicle is fully laden with passengers.	
		[2]
L3	Solution:	
	When the weight of the vehicle is higher, the normal contact force is higher , increasing the rolling resistance	B1
	thus, the amount of energy needed to overcome the rolling resistance increases , leading to higher fuel consumption	B1
		L2 Solution: At high speeds, the air resistance acting on the vehicle increases since more energy is consumed to overcome air resistance at this high speed, fuel consumed increases (ii) when the vehicle is fully laden with passengers. L3 Solution: When the weight of the vehicle is higher, the normal contact force is higher, increasing the rolling resistance thus, the amount of energy needed to overcome the rolling

-- END OF PAPER 2 --