	NATIONAL JUNIOR COLLEGE SH 2 PRELIMINARY EXAMINATION Higher 1
CANDIDATE NAME	
SUBJECT CLASS	REGISTRATION NUMBER

CHEMISTRY 8873/01

Paper 1 Multiple Choice Wednesday 15 September 2021
1 hour

Additional Materials: Multiple Choice Answer Sheet

Data Booklet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, subject class and registration number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **thirty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

The use of an approved scientific calculator is expected, where appropriate.

A Data Booklet is provided.

Instructions on how to fill in the Optical Mark Sheet

Shade the index number in a 5 digit format on the optical mark sheet:

1st digit and the last 4 digits of the Registration Number.

Example:

Student	Examples of Registration No.	Shade:
	<u>2</u> 00 <u>5648</u>	25648

This document consists of **15** printed pages and **1** blank page.

- 1 Which statement about 1 mol of a metal is always true?
 - 1. It has the same number of atoms as 1 mol of hydrogen atoms.
 - 2. It loses 1 mol of electrons.
 - **3.** It contains half the number of atoms as 2 mol of HC/(g).
 - **4.** It contains $\frac{1}{3}$ the number of ions as 3 mol of Na₂O(s).
 - **A** 1

- **B** 1 and 3
- **C** 1, 2 and 3
- **D** 1, 3 and 4
- 2 The actual values of the masses of three sub-atomic particles are shown in the table.

	proton	neutron	electron
mass/kg	1.673×10^{-27}	1.675×10^{-27}	9.109×10^{-31}

Which nickel ion is predicted to have a mass of $1.038 \times 10^{-25}\,\text{kg}$ from these data?

- **A** $^{60}_{28}Ni^{2+}$
- **B** ${}^{62}_{28}Ni^{2+}$
- C ${}^{58}_{28}Ni^{3+}$
- **D** $^{64}_{28}Ni^{3+}$
- 3 The redox half-equations for the electrolysis of dilute sodium chloride solution are stated below.

Oxidation half-equation: $2H_2O \rightarrow O_2 + 4H^+ + 4e^-$

Reduction half-equation: $2H_2O + 2e^- \rightarrow H_2 + 2OH^-$

Which row shows the correct volume of gases if 2.40 mol of electrons are involved in the redox reaction?

	Volume of H_2 gas collected at r.t.p / dm^3	Volume of O ₂ gas collected at r.t.p / dm ³
Α	28.8	14.4
В	28.8	28.8
С	14.4	7.2
D	14.4	28.8

4 Use of the Data Booklet is relevant to this question.

To identify a compound, the compound can be broken down into ions and passed through an electric field. In this electric field, the ⁴He nucleus is deflected +8° and used as a standard.

An unknown ionic compound was broken down and passed through the same electric field. Two monocharged fragments were observed to have deflected +0.6° and -0.45°.

What could be the ionic compound?

A LiC*l*

B LiBr

C NaCl

D NaBr

5 10 cm³ of propane, C₃H₈, was completely burnt in x cm³ of excess oxygen. After cooling to room temperature, the volume of the residual gas was 60 cm³. The residual gas was passed through aqueous sodium hydroxide and the volume reduced to y cm³.

What are the values of **x** and **y**?

x y

A 50 30

B 60 30

C 70 20

D 80 30

6 Propyne, C₃H₄, has the following structure.

$$HC \equiv C - CH_3$$

Which option correctly describes the number of σ and π bonds present in a molecule of propyne?

σ π

A 2 2

B 2 6

C 1 3

D 6 2

7	Which.	statement	ic trup	for all	covalent	honds?
1	VVIIICII	Statement	าร แนะ	IOI all	COvalent	DOHUS!

- A covalent bond cannot be found in ionic compounds.
- В A covalent bond can be formed via head-on overlap of p orbitals.
- C A covalent bond can only be formed between two non-metal atoms.
- D A covalent bond is formed when each bonding atom contributes a valence electron.
- 8 Which conditions would result in the most significant intermolecular forces between gaseous oxygen molecules?

pressure temperature low

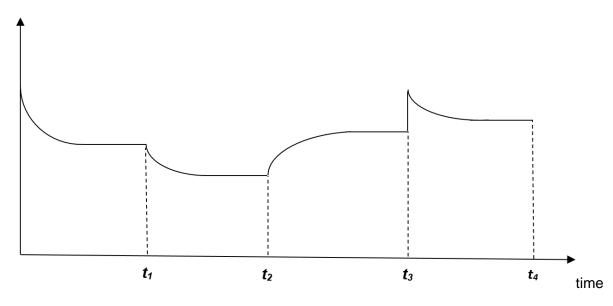
- Α high
- В High high
- C low high
- D low low
- 9 Which statements can be explained in terms of hydrogen bonding?
 - 1 The apparent relative molecular mass of ethanoic acid in benzene is 120.
 - 2 HF₂⁻ is formed when HF is dissolved in molten NaF.
 - 3 The boiling point of propanoic acid is higher than ethanoic acid.
 - 4 Ice is less dense than water.
 - Α 1, 2 and 3
 - В 2, 3 and 4
 - C 1, 2 and 4
 - D 1 and 4

10

Which species is not planar?

	Α	BrF ₃	
	В	$\mathrm{IC}l_4^-$	
	С	PCl ₄ ⁺	
	D	XeF ₄	
11	Which statements are correct for all systems at dynamic equilibrium?		
	1	It is a closed system.	
	2	The rate of both forward and backward reactions is the same.	
	3	The concentration of reactants is equal to the concentration of products.	
	Α	1 and 2 only B 1 and 3 only C 2 and 3 only D 2 only	

Nitrosyl chloride, NOC*l*, is a yellow gas that can be formed between nitryl chloride, NO₂C*l*, and nitric oxide, NO, in the following reaction.


$$NO_2Cl(g) + NO(g) \rightleftharpoons NOCl(g) + NO_2(g)$$
 $\Delta H < 0$

NO₂Cl and NO were initially allowed to react in a closed vessel at 800 K and equilibrium was established.

The graph below shows how the concentration of NO₂Cl varied with time.

What could be the changes made to the system at t_1 , t_2 and t_3 ?

concentration of NO₂Cl

	t ₁	t_2	t ₃
A	NO₂Cl was removed	temperature was increased	NO₂Cl was added
В	temperature was decreased	NO₂Cl was added	NO ₂ was added
С	NO ₂ was removed	temperature was increased	NO₂Cl was added
D	NO ₂ C <i>l</i> was removed	NO₂Cl was added	temperature was decreased

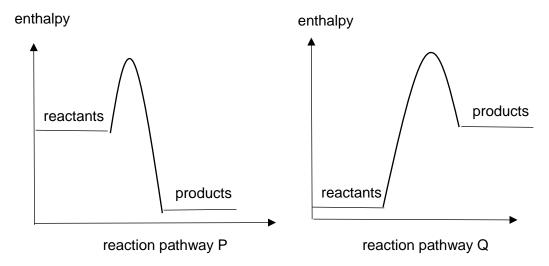
13 Use of the Data Booklet is relevant to this question.

Hypothetically, N₄ could be formed from nitrogen gas by the following reaction.

$$2N_2(g) \rightarrow N_4(g)$$

$$\Delta H$$

By considering the bonds broken and bonds formed, as well as the structure of N_4 given below, what would be the value of ΔH for the above reaction?


A +140 kJ mol⁻¹

B -140 kJ mol⁻¹

C +928 kJ mol⁻¹

- **D** -928 kJ mol⁻¹
- The lattice energy of calcium chloride is numerically greater than that of potassium bromide. Which statements could explain this observation?
 - 1 The chlorine atom is more electronegative than the bromine atom.
 - 2 The charge on the calcium ion is greater than that of the potassium ion.
 - The Ca–C*l* bond length is shorter than that of K–Br.
 - **A** 2 only
- **B** 1 and 2 only
- C 1 and 3 only
- **D** 2 and 3 only

15 Reaction pathway diagrams, P and Q refer to two different types of reaction.

Which row correctly identifies the enthalpy change shown in P and Q?

	Р	Q
Α	lattice energy	enthalpy of formation
В	lattice energy	enthalpy of combustion
С	enthalpy of formation	enthalpy of combustion
D	enthalpy of formation	lattice energy

- Which statement is true about the elements in Group 1 of the Periodic Table?
 - **A** They react with water to give off oxygen gas.
 - **B** They are more readily oxidised down the group.
 - **C** Sodium is less electronegative than caesium.
 - **B** They can conduct electricity in the solid state, but not in liquid state.
- 17 Which statement about the chlorides of Period 3 elements is **incorrect**?
 - A The pH of the solutions of chlorides generally increases across the period.
 - **B** The extent of hydrolysis of the chlorides increase across the period.
 - **C** When limited amount of water is added to the covalent chlorides, they give acidic white fumes.
 - **D** Adding NaOH(aq) to a solution of A/Cl₃ produces a white precipitate which is soluble in an excess of NaOH.

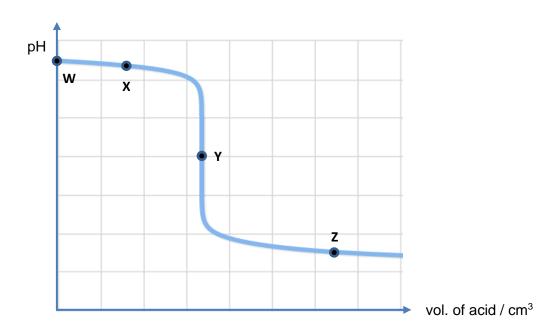
18 Which is an example of an Arrhenius acid and Arrhenius base reaction?

A
$$2CH_3COOH(aq) + Ca(OH)_2(aq) \rightarrow Ca(CH_3COO)_2(aq) + 2H_2O(l)$$

B
$$CO_2(aq) + 2NaOH(aq) \rightarrow Na_2CO_3(aq) + H_2O(1)$$

C
$$2HCl(aq) + Na_2O(s) \rightarrow 2NaCl(aq) + H_2O(l)$$

D
$$HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$$


19 Methanesulfonic acid is a monobasic strong acid which is used to remove calcium carbonate from kettles.

Methanesulfonic acid

Which statement about methanesulfonic acid is incorrect?

- A The gas evolved when methanesulfonic acid reacts with calcium carbonate is CO₂.
- **B** 0.1 mol dm⁻³ methanesulfonic acid has a pH value of 1.
- **C** The Brønsted-Lowry conjugate base of methanesulfonic acid is the CH₃SO₃⁻ ion.
- **D** The K_a value of methanesulfonic acid is very small.

20 The diagram shows a pH curve produced by adding a weak acid to a strong alkali.

Which point on the curve represents a solution that can act as a buffer?

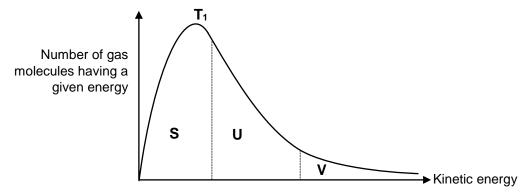
A W

в х

C Y

D Z

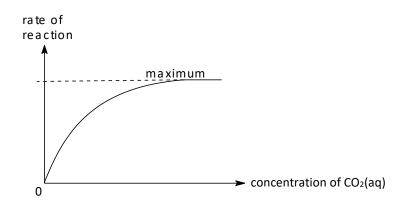
21 Bromine can react with methanoic acid according to the following equation:


$$Br_2(aq) + HCOOH(aq) \rightarrow 2HBr(aq) + CO_2(g)$$

The rate of the reaction is found to be first order with respect to both bromine and methanoic acid.

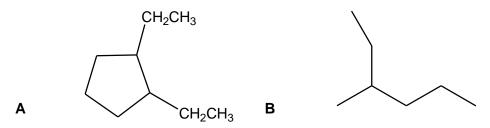
Which statement is true?

- **A** The rate constant has a unit of s^{-1} .
- **B** The rate constant will remain unchanged with an increase in temperature.
- **C** Halving the concentration of both reactants will halve the rate of evolution of CO₂.
- **D** The rate of decrease in the concentration of Br₂ is half that of the increase in the concentration of HBr.


The Boltzman distribution curve shows the number of gas molecules have a particular kinetic energy at constant temperature, T_1 .

What happens to the size of the areas labelled S, U and V when a higher temperature, T_2 was used?

	S	U	V
Α	increase	increase	decrease
В	increase	decrease	decrease
С	decrease	increase	increase
D	decrease	decrease	increase


The graph shows the results of an investigation on the rate of reaction of carbon dioxide with water in the presence of the enzyme carbonic anhydrase, which is found in living cells.

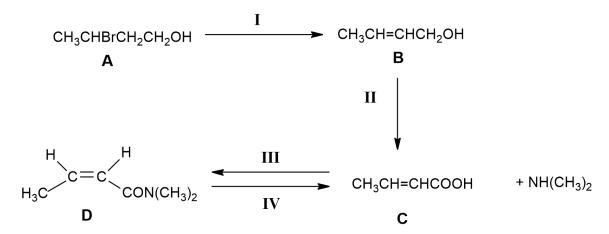
From the graph, which conclusion is **incorrect**?

- A At low $[CO_2(aq)]$, the reaction is first order with respect to $CO_2(aq)$.
- **B** At high $[CO_2(aq)]$, the reaction is zero order with respect to $CO_2(aq)$.
- **C** At low [CO₂(aq)], not all of the active sites of the enzymes are occupied.
- **D** At high [CO₂(aq)], the rate of reaction is independent of the concentration of carbonic anhydrase.

Which is an incorrect name of the organic species?

1,2-diethylcyclopentane

2-ethylpentane


2-methylhexan-3-ol

25 A straight chain organic compound has a molecular formula of C_4H_5NO . it contains a nitrile, $-C\equiv N$, functional group.

Which other functional groups could be present in this molecule?

- 1 aldehyde
- 2 alkene
- 3 amide
- **A** 1, 2 and 3 only **B** 1 and 2 only
- C 1 only D 3 only

26 A student considered the following synthetic route to produce compound **D**.

Which steps show the **correct** type of reaction and/or reagent used?

	step	type of reaction	reagent
Α	1	elimination	concentrated H ₂ SO ₄
В	II	oxidation	acidified K ₂ Cr ₂ O ₇
С	III	addition	dicyclohexylcarbodiimide (DCC)
D	IV	substitution	aqueous KOH

27 An ester, **T** is shown.

What is the structure of the carboxylic acid formed from the acid hydrolysis of the ester, **T**?

$$\mathbf{C}$$
 \mathbf{D} \mathbf{D}

28 Poly(acrylate) is an addition polymer and has the following the structure.

Poly(acrylate)

What is the structure of the monomer of poly(acrylate)?

- A (OCOCH₂CH₃)CH=CH₂
- B CH₂=CH(COCH₂CH₃)
- \mathbf{C} CH₂=CH(CO₂CH₃)
- $\textbf{D} \qquad (\text{CO}_2\text{CH}_2\text{CH}_3)\text{CH=CH}_2$

29		Which statements correctly describe the difference between low density poly(ethane) (LDPE) and high density poly(ethane) (HDPE)?		
	1	The average polymer chain for HDPE is	s sho	rter than LDPE.
	2	LDPE chains are branched while HDPE	chai	ns are linear.
	3	LDPE has a lower flexibility than HDPE		
	Α	1, only	В	2 only
	С	1 and 3 only	D	2 and 3 only
30	Which statements is/are correct?			
	1	Nanoparticles measure less than 100 r	ım in	all three dimensions.
	2	Nanoparticles unlike bulk materials have higher surface activity due to a larger surface area to volume ratio relative to bulk materials.		
	3	The C_{60} molecule, buckminsterfullered conditions.	ne, u	nlike graphite is not conductive at room
	Α	1, 2 and 3		
	В	1 and 2 only		
	С	1 only		
	D	2 only		

BLANK PAGE