

No.		Suggested Solution	Remarks for Student
		iz + 2w = -1(1)	This is a non-calculator
		(2-i)z + iw = 6(2)	working needs to be
	$(2) \times 2i:$	2i(2-i)z-2w=12i(3)	shown.
	(1)+(3):	iz + 4iz + 2z = -1 + 12i	
		$z = \frac{-1+12i}{2+5i}$	
		$z = \frac{(-1+12i)(2-5i)}{29} = \frac{58+29i}{29} = 2+i$	
	Sub back int	to (1):	
		$w = \frac{-1 - iz}{2} = \frac{-1 - i(2 + i)}{2} = -i$	

No.	Suggested Solution	Remarks for Student
(a)	$f(x) = \tan^{-1}\left(\sqrt{2} + x\right)$	
	$f'(x) = \frac{1}{1 + (\sqrt{2} + x)^2} = \left[1 + (\sqrt{2} + x)^2\right]^{-1}$	
	$f''(x) = -\left[1 + \left(\sqrt{2} + x\right)^2\right]^{-2} \left(2\left(\sqrt{2} + x\right)\right) = \frac{-2\left(\sqrt{2} + x\right)}{\left[1 + \left(\sqrt{2} + x\right)^2\right]^2}$	
(b)	$f(0) = \tan^{-1}\sqrt{2} = 0.95532$	Note that all calculated values are to be in
	$f'(0) = \frac{1}{1 + (\sqrt{2})^2} = \frac{1}{3} = 0.33333$	radians – check that you set calculator to the correct mode
	$f''(0) = \frac{-2\sqrt{2}}{\left[1+2\right]^2} = \frac{-2\sqrt{2}}{9} = -0.31427$	
	$f(x) = 0.955 + 0.333x - \frac{0.31427}{2}x^2 + \dots$	Note the degree of
	$= 0.955 + 0.333x - 0.157x^2 + \dots$	question is 3 s.f.

No.	Suggested Solution	Remarks for Student
(a)	$x = \frac{1}{2} \left(e^{3t} + 2e^{-3t} \right) = \frac{1}{2} e^{3t} + e^{-3t} \Longrightarrow \frac{dx}{dt} = \frac{3}{2} e^{3t} - 3e^{-3t}$ $y = \frac{1}{2} \left(e^{3t} - 2e^{-3t} \right) = \frac{1}{2} e^{3t} - e^{-3t} \Longrightarrow \frac{dy}{dt} = \frac{3}{2} e^{3t} + 3e^{-3t}$ $\frac{dy}{dx} = \frac{\frac{3}{2} e^{3t} + 3e^{-3t}}{\frac{3}{2} e^{3t} - 3e^{-3t}} = \frac{e^{3t} + 2e^{-3t}}{e^{3t} - 2e^{-3t}}$	$e^{\ln x} = x$ for $x > 0$
	$l = \frac{1}{3} \ln 2, \frac{1}{dx} = \frac{1}{2 - 1} = 3$ Gradient of normal = $-\frac{1}{3}$	
(b)	$x + y = e^{3t}$ $x - y = 2e^{-3t}$ $(x + y)(x - y) = e^{3t} (2e^{-3t})$ $x^{2} - y^{2} = 2 \Longrightarrow \frac{x^{2}}{(\sqrt{2})^{2}} - \frac{y^{2}}{(\sqrt{2})^{2}} = 1, x \ge \sqrt{2}$	Since question says state the restriction for x, we can use GC to draw $x = \frac{1}{2} (e^{3t} + 2e^{-3t})$ to get the restriction on x.
		(x as Y_1 and t as X in GC)

No.	Suggested Solution	Remarks for Student
(a)		
	$\frac{d}{dx}(\cot x) = \frac{d}{dx}\left(\frac{\cos x}{\sin x}\right)$ $= \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} \text{ (using quotient rule)}$	
	$= \frac{-1}{\sin^2 x} \text{ (since } \sin^2 x + \cos^2 x = 1)$ $= -\csc^2 x$	
(b)	Note that $\sin 2x = 2\sin x \cos x$ and $\tan x = \frac{\sin x}{\cos x}$, therefore	This is a "show" question
	$\sin 2x \tan x = \left(2\sin x \cos x\right) \frac{\sin x}{\cos x} = 2\sin^2 x$	
(c)	$\int_{\frac{\pi}{18}}^{\frac{\pi}{9}} \csc 6x \cot 3x \mathrm{d}x$	
	$= \int_{\frac{\pi}{18}}^{\frac{\pi}{9}} \frac{1}{\sin 6x \tan 3x} \mathrm{d}x$	
	$= \int_{\frac{\pi}{18}}^{\frac{\pi}{9}} \frac{1}{2\sin^2 3x} dx \qquad (\text{from (b)})$	
	$=\frac{1}{2}\int_{\frac{\pi}{18}}^{\frac{\pi}{9}}\csc^{2}3x dx$	
	$= -\frac{1}{6} \left[\cot 3x \right]_{\frac{\pi}{18}}^{\frac{\pi}{9}} (\text{from (a)})$	
	$= -\frac{1}{6} \left[\cot \frac{\pi}{3} - \cot \frac{\pi}{6} \right]$	
	$= -\frac{1}{6} \left[\frac{1}{\sqrt{3}} - \sqrt{3} \right]$	
	$= -\frac{1}{6} \left[\frac{1-3}{\sqrt{3}} \right]$	Note that you are expected to simplify the
	$=\frac{1}{3\sqrt{3}} \text{ or } \frac{\sqrt{3}}{9}$	answer. You can also use GC to verify whether your answer is correct.

No.	Suggested Solution	Remarks for Student
(a)	$(x+8)^2 + (mx-14)^2 = 52$	
	$x^2 + 16x + 64 + m^2 x^2 - 28mx + 196 = 52$	
	$(m^{2}+1)x^{2}+(16-28m)x+208=0(1)$	
	line is tangent to curve means (1) has one repeated root,	
	$(16-28m)^2 - 4(m^2+1)(208) = 0$	
	$256 - 896m + 784m^2 - 832m^2 - 832 = 0$	
	$-48m^2 - 896m - 576 = 0$	
	$3m^2 + 56m + 36 = 0$	
(b)	since tangents intersects at (0,0), equations of both tangents will be $y = m r$ and $y = m r$, where m and m satisfy the equation	
	in (a), solving $3m^2 + 56m + 36 = 0$	
	$3m^2 + 56m + 36 = 0$	
	$m = \frac{-56 \pm \sqrt{56^2 - 4(3)(36)}}{6}$	
	$=\frac{-56\pm52}{}$	
	6	
	$=-18 \text{ or } -\frac{2}{3}$	
	Sub $m = -18$ into (1) in (a),	
	$325x^2 + 520x + 208 = 0$	
	$x = -0.8$ (from GC or equation can be reduced to $(x + 0.8)^2 = 0$)	
	y = -18(-0.8) = 14.4	
	Sub $m = -\frac{2}{3}$ into (1) in (a),	
	$\frac{13}{9}x^2 + \frac{104}{3}x + 208 = 0$	
	$x = -12$ (from GC or equation can be reduced to $(x+12)^2 = 0$)	
	$y = -\frac{2}{3}(-12) = 8$	
	Coordinates are $(-12,8)$ and $(-0.8,14.4)$.	

No.	Suggested Solution	on	Remarks for Student
(a)	$f(x) = \frac{ax+k}{x-a} = \frac{a(x-a)+a^2+k}{x-a} = a + \frac{a^2}{x-a}$ Sequence of transformation: 1. Translate <i>a</i> units in the positive <i>x</i> d		
	 Scale the graph by a factor (a² + k Translate <i>a</i> units in the positive <i>y</i> d) parallel to the <i>y</i> -axis irection	
(b)	$y = \frac{ax+k}{x-a}$ yx - ya = ax+k x(y-a) = ay+k $x = \frac{ay+k}{y-a}$ $f^{-1}(x) = \frac{ax+k}{x-a} = f(x)$		
(c)	$f^{2}(x) = ff(x) = f^{-1}f(x) = x$		
(d)	$f^{2023}(1) = f^{2022}f(1) = f(1) = \frac{a+k}{1-a}$	From (c), $f^{2022}(x) = f^{2}(f^{2}(\cdots f^{2}))$	(x))) = x

No.	Suggested Solution	Remarks for Student	
(a)	$y = x^{-3} \ln x = \frac{\ln x}{x^3}$		
	$\frac{dy}{dx} = \frac{x^2 - 3x^2 \ln x}{x^6} = \frac{1 - 3\ln x}{x^4}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \Longrightarrow 1 - 3\ln x = 0 \Longrightarrow x = \mathrm{e}^{\frac{1}{3}}$		
	$y = \left(e^{\frac{1}{3}}\right)^{-3} \ln e^{\frac{1}{3}} = \frac{1}{3}e^{-1}$		
	Coordinates are $\left(e^{\frac{1}{3}}, \frac{1}{3}e^{-1}\right)$		
(b)	$\int_{1}^{3} x^{-3} \ln x dx$		
	$= \left[-\frac{1}{2} x^{-2} \ln x \right]_{1}^{3} + \frac{1}{2} \int_{1}^{3} x^{-3} dx$		
	$= -\frac{1}{18} \ln 3 - \frac{1}{4} \left[x^{-2} \right]_{1}^{3}$		
	$= -\frac{1}{18}\ln 3 - \frac{1}{36} + \frac{1}{4}$		
	$=\frac{2}{9}-\frac{1}{18}\ln 3$		

No.	Suggested Solution		Remarks for Student
(a)	$\int \frac{2x-1}{x^2+2x+1} dx$ = $\int \frac{2x+2-3}{x^2+2x+1} dx$ = $\int \frac{2x+2}{x^2+2x+1} dx - \int \frac{3}{(x+1)^2} dx, x \neq -1$ = $\ln x^2+2x+1 + \frac{3}{x+1} + c$ = $\ln (x+1)^2 + \frac{3}{x+1} + c$		Idea is to apply $\int \frac{f'(x)}{f'(x)} dx$
(b)	$\int_{0}^{2} \frac{ 2x-1 }{x^{2}+2x+1} dx$ $= -\int_{0}^{\frac{1}{2}} \frac{2x-1}{x^{2}+2x+1} dx + \int_{\frac{1}{2}}^{2} \frac{2x-1}{x^{2}+2x+1} dx$ $= -\left[\ln\left(x^{2}+2x+1\right) + \frac{3}{x+1}\right]_{0}^{\frac{1}{2}} + \left[\ln\left(x^{2}+2x+1\right) + \frac{3}{x+1}\right]_{\frac{1}{2}}^{2}$ $= -\left[\ln\frac{9}{4}+2-3\right] + \left[\ln9+1-\ln\frac{9}{4}-2\right]$ $= \ln\frac{16}{9}$ $= 2\ln\frac{4}{3}$	Note: $ 2x-1 $ $=\begin{cases} 2x-1, \\ -(2x-1) \end{cases}$	$\frac{1}{2} \le x \le 2$ $), 0 \le x < \frac{1}{2}$

No.	Suggested Solution	Remarks for Student
(a)	a+2d = ar	
	$a + 14d = ar^2$	
	$\frac{a+2d}{a} = \frac{a+14d}{a+2d}$	
	$a^2 + 4ad + 4d^2 = a^2 + 14ad$	
	$4d^2 - 10ad = 0$	
	$d = 0$ (rejected since $d \neq 0$) or $d = \frac{5a}{2}$	
(b)	$S_{\infty} = \frac{\sin\theta}{1 + (\cos\theta)}$	
	$\sin \theta$	
	$=\frac{\sin\theta}{1+\cos\theta}$	
	$2\sin\frac{\theta}{2}\cos\frac{\theta}{2}$	
	$=\frac{2}{2\cos^2\theta}$	
	$2\cos\frac{1}{2}$	
	$=\tan\frac{\theta}{2}, \ k=\frac{1}{2}$	
(c)	$\theta = \frac{\pi}{3}, a = \sin \theta = \frac{\sqrt{3}}{2}$	
	$r = \cos \theta = \frac{1}{2}$	
	$r = -\cos \theta = -\frac{1}{2}$	
	$S_7 = \frac{a(1-r')}{1-r}$	
	$\sqrt{3}(.(1)^7)$	
	$-\frac{1}{2}\left(1-\left(-\frac{1}{2}\right)\right)$	
	$ 1-\left(-\frac{1}{2}\right)$	
	$=\frac{\sqrt{3}}{2}\left(1+\frac{1}{2^{7}}\right)\times\frac{2}{3}$	
	$=\frac{\sqrt{3}}{3}\left(\frac{129}{128}\right)$	
	$=\frac{43\sqrt{3}}{128}$	

No.	Suggested Solution	Remarks for Student
(a)	$y = ax + b + \frac{a + 2b}{x - 1}$ $\frac{dy}{dx} = a - \frac{a + 2b}{(x - 1)^2}$ C has no stationary points, $\frac{dy}{dx} = 0 \Rightarrow a(x - 1)^2 - (a + 2b) = 0 \text{has no solution}$ $ax^2 - 2ax - 2b = 0 \text{has no solution}$ $\therefore 4a^2 - 4a(-2b) < 0$ $a(a + 2b) < 0$ Since $a > 0, a + 2b < 0 \Rightarrow a < -2b \text{ or } b < -\frac{1}{2}a.$	
(b)	y = ax - a $y = ax - 2a$	Given $b = -2a$, -2b = 4a. Since $a > 0$, a < -2b From (a), C has no stationary point.
(c)	As shown in diagram for (b)	
(d)	a = 1 From graphs, $x \le -2$ or $x > 1$	

No.	Suggested Solution	Remarks for Student
(a)	$\left \overline{QP}\right = 939 \implies \begin{pmatrix} 936\\72\\p+15 \end{pmatrix} = 939$	
	$936^2 + 72^2 + (n+15)^2 = 939^2$	
	$(p+15)^2 = 441$	
	(p+15) = -441 p = 6 (rejected since $p < -15$) or $p = -36$	
(b)	$\begin{pmatrix} -100\\ 400\\ 50 \end{pmatrix} \times \begin{pmatrix} -200\\ 940\\ 30 \end{pmatrix} = 50 \begin{pmatrix} -2\\8\\1 \end{pmatrix} \times 10 \begin{pmatrix} -20\\94\\3 \end{pmatrix} = 500 \begin{pmatrix} -70\\-14\\-28 \end{pmatrix} = -7000 \begin{pmatrix} 5\\1\\2 \end{pmatrix}$ $= -7000 \begin{pmatrix} 5\\1\\2 \end{pmatrix}$	Question asked for
	$ \begin{bmatrix} r \\ 2 \end{bmatrix}^{-1} \begin{bmatrix} 600 \\ -20 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 2 \end{bmatrix}^{-1} = 2360 $ Cartesian equation of the plane is $5x + y + 2z = 2560$	cartesian equation of the plane
(c)	$l_{PQ}: r = \begin{pmatrix} 200\\20\\-15 \end{pmatrix} + \lambda \begin{pmatrix} 312\\24\\-7 \end{pmatrix}$ Sub into $5x + y + 2z = 2560$ $5(200 + 312\lambda) + (20 + 24\lambda) + 2(-15 - 7\lambda) = 2560$	
	$\lambda = 1$	Question asked for
	Coordinates are (512,44,-22)	coordinates
(d)	Let α be angle of PQ made with vertical $\cos \alpha = \frac{\begin{pmatrix} 312\\ 24\\ -7 \end{pmatrix} \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}}{\begin{vmatrix} 312\\ 24\\ -7 \end{vmatrix} \begin{vmatrix} 0\\ 0\\ 1 \end{vmatrix}} = \frac{7}{313}$	The horizontal refers to a plane perpendicular to the <i>z</i> -axes.
	$\alpha = 88.719^{\circ}$ Thus, the angle of PQ made with horizontal is $90^{\circ} - \alpha = 1.3^{\circ}$ (1 d.p.)	178.7° is also acceptable in this case as question did not specify acute angle.

11 | P a g e

Question 12				
	No.			Sug

No.	Suggested Solution	Remarks for Student
(i)	$\frac{\mathrm{d}P}{\mathrm{d}t} = kP$	
	$\int \frac{1}{P} \mathrm{d}P = \int k \mathrm{d}t$	
	$\ln P = kt + C$	
	$\ln P = kt + C, \text{since } P > 0$	
	$P = e^{kt+C} = Ae^{kt}$, where $A = e^{c}$	
	Given that $t = 0, P = 50 \Rightarrow A = 50$	
	$\therefore P = 50e^{kt}$	
	$t = 10, P = 100 \Longrightarrow 100 = 50e^{10h}$	
	$e^{10k} = 2 \Longrightarrow e^k = 2^{\overline{10}}$	
	$k = \frac{1}{12} \ln 2$	
	$\begin{pmatrix} t \\ - \end{pmatrix}$	Need to write P
	$\therefore P = 50 \left(2^{10} \right)$	stated in the
		question
(ii)	$\frac{\mathrm{d}P}{\mathrm{d}t} = \lambda P (500 - P)$	
	$\int \frac{1}{P(500-P)} \mathrm{d}P = \int \lambda \mathrm{d}t$	
	$\int \frac{1}{500P} + \frac{1}{500(500-P)} dP = \lambda t + C$	
	$\frac{1}{500}\ln\left \frac{P}{500-P}\right = \lambda t + C$	
	$\frac{P}{500-P} = A e^{500\lambda t}, \ A = \pm e^{500C}$	
	$P = \frac{500Ae^{500\lambda t}}{1 + Ae^{500\lambda t}}$	
	$t = 0, P = 50 \Longrightarrow A = \frac{1}{9}$	
	$P = \frac{\frac{500}{9}e^{500\lambda t}}{1 + \frac{1}{9}e^{500\lambda t}} = \frac{500e^{500\lambda t}}{9 + e^{500\lambda t}}$	
	t = 10, P = 100	
	$\frac{1}{4} = \frac{1}{9} e^{5000\lambda} \Longrightarrow e^{\lambda} = \left(\frac{9}{4}\right)^{\frac{1}{5000}}$	

	$P = \frac{500\left(\frac{9}{4}\right)^{\frac{t}{10}}}{9 + \left(\frac{9}{4}\right)^{\frac{t}{10}}} \text{ or } P = \frac{500}{1 + 9\left(\frac{9}{4}\right)^{-\frac{t}{10}}}$	
(c)	Refined model, $P = \frac{500\left(\frac{9}{4}\right)^{\frac{t}{10}}}{9 + \left(\frac{9}{4}\right)^{\frac{t}{10}}} = \frac{500}{9\left(\frac{9}{4}\right)^{-\frac{t}{10}} + 1} \to 500 \text{ as } t \to \infty$	
	Population approaches 500 in the long run. First model, $P = 50\left(2^{\frac{t}{10}}\right) \rightarrow \infty$ as $t \rightarrow \infty$ which is not realistic in real world as no population could indefinitely approach infinity as resources are limited.	Need to compare the 2 models in the long run