2024 Sec 4 Preliminary / Year 4 End-of-Year Examination Chemistry 6092/03 Practical Answer scheme

Qn	Туре	Answers				
1(ai)	MMO	T able containing headings with	correct units [1]			
	PDO	• Final/initial (burette) reading	ı/cm ³			
		• Volume (of P) / cm ³				
		I: units with values				
		[R] Burette Readings recorded to ne	earest 0.05 cm ³	+ correct volume		
		of P calculated [1]				
		[A] Accuracy [2] Teacher value 20.0	<u>60 cm³</u> for all sl	hifts		
		for average titre (of consistent read	ings) within 0.2	0 cm ³ of SS's		
		average value score - 2 marks for c	corrected titres	2 2 2 2 2 2		
		for average titre (of consistent read	ings) within 0.3	0 cm [°] of SS's		
		average value score - T mark for co	mecleu lilles			
		[C] 2 C onsistent readings within 0.2	0 cm ³ of each o	other [1]		
		Example:				
		Titration number	1	2		
		Final burette reading / cm ³	20.60	20.60		
		Initial burette reading / cm ³	0.00	0.00		
		Volume of P / cm ³	20.60	20.60		
		Best titration results	\checkmark	\checkmark		
1(aii)	MMO	calculates mean correctly to 2 de	cimal places (dp) [1]		
		- candidate must take the average	e of two (or mor	e) titre values that		
		are within a total spread of not n	nore than 0.20 (cm ³ / average of		
		closest titre values				
		- working / explanation must be shown or ticks must be put next to				
		the two (or more) accurate readings selected				
		- the mean should be quoted to 2	a.p. and be rou	unded to the		
1(bi)	ACF	Correctly calculates amount of HC/	used [1]			
		amount of $HC_{I} = \frac{0.100 \times \text{volume in (a)(ii)}}{1000}$ (mol)				
4 (1- ::)		$\frac{1000}{1000}$ (mol)				
1(DII)	ACE	Correctly uses equation [1]	<u>, 1</u> , 1)			
		amount of sodium carbonate = (b)(i	$) \times \frac{1}{2}$ (mol)			
1(biii)	ACE	concentration of sodium carbonate	in 1.00 dm ³	2		
		= amount of sodium carbonate from	ו (b)(ii) × 1000/ <u>25.0</u> (ו	mol/dm³)		
1b(iv)	ACE	$M_{\rm r} = \frac{\rm mass}{\rm malos}$				
		$M = \frac{14.30}{14.30}$ [1]				
		concentration from (b)(iii)				
		$M_{\rm e}$ of nH _e O = $M_{\rm e} = 106$				
		$m_{\rm r} \circ f n H_2 \circ f n $				
		$\Pi = \frac{18}{18} [\Pi]$				
		leaving answers to 3sig fig for b(i)	b(ii) and b(iii)	11.		
		leaving answers to osly lig for $D(I)$,] (III)a nu b(III)	۱],		

1(c)	ACE	Volume of P to be smaller than expected + amount of P to be smaller than expected + amount of Na_2CO_3 to be smaller than expected ;				
		n will be larger than expected; R: increase				
1(d)	MMO PDO	precision of volume to .0 or .5 cm ³ ; calculate mass of P correctly + precision of mass to 2 dp ;				
1(ei)	ACE	Gas lost from the boiling tube before the rubber bung was replaced				
1(eii)	ACE	use a small test-tube and thread/ drop(ping) funnel/ thistle funnel; R: delivery funnel/ dropper flask/ dropper funnel				
2(a)	MMO PDO	black solid/residue; gas produced relights a glowing splint + oxygen (gas) is produced ; (A: glowing splint becomes brighter)				
2(b)(i)	MMO PDO	 (green/dark green/blue-green solution) which turns purple/ dark purple/ black (upon standing) purple solution purple* solution turns colourless / pale yellow / yellow ; OR (pale) green solution turns pale/ light yellow / yellow *mention 'purple' at least once in Test 2 or 3 off-white ppt. (formed) + insoluble in excess (aq. ammonia) ; A: light yellow/ light brown/ cream/ beige / yellow/ brown R: white/ whitish no observable changes + white ppt. ; 				
2(b)(ii)	ACE	redox ; (pale yellow/yellow) Fe ³⁺ / Fe ₂ (SO ₄) ₃ is formed + oxidation state of Fe in FeSO ₄ increases from +2 to +3 OR Fe ²⁺ loses electron (to form Fe ³⁺) + hence Fe in FeSO ₄ is oxidised (by acidified KMnO ₄) ; A: oxidation				
2(b)(iii)	ACE	SO ₄ ²⁻ / Sulfate + Test 6 ;				
2(b)(iv)	ACE	Does not affect (conclusion) + any carbonate present will be removed by dilute nitric acid regardless of order of addition (OWTTE);				

- **3(A) PDO** [Axes] Axes labelled + units ; [Scale] Appropriate scale + every 10 small squares marked + plotted points take up more than 50% of graph grid [Plots] Plot all points correctly within half of smallest square [Line] Two best-fit straight lines ;
- **3(B)** ACE Reading off the best-fit line with dotted line drawn + indicate value on y-axis OR coordinates written + y-value (0.25 °C) error allowance is half the smallest square ;
- **3(C)** ACE As volume of **B** increases from 0 cm³ to 25 cm³, the highest temperature reached increased +

As volume of **B** increases from 25 cm^3 to 40 cm^3 , the highest temperature reached decreased ;

As volume of **B** increased from 0 cm^3 to 25 cm^3 , **B** is the limiting reactant. As volume of **B** increased from 25 cm^3 to 40 cm^3 , all the alkali is neutralised/ reaction is complete (OWTTE), no more heat is produced (so heat is evenly distributed over a larger volume.)

4 P Method: Measuring mass over time

- 1. Measure a known/fixed volume of drink using a measuring cylinder / pipette / burette
- 2. Add excess (solid) NaHCO₃
- suitable apparatus for experiment: conical flask (R: beaker) + cotton wool placed in the mouth of the conical flask (to prevent acid spray, while allowing the carbon dioxide gas to escape) + (electronic) mass balance + stopwatch OR labelled diagram
- 4. Measure mass of the conical flask and its contents at fixed time intervals (e.g. 1-min intervals) (until no change in mass)
- 5. Repeat experiment with the other fizzy drink
- 6. Plot a graph of the mass of the conical flask and its contents against time
- 7. for both fizzy drinks on the same axes / calculate (initial) gradients
- 8. The graph with a steeper (initial) gradient is the drink with a higher concentration of phosphoric acid

Category	Specific details	Tick	Mark
Quantity	excess (solid) NaHCO ₃		
	known/ fixed volume of fizzy drink		
Apparatus	stopwatch		
	burette/ pipette/ measuring cylinder		
	conical flask (R: beaker)		
	mass (electronic) balance		
	cotton wool		
Measurement	mass of the conical flask and its contents at fixed time intervals		
	until no change in mass (R: until end of reaction/ reaction is complete, no more effervescence is seen)		
Conclusion	plot a graph of the mass of the conical flask and its contents against time		
	plot both graphs on the same axes/ calculate initial gradient		
	graph with steeper initial gradient is the one with higher concentration of phosphoric acid		

Category	Specific details	Tick	Mark
Quantity	excess (solid) NaHCO ₃		
	known/ fixed volume of fizzy drink		
Apparatus	stopwatch		
	burette/ pipette/ measuring cylinder		
	conical flask (R: beaker)		
	mass (electronic) balance		
	cotton wool		
Measurement	mass of the conical flask and its contents at fixed time intervals		
	until no change in mass (R: until end of reaction/ reaction is complete, no more effervescence is seen)		
Conclusion	plot a graph of the mass of the conical flask and its contents against time		
	plot both graphs on the same axes/ calculate initial gradient		
	graph with steeper initial gradient is the one with higher concentration of phosphoric acid		

Category	Specific details	Tick	Mark	Category
Quantity	excess (solid) NaHCO ₃			Quantity
	known/ fixed volume of fizzy drink			
Apparatus	stopwatch			Apparatus
	burette/ pipette/ measuring cylinder			
	conical flask (R: beaker)			
	mass (electronic) balance			
	cotton wool			
Measurement	mass of the conical flask and its contents at fixed time intervals			Measureme
	until no change in mass (R: until end of reaction/ reaction is complete, no more effervescence is seen)			
Conclusion	plot a graph of the mass of the conical flask and its contents against time			Conclusion
	plot both graphs on the same axes/ calculate initial gradient			
	graph with steeper initial gradient is the one with higher concentration of phosphoric acid			

Category	Specific details	Tick	Mark
Quantity	excess (solid) NaHCO ₃		
	known/ fixed volume of fizzy drink		
Apparatus	stopwatch		
	burette/ pipette/ measuring cylinder		
	conical flask (R: beaker)		
	mass (electronic) balance		
	cotton wool		
Measurement	mass of the conical flask and its contents at fixed time		
	intervals		
	until no change in mass		
	(R: until end of reaction/ reaction is complete, no more effervescence is seen)		
Conclusion	plot a graph of the mass of the conical flask and its		
	contents against time		
	plot both graphs on the same axes/ calculate initial		
	gradient		
	graph with steeper initial gradient is the one with		
	higher concentration of phosphoric acid		

Q1a(i) Titration table & values	Tick	Mark
Т	Table containing headings with correct units		
	Final/ initial (burette) readings/ cm ³		
	Volume (of P) / cm ³		
R	Burette readings recorded to nearest 0.05 cm ³		
	Correct volume of P calculated		
Α	Teachers' reading = 20.60 cm ³		
	Within ± 0.20 cm ³ of teachers' (20.40 – 20.80cm ³)		
	Or within \pm 0.30 cm ³ of teachers' (20.30 – 20.90cm ³)		
С	Consistent readings within 0.20 cm ³ of each other		

Q1a(i) Titration table & values	Tick	Mark
Т	Table containing headings with correct units		
	Final/ initial (burette) readings/ cm ³		
	Volume (of P) / cm ³		
R	Burette readings recorded to nearest 0.05 cm ³		
	Correct volume of P calculated		
Α	Teachers' reading = 20.60 cm ³		
	Within \pm 0.20 cm ³ of teachers' (20.40 – 20.80 cm ³)		
	Or within \pm 0.30 cm ³ of teachers' (20.30 – 20.90cm ³)		
С	Consistent readings within 0.20 cm ³ of each other		

Q1a(i) Titration table & values	Tick	Mark
Т	Table containing headings with correct units Final/ initial (burette) readings/ cm ³		
	Volume (of P) / cm ³		
R	Burette readings recorded to nearest 0.05 cm ³		
	Correct volume of P calculated		
Α	Teachers' reading = 20.60 cm ³		
	Within ± 0.20 cm ³ of teachers' (20.40 – 20.80cm ³)		
	Or within \pm 0.30 cm ³ of teachers' (20.30 – 20.90cm ³)		
С	Consistent readings within 0.20 cm ³ of each other		

Q1a(i) Titration table & values	Tick	Mark
Т	Table containing headings with correct units		
	Final/ initial (burette) readings/ cm ³		
	Volume (of P) / cm ³		
R	Burette readings recorded to nearest 0.05 cm ³		
	Correct volume of P calculated		
Α	Teachers' reading = 20.60 cm ³		
	Within \pm 0.20 cm ³ of teachers' (20.40 – 20.80 cm ³)		
	Or within \pm 0.30 cm ³ of teachers' (20.30 – 20.90 cm ³)		
С	Consistent readings within 0.20 cm ³ of each other		

Q1a(i	Q1a(i) Titration table & values		Mark
Т	Table containing headings with correct units		
	Final/ initial (burette) readings/ cm ³		
	Volume (of P) / cm ³		
R	Burette readings recorded to nearest 0.05 cm ³		
	Correct volume of P calculated		
Α	Teachers' reading = 20.60 cm ³		
	Within \pm 0.20 cm ³ of teachers' (20.40 – 20.80cm ³)		
	Or within \pm 0.30 cm ³ of teachers' (20.30 – 20.90cm ³)		
С	Consistent readings within 0.20 cm ³ of each other		
	-		

Q1a(i) Titration table & values	Tick	Mark
Т	Table containing headings with correct units		
	Final/ initial (burette) readings/ cm ³		
	Volume (of P) / cm ³		
R	Burette readings recorded to nearest 0.05 cm ³		
	Correct volume of P calculated		
Α	Teachers' reading = 20.60 cm ³		
	Within ± 0.20 cm ³ of teachers' (20.40 – 20.80cm ³)		
	Or within $\pm 0.30 \text{ cm}^3$ of teachers' (20.30 – 20.90 cm ³)		
С	Consistent readings within 0.20 cm ³ of each other		

Q3a Graph Plotting		Tick	Mark	Q3a Graph Plotting		Tick	Mark
Axes	Axes labelled + units			Axes	Axes labelled + units		
	highest temperature reached / °C				highest temperature reached / °C		
	against total volume of B (added)/ cm ³				against total volume of B (added)/ cm ³		
Scale	Appropriate scale (2cm to 5 °C)			Scale	Appropriate scale (2cm to 5 °C)		
	Students do not need to start from 0 for y-axis				Students do not need to start from 0 for y-axis		
	Every 10 small squares marked				Every 10 small squares marked		
	Plotted points take up more than 50% of graph grid				Plotted points take up more than 50% of graph grid		
Plots	Plot all points correctly within			Plots	Plot all points correctly within		
	half of the smallest square				half of the smallest square		
Line	One best fit line drawn using data from 0 to 20 cm ³			Line	One best fit line drawn using data from 0 to 20 cm ³		
	2 nd best fit line drawn using data from 30 to 40 cm ³ .				2 nd best fit line drawn using data from 30 to 40 cm ³ .		
	Extrapolate the two lines so that they intersect.				Extrapolate the two lines so that they intersect.		1
Q3a G	raph Plotting	LICK	Mark	Q3a G	raph Plotting	LICK	Mark
Axes	Axes labelled + units			Axes	Axes labelled + units		
	nignest temperature reached / °C		_		nignest temperature reached / °C		_
	against total volume of B (added)/ cm ³				against total volume of B (added)/ cm ³		
Scale	Appropriate scale (2cm to 5 °C)			Scale	Appropriate scale (2cm to 5 °C)		
	Students do not need to start from 0 for y-axis		_		Students do not need to start from 0 for y-axis		_
	Every 10 small squares marked		_		Every 10 small squares marked		_
	Plotted points take up more than 50% of graph grid				Plotted points take up more than 50% of graph grid		
Plots	Plot all points correctly within			Plots	Plot all points correctly within		
	half of the smallest square				half of the smallest square		
Line	One best fit line drawn using data from 0 to 20 cm ³			Line	One best fit line drawn using data from 0 to 20 cm ³		_
	2 nd best fit line drawn using data from 30 to 40 cm ³ .				2 nd best fit line drawn using data from 30 to 40 cm ³ .		
	Extrapolate the two lines so that they intersect.				Extrapolate the two lines so that they intersect.		
022 G	ranh Plotting	Tick	Mark	022 6	ranh Plotting	Tick	Mark
			IVIAI K	Q34 G			IVIAI K
AVC2	highest temperature reached / °C			Aves	highest temperature reached / °C		
	against total volume of B (added)/ cm ³		_		against total volume of B (added)/ cm ³		_
Scale	Appropriate scale (2cm to $5 ^{\circ}$ C)			Scale	Appropriate scale (2cm to $5 ^{\circ}$ C)		
Scale	Students do not need to start from 0 for v-axis			Scale	Students do not need to start from 0 for v-axis		
	Every 10 small squares marked		_		Every 10 small squares marked		_
	Plotted points take up more than 50% of graph grid		-		Plotted points take up more than 50% of graph grid		-
Plate	Plot all points correctly within		+	Plate	Plot all points correctly within		+
FIUIS	half of the smallest square			FIUIS	half of the smallest square		
Linc	One heat fit line drawn using data from 0 to 20 cm ³	_		Line	One heat fit line drawn using data from 0 to 20 cm ³	_	
Line	Une best in line drawn using data from 0 to 20 cm ³			Line	One best in line drawn using data from 0 to 20 cm ³		

 2nd best fit line drawn using data from 30 to 40 cm³. Extrapolate the two lines so that they intersect.

2nd best fit line drawn using data from 30 to 40 cm³. Extrapolate the two lines so that they intersect.

Name: _____ () Class: _____

Q1a(i) Titration table & values	Tick	Mark
т	Table containing headings with correct units Final/ initial (burette) readings/ cm ³		
	Volume (of P) / cm ³		
R	Burette readings recorded to nearest 0.05 cm ³		
	Correct volume of P calculated		
Α	Teachers' reading = 20.60 cm^3 Within $\pm 0.20 \text{ cm}^3$ of teachers' ($20.40 - 20.80 \text{ cm}^3$)		
	Or within $\pm 0.30 \text{ cm}^3$ of teachers' (20.30 – 20.90 cm ³)		
С	Consistent readings within 0.20 cm ³ of each other		
		Total	/5

Q3a Graph Plotting			Mark
	Axes labelled + units		
Axes	highest temperature reached / °C		
	against total volume of B (added)/ cm ³		
	Appropriate scale (2cm to 5 °C)		
Seele	Students do not need to start from 0 for y-axis		
Scale	Every 10 small squares marked		
	Plotted points take up more than 50% of graph grid		
Diata	Plot all points correctly within		
PIOLS	half of the smallest square		
	One best fit line drawn using data from 0 to 20 cm ³		
Line	2 nd best fit line drawn using data from 30 to 40 cm ³ .		
	Extrapolate the two lines so that they intersect.		
		Total	/4

Q4 Planning		Tick	Mark
Quantity	excess (solid) NaHCO₃		
	known/ fixed volume of fizzy drink		
Apparatus	stopwatch		
	burette/ pipette/ measuring cylinder		
	conical flask (R: beaker)		
	mass (electronic) balance		
	cotton wool		
Measurement	easurement mass of the conical flask and its contents at fixed time		
	intervals		
	until no change in mass		
	(R: until end of reaction/ reaction is complete, no more		
	effervescence is seen)		
Conclusion	plot a graph of the mass of the conical flask and its		
	contents against time		
	plot both graphs on the same axes/ calculate initial gradient		
	graph with steeper initial gradient is the one with higher		
	concentration of phosphoric acid		
		Total	/4

average volume	b(i) 4sf	b(i) 3sf	b(ii) 4sf	b(ii) 3sf	b(iii) 4sf	b(iii) 3sf
20.10	0.002010	0.00201	0.001005	0.00100	0.04020	0.0402
20.15	0.002015	0.00201	0.001007	0.00101	0.04030	0.0403
20.20	0.002020	0.00202	0.001010	0.00101	0.04040	0.0404
20.25	0.002025	0.00202	0.001012	0.00101	0.04050	0.0405
20.30	0.002030	0.00203	0.001015	0.00101	0.04060	0.0406
20.35	0.002035	0.00203	0.001017	0.00102	0.04070	0.0407
20.40	0.002040	0.00204	0.001020	0.00102	0.04080	0.0408
20.45	0.002045	0.00204	0.001022	0.00102	0.04090	0.0409
20.50	0.002050	0.00205	0.001025	0.00102	0.04100	0.0410
20.55	0.002055	0.00205	0.001027	0.00103	0.04110	0.0411
20.60	0.002060	0.00206	0.001030	0.00103	0.04120	0.0412
20.65	0.002065	0.00206	0.001032	0.00103	0.04130	0.0413
20.70	0.002070	0.00207	0.001035	0.00103	0.04140	0.0414
20.75	0.002075	0.00207	0.001037	0.00104	0.04150	0.0415
20.80	0.002080	0.00208	0.001040	0.00104	0.04160	0.0416
20.85	0.002085	0.00208	0.001042	0.00104	0.04170	0.0417
20.90	0.002090	0.00209	0.001045	0.00104	0.04180	0.0418
20.95	0.002095	0.00209	0.001047	0.00105	0.04190	0.0419
21.00	0.002100	0.00210	0.001050	0.00105	0.04200	0.0420