


Paper 2 Structured Questions

©EJC 2021 9749/J1H2MYE/2021

Qns	Answer	Marks
1(b)	Method 1	
	$\uparrow v/m s^{-1}$	
	5	
	0 t/s	
	2.0	
	- 15-	
	- 34	C1
	area under <i>v-t</i> graph gives displacement	correct area
	(for difference in displacement between the 2 stones, look at red +	identified
	green area)	A4
	= 59 m	A1
	Method 2	
	$s_1 = ut + \frac{1}{2}at^2$	
	_	
	$=5(4)+\frac{1}{2}(-9.81)(4^2)$	
	= -58.5 m	
	$s_2 = ut _{\text{steady ascend}} + \left[ut + \frac{1}{2}at^2\right]_{\text{freefall}}$	C1
		58.5
	$=5(2)+\left 5(2)+\frac{1}{2}(-9.81)(2^2)\right $	C4
	= 0.38 m	C1 0.38
		or taking
	$\left s_1 - s_2 = 5(4) + \frac{1}{2}(-9.81)(4^2) - \left\{ 5(2) + \left[5(2) + \frac{1}{2}(-9.81)(2^2) \right] \right\} \right $	sum of the
	= -58.9 m	above 2 numbers
	33.3	T.GITIDO16
	accept 59 m	A1
	Comments: Most did not realise that Method 1 involving the area of 2 trapeziums	
	will be far easier. Of those who were unsuccessful with using the	
	equations, many neglected the period of constant speed in B.	
	Many candidates were able to solve for the correct distance but failed	
	to draw the proper <i>v-t</i> graphs earlier. This is a sign of incomplete	
	understanding and these students should revise.	

Qns	Answer	Marks
1(c)	line starts from $(0, 5)$ decreases at decreasing rate ends at $t = 4$ s, above $(4, -34.2)$	B1
	gradient at $v = 0$ demonstrably same as (a)(i) [e.g. via dotted tangent line]	В1
	5 v/ms ⁻¹ 5 2.0 4.0 - 15	
	Comments: Revision pointers: H202 Kinematics Notes pg 21- 23.	

Qns	Answer	Marks
2(a)(i)	total linear momentum of isolated system of interacting bodies before and after collision remains constant if no net external force	
	acts on system	B1
	Candidates need to be precise with definitions. Many failed to mention "isolated", "system", and "if no net external force acts on system". Some candidates unnecessarily limited their definitions to the case of two interacting bodies, which is not accepted as the principle holds even for multiple bodies so long as the conditions are satisfied.	
	Revision pointers: Dynamics Lecture H203.3	
2(a)(ii)	flat line $p = 39 \text{ kN s}$	B1
	Comments: Generally well-done. question. However, a significant number of students mistakenly sketched a horizontal line in-between the graphs for A and B.	
2(b)(i)	rate of change of momentum of a body is directly proportional to the resultant force acting on it and in the direction of the resultant force	B1
	Comments Similar to (a)(i), definitions should be precise. Students need to define rate of change of linear momentum in terms of the resultant force (the order matters) and to also include the direction of this rate of change of linear momentum.	
	Revision pointers: Dynamics Lecture H203.1	
2(b)(ii)	$F_{\text{on A}} = \frac{\Delta p}{\Delta t}$ $= \frac{(17 - 12) \times 10^3}{1.5} \text{ or } \frac{(12 - 17) \times 10^3}{1.5}$	M 1
	= 3330 N	A1
	Comments Careless mistakes include ignoring the fact that the vertical axis is measure in kN s (and not N s) or dividing by 6 seconds, instead of duration during which the lorries' momenta changed.	
	Other mistakes include assuming that the vertical axis is the velocity measurement of the lorries, instead of its linear momentum.	
	Revision pointers: Dynamics Lecture H203.1	

Qns	Answer	Marks
2(c)	Total initial KE of system = $\left(\frac{p_i^2}{2m}\right)_A + \left(\frac{p_i^2}{2m}\right)_B$	
	$= \frac{\left(17 \times 10^{3}\right)^{2}}{2 \times 1500} + \frac{\left(22 \times 10^{3}\right)^{2}}{2 \times 3000}$ $= 1.77 \times 10^{5} \text{ J}$	
	Total final KE of system = $\left(\frac{p_f^2}{2m}\right)_A + \left(\frac{p_f^2}{2m}\right)_B$	
	$=\frac{\left(12\times10^{3}\right)^{2}}{2\times1500}+\frac{\left(27\times10^{3}\right)^{2}}{2\times3000}$	
	2×1500 2×3000 = 1.70×10^5 J	M1
	= 1.70×10 3	IVI I
	final total kinetic energy of system not same as initial total kinetic energy, inelastic	A 1
	Comments Marks are not awarded for comparing relative speed of approach with relative speed of separation, as the question specifically requires the candidates to compare energies.	
	Other mistakes include misidentifying the linear momentum as velocities or mistaking the vertical axis as N s instead of kN s. The workings and the values calculated must be correct in order to achieve the M1 mark here.	
	The description needs to specifically mention kinetic energy that was reduced. There were descriptions which incorrectly stated <i>total</i> energy was reduced; this would have violated the principle of conservation of energy.	
	Revision pointers: Dynamics Lecture H203.4	

Qns	Answer	Marks
3(a)	no net force in any direction	B1
	no net torque about any point	B1
	Comments	
	Generally well done.	
	Common mistakes included leaving out either one of the two conditions for equilibrium, not specifying the direction in the case of net force, not specifying pivot for net torque.	
	A worrying number of candidates mistakenly stated the principle of moments as the condition for rotational equilibrium instead. In addition, stating the summation of forces being zero in the vertical and horizontal direction is incomplete, as this definition would only hold along 2D and doesn't hold for 3D (in and out of plane of paper).	
	Revision pointers: Forces Lecture H204.3	
3(b)	f _W N _G θ	В1
	f _G	B1
	Comments	
	Generally well done.	
	The common mistake was indicating the directions wrongly, especially for $f_{\rm w}$.	
	Revision pointers: Forces Lecture H204.3	

Qns	Answer	Marks
3(c)	Method 1:	
	vertical equilibrium $f_{\rm W} = W - N_{\rm G}$	
	Vertical equilibrium $N_{\rm W} = NV - N_{\rm G}$	
	Let ladder by length <i>L</i>	
	by Principle of moments about point of contact with floor,	
	sum of clockwise moments = sum of anticlockwise moments	
	$(L_{-2})_{11}$	
	$\left(\frac{L}{2}\cos\theta\right)W = (L\sin\theta)N_{W} + (L\cos\theta)f_{W}$	B1
	W N ton 0 + f	
	$\frac{W}{2} = N_{\rm W} \tan \theta + f_{\rm W}$	
	$N_{\rm W} \tan \theta = \frac{W}{2} - f_{\rm W}$	
	2	
	$=\frac{W}{2}-(W-N_{\rm G})$	
	_	
	$=N_{\rm G}-\frac{W}{2}$	B1
	Method 2:	<u> </u>
	horizontal equilibrium $f_G = N_W$	
	Let ladder by length <i>L</i>	
	by Principle of moments about point of contact with wall,	
	sum of anticlockwise moments = sum of clockwise moments	D4
		B1
	$\left(\frac{L}{2}\cos\theta\right)W + (L\sin\theta)f_{\rm G} = (L\cos\theta)N_{\rm G}$	
	W/	
	$\frac{W}{2} + f_{\rm G} \tan \theta = N_{\rm G}$	
	W . M ton a M	
	$\frac{W}{2} + N_{\rm W} \tan \theta = N_{\rm G}$	
	$N_{\rm W} \tan \theta = N_{\rm G} - \frac{W}{2}$	
		B1
	Method 3:	
	Let ladder by length L	
	by Principle of moments about point of contact between floor and wall,	B1
	sum of anticlockwise moments = sum of clockwise moments	
	$(L_{\text{cos}}, 0) M + (L_{\text{cis}}, 0) M + (L_{\text{cos}}, 0) M$	
	$\left(\frac{L}{2}\cos\theta\right)W + \left(L\sin\theta\right)N_{\rm W} = \left(L\cos\theta\right)N_{\rm G}$	B1
	$\frac{W}{2} + N_{\rm W} \tan \theta = N_{\rm G}$	
	_	
	$N_{\rm W} \tan \theta = N_{\rm G} - \frac{W}{2}$	
	<u> </u>	

Qns	Answer	Marks
	Method 4:	
	vertical equilibrium $f_{W} = W - N_{G}$	
	horizontal equilibrium $f_{G} = N_{W}$	
	Let ladder by length <i>L</i> by Principle of moments <u>about centre of gravity of ladder</u> ,	B1
	sum of anticlockwise moments = sum of clockwise moments	
	$\left(\frac{L}{2}\sin\theta\right)f_{G} + \left(\frac{L}{2}\sin\theta\right)N_{W} + \left(\frac{L}{2}\cos\theta\right)f_{W} = \left(\frac{L}{2}\cos\theta\right)N_{G}$	
	$f_{\rm G} \tan \theta + N_{\rm W} \tan \theta + f_{\rm W} = N_{\rm G}$	
	$N_{\rm W} \tan\theta + N_{\rm W} \tan\theta + (W - N_{\rm G}) = N_{\rm G}$	
	$N_{\rm W} \tan \theta = N_{\rm G} - \frac{W}{2}$	B1
	Comments	
	Many candidates were unable to secure all available marks.	
	There are many methods, candidates should go through all of the variation to understand how flexible the method can be.	
	Common mistakes included	
	• missing moment contributed by f_W or f_G	
	 poor presentation, in particular when applying the principle of moments. 	
	• mistaking the angle of tilt for ladder θ to be the same (it isn't) as	
	the angle between resultant force about point of contact with	
	wall / about point of contact with floor	
3(d)	Revision pointers: Forces Lecture H204.3 (in particular Eg 15) horizontal equilibrium: $N_W = f_G$	B1
O(a)	Tionzontai equilibrium. $N_{\rm W} = I_{\rm G}$	
	$N_{\rm W} \tan \theta = N_{\rm G} - \frac{W}{2}$	
	$f_{\rm G} = \frac{N_{\rm G} - \frac{W}{2}}{\tan \theta} = \frac{(70) - \frac{100}{2}}{\tan(40^{\circ})}$	
	$I_{\rm G} = \frac{1}{\tan \theta} = \frac{1}{\tan (40^{\circ})}$	
	= 23.8 N (accept 24 N)	A1
	Comments	
	Generally well done.	
3(e)	f_W does not change, only maximum (static) friction between wall and ladder changes	M1
	no change to normal forces	A1
	Comments	
	Badly done. Friction has a limiting characteristic, and actually does not manifest if there are no lateral forces relative to the normal force.	
	Revision pointers: Forces Lecture H204.1 (in particular Eg 4)	

Qns	Answer	Marks		
4(a)(i)	5.0			
	4.0			
	4.0			
	3.0			
	2.0			
	0 2.0 4.0 6.0 8.0 10.0			
	distance along slope / m	B1		
	Comments	БІ		
	Most candidates had done poorly in this question.			
	They failed to realise that > speed is zero at highest height			
	$>$ so 3 kN is the force down the ramp $(mg \sin \theta)$			
	> so any additional force above 3 kN is due to air resistance			
	Revision pointers: Dynamics Lecture H203.2 & Forces Lecture H204.1			
44 . \ ('')				
4(a)(ii)	Method 1 initial KE = final GPE + w.d. against air resistance			
	= (mg)h + area of shaded triangle	B 1		
	$= \left(\frac{F_{\text{down slope}}}{\sin \theta}\right)(h) + \text{area of shaded triangle}$			
	$= \left(\frac{3 \times 10^3}{\sin(30^\circ)}\right) (4.1) + \frac{1}{2} (8.2) ((4-3) \times 10^3)$			
	= 28700 J (accept 29 000 J)	0.4		
	Method 2	A1		
	initial KE = area under graph	B1		
	$=\frac{(4+3)\times10^3}{2}(8.2)$			
	2			
	= 28700 J (accept 29 000 J)	A1		
	Comments Most candidates had done poorly in this question. Candidates had also demonstrated the presentation for this question poorly as they did not write the initial statement. Some of them had also written the wrong statement by stating that "initial KE = w.d. against air			
	resistance only". A number of candidates did not pay attention to the units used for the yaxis.			
	Revision pointers: Work Energy Power Lecture H205.2			

Qns	Answer	Marks
4(b)	$N = m_{\rm A}g \cos\theta$	C1
	$=(50)(9.81)(\cos(37^{\circ}))$	award on substitution
	(= 392 N or 390 N)	or value
	w.d. against friction = f .s	C1
	$=0.25Ns=0.25(m_Ag\cos\theta)(s)$	award on
	$= 0.25(50)(9.81)(\cos(37^\circ))(20)$	substitution or value
	=1959 N (accept 1960 N or 2000 N)	0/ value
		04
	gain in GPE of A = $m_A g(h \sin \theta)$	C1 award on
	$=(50)(9.81)(20 \sin(37^\circ))$	substitution
	(= 5904 J (accept 5900 N))	<i>or</i> value
	loss in = w.d. against gain in gain in GPE of B friction GPE of A KE of A & B	0.4
	GPE of B friction GPE of A KE of A & B	C1
	gain in $KE \text{ of A} = \frac{m_A}{m_A + m_B} \left(\begin{array}{c} \text{gain in} \\ \text{KE of A & B} \end{array} \right)$	
	$= \frac{m_{A}}{m_{A} + m_{B}} \begin{pmatrix} loss in - w.d. against - gain in \\ GPE of B - friction - GPE of A \end{pmatrix}$	
	$=\frac{50}{50+100}((100)(9.81)(20)-1959-5904)$	
	= 3919 J (accept 3920 J or 3900 J or 3910 J)	A 1
	Comments	Ai
	Most candidates had done poorly in this question.	
	Some candidates did not find the normal contact force correctly (e.g. $m_h a$	
	using $m_{\rm A}g \sin\theta$ or $\frac{m_{\rm A}g}{\cos\theta}$). A number of candidates also use the value	
	of friction only instead of work done against friction in the energy	
	equation. A number of candidates had also demonstrated the presentation for this question poorly as they did not write the statement	
	for conservation of energy. Some of them had also written the wrong	
	statement by missing out one or more of the terms stated.	
	Revision pointers: Work Energy Power Lecture H205.2	
4(0)	(74)(0.94)(0.22, 424)	
4(c)	power = $\frac{mgh}{t} = \frac{(74)(9.81)(0.23 \times 131)}{2 \times 60}$	C1
	= 182 W	A 1
	Comments	-
	Most candidates had well done in this question. A few candidates did not pay attention to the units used (i.e. 0.23 m).	
	7. 10 W Sandidates did not pay attention to the units used (i.e. 0.25 III).	
	Revision pointers: Work Energy Power Lecture H205.2	

Qns	Answer	Marks
5(a)(i)	elastic force provides centripetal force on both balls	B1
	spring is constantly extended	B1
	Comments	
	Most of the candidates did not state that elastic force provides	
	centripetal force on both balls. Some candidates simply state a force provides the centripetal force without explicitly stating what type of	
	force, while others mentioned, "the spring provides centripetal force".	
	Quite a number of candidates left this question blank.	
	Revision pointers: Motion in a Circle Lecture H206.1	
5(a)(ii)1.	$m_{\rm A} r_{\rm A} = m_{\rm B} r_{\rm B}$	
	$m_{A} = 50$	M1
	$r_{\rm B} = \frac{m_{\rm A}}{m_{\rm B}} r_{\rm A} = \frac{50}{30} (6)$	
	=10 cm	A0
	Comments Majority of the condidates had done well for this guestion	
	Majority of the candidates had done well for this question.	
5(a)(ii)2.	elastic force provides centripetal force on both balls	
	$m_{\rm A} r_{\rm A} \omega^2 = k \left[L_{\rm total} - L_{\rm natural} \right]$	C1
	$\omega = \sqrt{\frac{k[L_{\text{total}} - L_{\text{natural}}]}{m_{\text{A}}r_{\text{A}}}}$	
	(4)\(\(\frac{1}{2}\)\	
	$=\sqrt{\frac{(4)\left[(10+6-12)\times10^{-2}\right]}{\left(50\times10^{-3}\right)\left(6\times10^{-2}\right)}}$	
	$ \sqrt{(50 \times 10^{-3})(6 \times 10^{-2})} $	
	$= 7.30 \text{ rad s}^{-1}$	A 1
	Comments	
	This question was not very well done. Some candidates neglected to convert length to its SI unit to find the elastic force due to the spring. A	
	number of candidates mistook $\frac{1}{2}kx^2$ as the elastic force. Many	
	candidates calculated the extension wrongly.	
	Revision pointers: Work Energy Power Lecture H205.1	
5(b)(i)	loss in GPE = gain in KE	M1
	$mg(r\sin\theta) = \frac{1}{2}mv^2$	
	$v = \sqrt{2gr \sin \theta}$	A0
	Comments	70
	Worryingly, some candidates used the kinematics while others mis- regarded the sandbag to be in static equilibrium. There were also those who omitted additional force component due to weight when considering the contribution of tension in finding the centripetal force without realising the missing component due to the weight of the sandbag.	
	Revision pointers: Motion in a Circle Lecture H206.2	

Qns	Answer	Marks
5(b)(ii)	vector sum of tension and weight (or words to that effect) provides centripetal force	M1
	$v^2 = 2gr \sin\theta$	
	centripetal force $F_c = \frac{mv^2}{r}$	
	$F_c = 2mg \sin \theta$	C1
	$=2(20)(9.81) \sin(45^{\circ})$	substitution
	(= 278 N (accept 280 N))	or value
	$F_c = T - mg \sin \theta$	C1
	$T = F_c + mg \sin \theta$	successful vector
	$= (2mg \sin \theta) + mg \sin \theta$	resolution
	$=3mg\sin\theta$	
	= 416 N (accept 420 N)	A 1
	Comments	
	Most candidates left this question blank. Candidates who had attempted did not do well because they did not realised the vector sum of tension and weight provides centripetal force. A number of candidates had written $mg \cos \theta$ when resolving the weight of the sandbag along the tension of the rope.	
	Revision pointers: Motion in a Circle Lecture H206.2	

Qns	Answer		Marks
6(a)(i)		distance x	
	0 R 2R 3	BR / 4R	
	0	3.2R, 0	
	$\phi / 10^7 \text{ J kg}^{-1}$		
	-2.0		
	-4.0		
	-6.0		B1
	-8.0		visible tangent
	$g = -\frac{d\phi}{dr} = -\frac{0 - (-6.8 \times 10^7)}{(3.2 - 0.4)(6.4 \times 10^6)}$		B1 read-offs correct to
		ľ	half-square
	= -3.79 N kg ⁻¹ Comments		
	Poorly attempted. Many candidates did not draw	y a tangent at $x = 1.6R$ to	
	show that $g = 3.8 \text{ N kg}^{-1}$. A number of candidate	-	
	is conceptually incorrect (it should be $g = -\frac{d\phi}{dr}$)		
	Revision pointers: Gravitational Field Lecture F	1207.2	
6(a)(ii)	F = mg = (2)(3.8) = 7.6 N		A1
6(b)(i)	type of change		
	1. total no change		
	2. GPE decrease		B1
	3. KE increase		B1
			B1
	Comments Poorly attempted.		
	Majority of students state that the total energy d incorrect. There is no change in the total energy conserved.		
	Revision pointers: Gravitational Field Lecture F	1207.3	

Qns	Answer	Marks
6(b)(ii)	loss in GPE = gain in KE	B1
	$\frac{1}{2} m v^{2} = m \Delta \phi $ $v = \sqrt{2 \phi_{\text{final}} - \phi_{\text{initial}} }$	C1
		B1
	$=\sqrt{2\left \left(-2.1\times10^{7}\right)-0\right }$	
	$= 6480 \text{ m s}^{-1}$ (Accept 6500 m s ⁻¹)	A1
	Comments	
	Poorly attempted. A number of candidates had also demonstrated the presentation for this question poorly as they did not write the statement for conservation of energy.	
	Majority of students found ϕ using the distance of $2R$ instead of $3R$ ($2R$ above the <i>surface</i>).	
	Many students also misunderstood that gravitational force provides centripetal force – the meteorite is not orbiting round the Earth.	
	Revision pointers: Gravitational Field Lecture H207.3	

Qns	Answer	Marks
7(a)	oscillatory motion where acceleration is directly proportional to displacement from the equilibrium position and directed opposite to displacement	B1 B1
	Comments	
	Generally well-done. A number of candidates failed to describe displacement with reference to the equilibrium position.	
	Revision pointers: Simple Harmonic Motion Lecture H210.1	
7(b)	time taken for 3 complete oscillation = 6.5 s	M1
	$\omega = \frac{\theta}{t} = \frac{3(2\pi)}{6.5} = 2.9 \text{ rad s}^{-1}$	Α0
	Comments This is a "show" question with the final answer already given so the emphasis for such question will be elsewhere.	
	In this case, it is the awareness that 3 complete oscillations have been given and thus the need to demonstrate how to obtain the value of 1 period from it.	
	Revision pointers: Simple Harmonic Motion Lecture H210.1	
7(c)(i)	2	
	$\omega^2 = \frac{g}{R}$	C1
	$R = \frac{g}{\omega^2} = \frac{9.81}{2.9^2} = 1.17 \text{ m}$ (accept 1.2 m)	A 1
	Comments Some mistakes involving squaring/square-root of the values were seen.	
	Revision pointers: Simple Harmonic Motion Lecture H210.2	
7(c)(ii)		
	$ v = \omega \sqrt{x_0^2 - x^2} = \omega x_0$ = (2.9)(3×10 ⁻²)	C1 substitution
	$= (2.3)(3 \times 10^{-3})$ = 0.087 m s ⁻¹	A 1
	Comments The most common mistake was not converting 3 cm into metres.	<u> </u>
	Revision pointers: Simple Harmonic Motion Lecture H210.2	
7(d)(i)	amplitude (of oscillations) decreases exponentially with time due to continuous loss of energy to surrounding as negative work is done against resistive forces so total energy in system decreases with time	B1
	Comments Poorly attempted. This is a simple recall of definition, many candidates were not able to give the precise definition. Marking was lenient, so candidates are advised to learn this up carefully in preparation for JC2.	
	Revision pointers: Simple Harmonic Motion Lecture H210.4	

Qns	Answer	Marks
7(d)(ii)	same period (accept slightly longer period)	
	decreasing amplitude	B1
	Comments Generally well done. Some confused lower frequencies with shorter periods and incorrectly sketched oscillations with shorter periods.	
	Revision pointers: Simple Harmonic Motion Lecture H210.4	

Qns	Answer	Marks
8(a)(i)	$P_{\text{received}} = \frac{\text{area}_{\text{receiver}}}{4\pi r^2} P_{\text{source}}$	
	· · · · · · · · · · · · · · · · · · ·	
	$=\frac{2.5}{4\pi (6.7)^2} \left[15 \times \left(10^{-2}\right)^2\right]$	C1
		substitution
	= $6.65 \times 10^{-6} \text{ W}$ (accept $6.7 \times 10^{-6} \text{ W}$)	A1
	Comments	
	Few candidates were awarded marks for this question. Most did not realise that the power received by the microphone at a distance of	
	6.7 m away from the source is a fraction of the power produced at the	
	source.	
	Revision pointers: Simple Harmonic Motion Lecture H211.3	
8(a)(ii)	$I = kx_0^2$	
	$I_{\text{new}} = k(3x_0)^2 = 9I$	
	Intensity of wave is 9 times original	C1
	OR Power of wave is 9 times original .	
	For power received to be the same (while keeping area of microphone	
	to be the same), the intensity of the wave at the new distance have to	
	be the same.	
	$I = \frac{P_{\text{source}}}{4\pi r^2}$	
	Popure pour Popure eld	
	$\frac{P_{\text{source, new}}}{r_{\text{new}}^2} = \frac{P_{\text{source, old}}}{r_{\text{old}}^2}$	
	D r ²	
	$r_{\text{new}} = \sqrt{\frac{' \text{ source, new'old}}{P}}$	
	$r_{\text{new}} = \sqrt{\frac{P_{\text{source, new}} r_{\text{old}}^2}{P_{\text{source, old}}}}$ $= \sqrt{9(6.7)^2}$	
	$=\sqrt{9(6.7)^2}$	
	= 20.1 m (accept 20 m)	A1
	Comments	
	Many candidates demonstrated understanding that triple the displacement amplitude resulted in triple the intensity of the sound	
	wave, but failed to extend their analysis to the relationship between	
	intensity, power and distance from source.	
	Revision pointers: Simple Harmonic Motion Lecture H211.3	
8(b)(i)	when two or more waves meet and overlap,	
	resultant displacement is vector sum of displacement of each individual wave	B1
	Comments	
	Well done.	
	Marks were not awarded for careless use of words/phases like	
	'amplitude' instead of 'displacement', 'vector sum of wave' rather than	
	'vector sum of displacement'. The root word of 'superpose' should not be re-hashed, instead 'meet and overlap' should be used to describe	
	the phenomenon.	
	Revision pointers: Superposition Lecture H212.1	

Qns	Answer	Marks
8(b)(ii)	Progressive longitudinal waves travels/propagates down/along/into	
	pipe,	В0
	and reflects at the closed end to form a wave of same type , amplitude ,	
	ampilitude,	
	frequency, wavelength, speed (2 out of 3 mentioned for the last 3)	B1
	The reflected wave travels in opposite direction along pipe to the	
	incident wave (towards each other).	B1
	The reflected wave meets and overlaps with the incident wave to form stationary wave.	B1
	Comments	5.
	Well done.	
8(b)(iii)		B1
	N	shape of stationary
		wave
		B1
		position of 2 pressure
		nodes
	Comments	
	The sketches were not well done. Candidates were expected to draw	
	one side of the stationary wave boundary with a solid line, and the other	
	end with a dotted line. However, many could correctly indicate the displacement antinodes as the pressure nodes.	
	displacement antinodes as the pressure nodes.	
	Revision pointers: Superposition Lecture H212.6	
8(b)(iv)	$\frac{3}{4}\lambda = 54$	
	$\lambda = 72 \text{ cm}$	
	$v = f\lambda$	
	$=(470)(72\times10^{-2})$	
	$= 338 \text{ m s}^{-1}$ (accept 340 m s ⁻¹)	
	Comments	A1
	Candidates are reminded to give their final answers to 2 or 3 significant	
	figures. Several candidates were penalised for this in this question.	
	No ecf was allowed here as well as part of the intent of (b)(iii) was to aid	
	in the answering of (b)(iv).	
	Revision pointers: Superposition Lecture H212.5	
	1.0 1.0.0.1 pointoro. Caporpoolitori Edutaro 112 12.0	

Qns	Answer	Marks
8(b)(v)	It represents the speed of source wave OR speed of reflected wave	B1
, , , ,	Comments	
	Candidates were expected to state their interpretations of the speed in	
	(b)(iv) referred to. Those who stated that the speed refers to the speed	
	of sound in the pipe was not awarded marks because they were	
	repeating the question in (b)(iv).	
8(c)(i)1.	$d \sin \theta = n\lambda$	
	$(3\lambda)_{\text{sin}^{-1}}(3\lambda)_{\text{sin}^{-1}}(3(750\times10^{-9}))$	
	$\theta_3 = \sin^{-1}\left(\frac{3\lambda}{L/N}\right) = \sin^{-1}\left(\frac{3(750\times10^{-9})}{10^{-3}/290}\right)$	
	,	
	= 40.7° (accept 41°)	A 1
	` '	
8(c)(i)2.	let $\sin\theta \rightarrow 1$	
- (-/(-/	$d \sin \theta = n\lambda$	C1
	$n = \frac{d}{\lambda} = \frac{L}{\lambda N}$	
	$\lambda \lambda N$	
	10^{-3}	
	$=\frac{10^{-3}}{\left(750\times10^{-9}\right)\left(290\right)}$	
	(750×10)(290)	
	= 4.6	
	$n_{\text{max}} = 4$	A1
	Comments	
	The most common mistake made by students is to neglect the word	
	'complete'. To find the complete spectrum, candidates have to use the	
	largest wavelength to find the smallest order that can be seen. This will	
	determine the largest order of 'complete spectrum' that can be	
	observed.	
	Revision pointers: Superposition Lecture H212.4	
8(c)(ii)	The effect of regular spacing between pixels is similar to that of a	
	diffraction grating.	B1
	Hence	
	light entering the camera are diffracted	
	OR spread into geometric shadow	
	as they pass through each spacing	B1
	Comments	
	A good proportion of candidates were able to state that the halo effect is	
	due to the process of 'diffraction'. However, few could explain that the	
	reason for the diffraction was the transparent area in between the	
	smaller pixels having the same effect as a diffraction grating on light.	
	1	