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1 The equation of a circle M is given by 2 2 0x y Ax By C      where A, B and C are 

real constants. The line y = 2(x + 1) passes through the centre of M and the graph of     

y = | x | intersects M at the points where x = 2 and x = 8.  Find the equation of M. [4] 

 

 

2 The diagram below shows the graph of y = g(x). The graph has a minimum point at    

(0, 2) and a maximum point at 
1

3,  
2

 
 
 

. The equations of the asymptotes are x = 1, y = 0 

and  y = 2x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

On separate diagrams, sketch the graphs of 

(i) y = g(x), [2] 

(ii) 
1

g( )
y

x
 , [2] 

showing clearly in each case, the equations of the asymptotes and the coordinates of the 

turning points and axial intercepts, where applicable. 

 

3 Without using a calculator, solve the inequality 
23

1
1 2

x

x



. Hence solve 

23
1

1 2

x

x



. [5] 

 

4 The sequence of real numbers 1 2 3, , ,  . . .u u u is defined by 

1 1

2
 and , where 1 and .

4
n n

n
u u u a n a

n



   


 

 (i) Prove by mathematical induction that   for 1.
12

( 2)( 3)
n n

a
u

n n


 
  [4] 

 (ii) Determine the limit of 
1

( 2) nu
n n

u
  as .n  [2] 

 

5 The complex number z satisfies the equation  
3

3

1
3 i

1

z

z





. 

Without the use of a graphing calculator, express z
3
 in the form re

i
  where r  0 and 

 <   . Hence find the roots of the equation.         [6]                                                     

y = g(x) 
y 

x 

y = 2x  

x = 1 

1
3,  

2

 
 
 

 

 2 

 (0, 2) 

 0 
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6 The figure below shows a rectangle OACB where 2OA OB . Point D is on AC 

produced such that : :1AD AC   where  is a constant. The lines OD and AB 

intersect at point E.  It is given that OA  a , OB  b  and OEA   .  

 

 

 

 

 

 

 

 

 

 

 

 Find OD in terms of a and b, and show that  
2

4OD AB    b . [4] 

 

In the case when E is the foot of perpendicular from A to OD, deduce the value of . [2] 

Using this value of  and given that 

4

4

2

a

 
 

  
  

and 

2

1

2

b

 
 

  
 
 

,  find OE . [2] 

 

7 The function f is defined by 
 

   
1 4

f :
1

x
x

x




, x ¡ , x  k. 

(i) With the aid of a graph, find the least value of k such that f has an inverse. [2] 

(ii) Using the least value of k found in (i), 

(a) find f
 1

(x) and state its domain, [3] 

(b) find the exact solution(s) of the equation f(x) = f
1

(x). [2] 

Describe a sequence of two transformations which would transform the graph of           

y = f(x) onto the graph of 
2 4

2

x
y

x





. [2] 

 

8 (i) Use the substitution 2sinx  , where 
π

0
2

   and 0 1x  , to show that  

1d sin (1 )       where  is an arbitrary constant.
1

x
x x x x c c

x

   
  [5] 

(ii) The region R is bounded by the curve 

1
4

1

x
y

x

 
  

 
 and the lines y = 4x  1 and 

1

4
x  . Find the volume of revolution formed when R is rotated completely about 

the x-axis, giving your answer in exact form. [5] 

 

 
  [Turn over 

D 

O A 

C B 
E 

θ  
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9 The planes 1p  and 2p  have equations 2 2x z   and 

0

2 0

1

 
 
  
  

r  respectively. 

(i) Obtain a vector equation of the line of intersection, l , between 1p and 2p . [2] 

(ii) A third plane 3p  contains l  and is perpendicular to 1p . Find a vector equation 

of 3p , in scalar product form. [3] 

(iii) The point S lies on 1p  and the point T lies on 3p  such that the line ST is 

perpendicular to 2p .  If the coordinates of S are  2, 3, 2  , find the coordinates 

of T. [4] 

(iv) Find the acute angle between ST and 1p . [2] 

 

10 P and Q are two points lying 20 m apart on a horizontal straight line. Two particles A 

and B are initially located at P and Q respectively. A begins to move towards Q and B 

begins to move away from Q. At time t s, the distance travelled by A and B are a m and 

b m respectively where 0 20a  . The fixed point R is located 20 m vertically above 

point Q such that angle ARB =  .   

 

 

 

 

 

 

 

 

 

 

 

 

By considering  as the sum of two acute angles, show that 

 
 20 20

tan
400 20

a b

b ab


 


 
 . [3] 

(a) On day 1, A and B move in such a way that the distance of B from Q is always 

twice the distance of A from P, that is, b = 2a. Find, using differentiation, the 

value of a when   is maximum.  [4] 

[You do not need to show that   is maximum.]  
 

(b) On day 2, A and B resume their starting positions at P and Q, and move such that 

  remains a constant. 

(i) Show that 
20

40

a
b

a



. [2] 

(ii) If A moves at a constant speed of 0.5 ms
1

, find the speed of B at t = 30. [3] 

 

R 

P Q A B 

20 m 

20 m 

 

a b 
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11 (a) By using small angle approximations, where x is small enough for x
3
 and higher 

powers of x to be neglected, show that  2

π
sin 2

14
2

2 sin 4

x

px qx
x

 
 

  
    

  
, where 

p and q are constants to be determined. [5] 

 (b) A curve has equation y
2
  xy = 4  sin x. 

 (i) Show that there is no tangent to the curve that is parallel to the y-axis. [4] 

 (ii) Given that y = 2 when x = 0, find the Maclaurin’s series for y up to and 

including the term in x
2
. [3]

 

 

 

12 A curve C has parametric equations  

   27 4sinx t  , 34 3siny t    

 where 
π π

2 2
t   .  

(i) Show that the equation of the tangent to the curve at the point with parameter t is 

  38 9 sin 63sin 12sin 32 0y x t t t     .   

  This tangent passes through a fixed point (X, Y). Give a brief argument to explain 

why there cannot be more than 3 tangents passing through (X, Y). [5] 

(ii) Sketch the curve C. [2] 

(iii) Show that the coordinates of the points of intersection between C and the line    

8y + 9x  83 = 0 are (3, 7) and 
29

6,
8

 
 
 
 

. [3] 

(iv) Find the area of the region bounded by C and the line 8y + 9x  83 = 0. [3] 

 

 

 

 

    End of Paper     

 

 

 

 

 

 

 

 


