Tutorial 8D: Vectors IV (Planes & 3D Geometry Problems)

Basic Mastery Questions

1. Find the vector equations in parametric form, vector equations in scalar product form and the Cartesian equations of the planes containing

- (i) the point (0, 1, 1) and the two vectors $\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $-\mathbf{i} + \mathbf{k}$;
- (ii) the points (1, 0, 1), (1, 2, 1) and (1, 1, 0);
- (iii) the point (-1, 2, 3) and the line with equation $\mathbf{r} = -2\mathbf{i} \mathbf{k} + \lambda(-\mathbf{i} + 7\mathbf{j} + 2\mathbf{k});$
- (iv) the lines $\mathbf{r} = \mathbf{k} + s(\mathbf{i} 3\mathbf{j})$ and $\mathbf{r} = \mathbf{k} + t(2\mathbf{j} + 5\mathbf{k})$.

(i)
$$T: \Gamma = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$
, where $\lambda, \mu \in \mathbb{R}$ — vector eqn in
 $n = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \times \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -2 \\ -2 \end{pmatrix} = 2 \begin{pmatrix} -1 \\ 1 \end{pmatrix}$
· vector equation in scalar : $\Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $p_{w}d_{w}t$ form
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$
 $i \in . \quad \Gamma - \begin{pmatrix} -1 \\ -1 \end{pmatrix} = O$

$$\begin{array}{l} (ii) \\ (ii) \\ (\frac{1}{2}) - (\frac{1}{2}) = (\frac{0}{2}), (\frac{1}{2}) - (\frac{1}{2}) = (\frac{0}{2}), \\ (\frac{1}{2}) - (\frac{1}{2}) = (\frac{1}{2}) \\ (\frac{1}{2}) - (\frac{1}{2}) = (\frac{1}{2}) \\ (\frac{1}{2}) = (\frac{1}{2}) \\ (\frac{1}{2}) \end{array} \right) \xrightarrow{\text{vector eqn in scalar: } r \cdot (\frac{1}{2}) = (\frac{1}{2}) \cdot (\frac{1}{2}) \\ \text{product form} \\ (\frac{1}{2}) - (\frac{1}{2}) = (\frac{1}{2}) \\ (\frac{1}{2}) - (\frac{1}{2}) = (-1) \\ (\frac{1}{2}) \\ (\frac{1}{2}) - (\frac{1}{2}) = (-1) \\ (\frac{1}{2}) \\ ($$

(iv) parametriz form:
$$r = \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ -3 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ -3 \end{pmatrix} \begin{pmatrix} \lambda \\ 2 \end{pmatrix} = \begin{pmatrix} -45 \\ -5 \\ 2 \end{pmatrix} = 3$$
 scalar prod. form: $r \cdot \begin{pmatrix} -45 \\ -5 \\ -5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -45 \\ -5 \\ -5 \end{pmatrix} = \frac{1}{2}$
i.e. $r \cdot \begin{pmatrix} -45 \\ -5 \\ -5 \end{pmatrix} = 2\mu$.
i. cartesian eq²: $-15x - 5y + 2z = 2\mu$.

2. A line ℓ has equation $\mathbf{r} = \mathbf{j} + 2\mathbf{k} + \alpha (2\mathbf{i} - \mathbf{j} + \mathbf{k})$. Find the vector equation of the plane containing the point A(1, 3, 1), perpendicular to the plane *OXZ* and parallel to ℓ .

$$l: r = \binom{2}{2} + \alpha \binom{2}{1}$$

$$\therefore Vector eq^{-1} of the plane: r = \binom{4}{3} + \lambda \binom{2}{3} + \mu \binom{2}{1}$$

where $\lambda, \mu \in \mathbb{R}$

3. **N89/II/15(partial)** The plane Π has equation 3x+2y-z+1=0 and the line ℓ has Cartesian equation $\frac{x-4}{-1} = \frac{y+3}{2} = \frac{z-7}{1}$. Show that ℓ lies in Π .

Method 1

$$\begin{aligned} & l: r = \binom{4}{7} + \alpha \binom{7}{2} , \quad TT : r \cdot \binom{3}{2} = -1 \\ & 0: \binom{4}{7} \cdot \binom{3}{2} = 12 - 6 - 7 = -1 \\ & \vdots \quad (4, -3, 7) \text{ is } m \text{ TT.} \end{aligned}$$

$$\begin{aligned} & (2): \binom{7}{2} \cdot \binom{3}{-1} = -3 + 4 - 1 = 0 \quad (L) \implies (\frac{7}{2}) \text{ is } // \text{ to } \text{ TT.} \\ & \text{ Implying from } 0 \quad k \quad (2): l \text{ is in } \text{ TT } p. \quad (\text{shown}) \end{aligned}$$

Method 2

If
$$\ell$$
 lies in Π , then $\mathbf{r} = \begin{pmatrix} 4 \\ -3 \\ 7 \end{pmatrix} + \alpha \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ must satisfy $\mathbf{r} \cdot \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = -1$ for all $\alpha \in \mathbb{R}$

Substituting $\mathbf{r} = \begin{pmatrix} 4 \\ -3 \\ 7 \end{pmatrix} + \alpha \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$ into $\mathbf{r} \cdot \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} = -1$:

$$\begin{bmatrix} 4 \\ -3 \\ 7 \end{bmatrix} + \alpha \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 4-\alpha \\ -3+2\alpha \\ 7+\alpha \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$$
$$= 12 - 3\alpha - 6 + 4\alpha - 7 - \alpha = -1 \text{ which is true for all } \alpha \in \mathbb{R}.$$

 $\therefore \ell$ lies in Π (shown).

4. IJC/2018/CT/10 In a particular experiment, Scott shoots a laser beam from point A with coordinates (9, 1, -5) towards a plane Π with equation 5x + y - 8z = -4. The laser beam travels in a line L with equation $\frac{x-4}{5} = \frac{3-y}{2} = z+6$.

Find

- (i) the acute angle between L and Π .
- (ii) the coordinates of the point where the laser beam meets the plane and deduce the shortest distance from A to Π . [5]

Immediately after the laser beam meets the plane, it is being reflected as line M such that the angle between L and Π equals to the angle between M and Π . Find the equation of the line M. [5]

Q4	Solution
(i)	Equation of line L:
	$\frac{x-4}{5} = \frac{3-y}{2} = z+6$
	$\Rightarrow \mathbf{r} = \begin{pmatrix} 4\\3\\-6 \end{pmatrix} + \lambda \begin{pmatrix} 5\\-2\\1 \end{pmatrix}, \ \lambda \in \mathbb{R}$
	Let θ be the acute angle between L and Π .
	$\sin \theta = \frac{\begin{vmatrix} 5 \\ -2 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} 5 \\ -8 \end{vmatrix}}{\sqrt{5^2 + 2^2 + 1^2} \cdot \sqrt{5^2 + 1^2 + 8^2}} = \frac{15}{\sqrt{2700}}$
	: $\theta = \sin^{-1} \left(\frac{15}{\sqrt{2700}} \right) = 16.8^{\circ}$ (to 1 d.p.)

[3]

(ii)	Let B be the point of intersection between L and Π
	$\overrightarrow{OB} = \begin{pmatrix} 4\\3\\-6 \end{pmatrix} + \lambda \begin{pmatrix} 5\\-2\\1 \end{pmatrix} \text{ for some } \lambda \in \mathbb{R} \qquad \cdots (1)$
	$\begin{bmatrix} \begin{pmatrix} 4\\3\\-6 \end{pmatrix} + \lambda \begin{pmatrix} 5\\-2\\1 \end{bmatrix} \end{bmatrix} \cdot \begin{pmatrix} 5\\1\\-8 \end{pmatrix} = -4$ 71+15 $\lambda = -4$
	$\lambda = -5$
	$\overrightarrow{OB} = \begin{pmatrix} 4\\3\\-6 \end{pmatrix} - 5 \begin{pmatrix} 5\\-2\\1 \end{pmatrix} = \begin{pmatrix} -21\\13\\-11 \end{pmatrix}$
	i.e. coordinates of B is $(-21,13,-11)$.
	$\overrightarrow{AB} = \begin{pmatrix} -21\\13\\-11 \end{pmatrix} - \begin{pmatrix} 9\\1\\-5 \end{pmatrix} = \begin{pmatrix} -30\\12\\-6 \end{pmatrix}$
	Shortest distance = $\begin{vmatrix} \overrightarrow{AB} \\ \overrightarrow{AB} \end{vmatrix} \sin \theta$
	$=\sqrt{30^2+12^2+6^2}\left(\frac{15}{\sqrt{2700}}\right)$
	$=15 \times \sqrt{\frac{2}{5}}$
	$= 3\sqrt{10}$ = 9.49 (3.s.f)
	<u>Alternative:</u>

	Shortest distance = $\frac{\begin{vmatrix} \vec{AB} \cdot \begin{pmatrix} 5\\1\\-8 \end{vmatrix}}{\sqrt{90}} = \frac{\begin{vmatrix} 6 \begin{pmatrix} -5\\2\\-1 \end{pmatrix} \begin{pmatrix} 5\\1\\-8 \end{pmatrix} \end{vmatrix}}{\sqrt{90}} = \frac{\begin{vmatrix} 6(-25+2+8) \end{vmatrix}}{\sqrt{90}} = \frac{\begin{vmatrix} 6(-25+2+8) \end{vmatrix}}{\sqrt{90}} = \frac{90}{\sqrt{90}} = 3\sqrt{10}$
(iii)	Let F be the foot of perpendicular from A to Π
	$\overrightarrow{OF} = \begin{pmatrix} 9\\1\\-5 \end{pmatrix} + \mu \begin{pmatrix} 5\\1\\-8 \end{pmatrix} \text{ for some } \mu \in \mathbb{R} \qquad \cdots (1)$
	$\begin{bmatrix} 9\\1\\-5 \end{bmatrix} + \mu \begin{pmatrix} 5\\1\\-8 \end{bmatrix} \cdot \begin{pmatrix} 5\\1\\-8 \end{bmatrix} = -4$ $86 + 90 \mu = -4$
	$\mu = -1$
	$\overrightarrow{OF} = \begin{pmatrix} 9\\1\\-5 \end{pmatrix} - \begin{pmatrix} 5\\1\\-8 \end{pmatrix} = \begin{pmatrix} 4\\0\\3 \end{pmatrix}$

Let A' be the reflection of A in IT

$$\overrightarrow{OF} = \frac{\overrightarrow{OA} + \overrightarrow{OA}'}{2}$$

$$\overrightarrow{OA}' = 2\overrightarrow{OF} - \overrightarrow{OA}$$

$$\overrightarrow{OA}' = 2 \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix} - \begin{pmatrix} 9 \\ 1 \\ -5 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 11 \end{pmatrix}$$

$$d = \overrightarrow{A'B} = \begin{pmatrix} -21 \\ 13 \\ -11 \end{pmatrix} - \begin{pmatrix} -1 \\ -1 \\ 11 \end{pmatrix} = \begin{pmatrix} -20 \\ -4 \\ -22 \end{pmatrix} = 2 \begin{pmatrix} -10 \\ 7 \\ -11 \end{pmatrix}$$

$$\therefore \text{ Equation of line } M:$$

$$\mathbf{r} = \begin{pmatrix} -1 \\ -1 \\ -1 \\ 11 \end{pmatrix} + \alpha \begin{pmatrix} -10 \\ 7 \\ -11 \end{pmatrix}, \ \alpha \in \mathbb{R} \quad OR \quad \mathbf{r} = \begin{pmatrix} -21 \\ 13 \\ -11 \end{pmatrix} + \alpha \begin{pmatrix} -10 \\ 7 \\ -11 \end{pmatrix}, \ \alpha \in \mathbb{R}$$