Qn	Suggested Solution
1	$\frac{1}{3}\log_2 8^x + 4 = y \cdots (1)$
	$\sqrt{x^2 + y} = y - 3 \cdots (2)$
	From (1),
	$\frac{1}{3}\log_2 8^x + 4 = y$
	$\frac{1}{3}\log_2 2^{3x} + 4 = y$
	$\frac{1}{3}(3x)\log_2 2 + 4 = y$
	$x + 4 = y \cdots (3)$
	Substituting (3) into (2),
	$\sqrt{x^2 + (x+4)} = (x+4) - 3$
	$x^2 + x + 4 = (x+1)^2$
	$x^2 + x + 4 = x^2 + 2x + 1$
	x = 3, y = 7

Qn	Suggested Solution
2	$kx^{2} + (2-k)x + k + \frac{7}{4} < 0$
	k < 0 and discriminant < 0
	$\left(2-k\right)^2 - 4k\left(k+\frac{7}{4}\right) < 0$
	$-3k^2 - 11k + 4 < 0$
	k < 0 and $(1-3k)(k+4) < 0$
	$k < -4 \text{ or } k > \frac{1}{3}$
	$\Rightarrow k < -4$
	$\left\{k \in \mathbb{R} : k < -4\right\}$

Qn	Suggested Solution
3 (a)	$\frac{d}{d}(5r^2-3e^{\pi})^3$
	dx dx dx dx
	$=3(5x^2-3e^{\pi})^2(10x)$
	$= 30x(5x^2 - 3e^{\pi})^2$
(b)	$\left(-\sqrt{r}+3\right)^2$
	$\int \frac{\left(-\sqrt{x+3}\right)}{\sqrt{x}} dx$
	\sqrt{x}
	$=\int \frac{9+x-6\sqrt{x}}{\sqrt{x}} \mathrm{dx}$
	$=\int \frac{9}{\sqrt{x}} + \frac{x}{\sqrt{x}} - 6 \mathrm{dx}$
	$= \int 9x^{-\frac{1}{2}} + x^{\frac{1}{2}} - 6 \mathrm{d}x$
	$=18x^{\frac{1}{2}} + \frac{2}{3}x^{\frac{3}{2}} - 6x + C$
	$=18\sqrt{x} + \frac{2}{3}x\sqrt{x} - 6x + C$
(c)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\ln\left(\frac{x}{\sqrt{3-2x^2}}\right)\right)$
	$=\frac{\mathrm{d}}{\mathrm{d}x}\left(\ln x - \frac{1}{2}\ln\left(3 - 2x^2\right)\right)$
	$=\frac{1}{x} - \frac{1}{2} \left(\frac{-4x}{3 - 2x^2} \right)$
	$=\frac{1}{x} + \frac{2x}{3-2x^2}$
	$=\frac{3}{x\left(3-2x^2\right)}$
	$\int_{\frac{1}{2}}^{1} \frac{6}{x(3-2x^2)} \mathrm{d}x = 2\int_{\frac{1}{2}}^{1} \frac{3}{x(3-2x^2)} \mathrm{d}x$
	$=2\left[\ln\left(\frac{x}{\sqrt{3-2x^2}}\right)\right]_{\frac{1}{2}}^{1}$
	$= 2 \left(\ln\left(\frac{1}{\sqrt{1}}\right) - \ln\left(\frac{\left(\frac{1}{2}\right)}{\sqrt{\frac{5}{2}}}\right) \right)$
	$=-2\ln\frac{1}{\sqrt{10}}$
	$21 + 10^{-\frac{1}{2}}$
	$= -2 \text{ III } 10^{-2}$
	$= 11110 \dots u = 1, v = 10$

Qn	Suggested Solution
5(a)	$y = p + q^2 x^2 + 2^{r+x} + s\sqrt{x}$
	$(0,9):$ $p+2^r=9$
	$(9,1787): p+81q^2+512(2^r)+3s=1787$
	(4,201): $p+16q^2+16(2^r)+2s=201$
	(1,29): $p + q^2 + 2(2^r) + s = 29$
	From GC, $p = 7 q^2 = 9 \Rightarrow q = 3$, $2^r = 2 \Rightarrow r = 1$, $s = 9$
	The key is (7,3,1,9)
(b)	From G.C, maximum S occur at $t = 4$ Maximum S = 95.4 million (3 s.f.)
(c)	$S = 0.03\mathrm{e}^{-0.5t^2 + 4t} + 6$
	$\frac{\mathrm{d}S}{\mathrm{d}t} = 0.03(-t+4)e^{-0.5t^2+4t}$
	$\begin{array}{l} dt \\ \text{when } t = 5, \end{array}$
	$\frac{\mathrm{d}S}{\mathrm{d}t} = 0.03(-5+4)\mathrm{e}^{-0.5(5)^2+4(5)} = -0.03\mathrm{e}^{\frac{15}{2}}$
	$S = 0.03e^{-0.5(5)^2 + 4(5)} + 6 = 0.03e^{\frac{15}{2}} + 6$ Equation of tangent:
	$S - \left(0.03e^{\frac{15}{2}} + 6\right) = -0.03e^{\frac{15}{2}}(t-5)$
	$S = -0.03e^{\frac{15}{2}}t + 0.18e^{\frac{15}{2}} + 6$
(d)	S
	(4, 95,4)
	(1, 6.99)
	S = 6
(e)	For $t \ge 7$, as t increases from 7 as $t \to \infty$,
	$\frac{dS}{ds}$ increases from -2.9804 (gradient less negative) until it approaches 0. Hence the manager
	dt expects the sales to decrease at a slower/decreasing rate until it stabilises at 6 million.

Qn	Suggested Solution
6(a)	Number of ways
	$=4 \times 3 \times {}^{5}C_{2} \times 2! = 2880$
(b)	Required probability
	$= \frac{P(DAY \text{ grouped and start end vowel})}{P(\text{start and end with vowel})}$ $= \frac{\text{no. of ways (_DAY _)}}{\text{no. of ways (start and end with vowel)}}$ $= \frac{2}{{}^{3}C_{2} \times 2 \Join {}^{6}C_{3} \times 3!}$ $= \frac{1}{360}$

Qn	Suggested Solution
7(a)(i)	$P(A \cap B)$
	= P(fall, rise, rise) + P(fall, fall, rise)
	$= (0.4 \times 0.15 \times 0.6) + (0.4 \times 0.85 \times 0.15)$
	= 0.087
(ii)	P(B)
	$= P(A \cap B) + P(A' \cap B)$
	= 0.087 + P(rise, rise, rise) + P(rise, fall, rise)
	$= 0.087 + (0.6 \times 0.6 \times 0.6) + (0.6 \times 0.4 \times 0.15)$
	= 0.339
(iii)	$P(B \mid A)$
	$-\frac{\mathbf{P}(B \cap A)}{\mathbf{P}(B \cap A)}$
	P(A)
	0.087
	$=\frac{1}{0.4}$
	= 0.2175
(b)	Since $P(B A) = 0.2175 \neq 0.339 = P(B)$, A and B are not independent.
(c)	Let <i>W</i> be the number of Tuesdays in which the unit price of <i>X</i> rises, out of 12 Tuesdays. $W \sim B(12, 0.6)$
	P(W = 5) = 0.101 (3 s.f.)
L	

Qn	Suggested Solution
	• Set B will have a smaller <i>r</i> .
8 (a)	

(iii)	equation of regression line of y on x : $x = 2.4787 \pm 0.87005 x$
	y = 3.4/87 + 0.8/005x
	y = 3.48 + 0.870x
	LinReg(a+bx)LinRegXlist:L1 Ylist:L2 FreqList: Calculate $y=a+bx$
(iv)	Using equation of regression line of y on x : For $x = 50$
	$y = 3.4787 \pm 0.87005(50) = 46.9812$
	$y = 3.4787 \pm 0.87003(30) = 40.7812$
	The mean household expenditure is estimated to be \$46 981 .
	The estimate is reliable since it is an interpolation where $x = 50$ ($45.5 \le x \le 55.5$) and r
	is close to 1.
(v)	It is not valid because a strong positive linear correlation between income and
	expenditure does not imply causation.

Qn	Suggested Solution
9(a)	$X \sim \mathbf{B}(30, p)$
	P(X = 3) = 0.0188
	Using GC graph,
	p = 0.0199894 or $p = 0.2644435$ (rej since $0)$
	<i>p</i> = 0.01999 (5 d.p.)
	Y1=binompdf(30,X,3)-0.0188
	Zero X=0.0199894 Y=0

(b)	$X \sim B(30, 0.1)$
	$P(X \ge 2) = 1 - P(X \le 1)$
	=1-0.183695
	= 0.81630
	= 0.816 (3 s.f.)
(c)	Let <i>Y</i> be the number of boxes with at least 2 defective phones, out of 10 boxes. <i>Y</i> ~ B(10,0.81630)
	$P(X < 6) = P(X \le 5)$
	= 0.023192
	= 0.0232 (3 s.f.)
(d)	E(X) = 30(0.1) = 3
	Var(X) = 30(0.1)(0.9) = 2.7
	Since <i>n</i> is large, by Central limit theorem
	$\overline{X} \sim N(3, \frac{2.7}{2})$ approximately
	n
	$P(\bar{X} \le 3.5) \le 0.998$
	Using GC table,
	$n = 88, P(\overline{X} \le 3.5) = 0.9978 < 0.998$
	$n = 89, P(\bar{X} \le 3.5) = 0.998 = 0.998$
	$n = 90, P(\overline{X} \le 3.5) = 0.9981 > 0.998$
	Hence, greatest <i>n</i> is 89.
(e)	The boxes are picked without replacement, hence the trials are not independent.

Qn	Suggested Solution
10	Let X be the mass of a randomly chosen mooncake.
	$H_0: \mu = 150$
	$H_1: \mu < 150$
	where μ is the population mean mass of mooncakes.
	Since sample size of 9 is small, assume X follows a normal
	distribution.
	Under H ₀ , $\overline{X} \sim N\left(150, \frac{6.73^2}{9}\right)$
	Using GC, the test statistics $\overline{x} = 148$ gives $z_{rade} = -0.89153$ and
	p -value = 0.186322 ≈ 0.186 (3 sf)
	Since the <i>n</i> -value = $0.186 > 0.1$, we do not reject H ₀ and conclude that there is
	insufficient evidence at the 10% significance level that the mean mass of the mooncake
	is less than 150 g, i.e. insufficient evidence to reject owner's claim.
(b) (i)	Assign each teacher in the country a number in consecutive order. Among these
	numbers assigned, use a calculator to generate n different numbers randomly and choose
	the corresponding numbered teacher.
(ii)	Let <i>Y</i> be the working hours of a randomly chosen teacher in
	the school.
	$H_0: \mu = 60$
	$\mathrm{H_{1}}$: $\mu \neq 60$
	Under H_0 , $\overline{Y} \sim N\left(60, \frac{6.5^2}{n}\right)$
	In order to reject H _a , p-value = $2P(\overline{Y} \ge 62) \le 0.05$
	Using G C
	n $2P(\overline{Y} \ge 62) = 0.05$
	$\frac{21(1-62)}{600}$
	40 0.00105 41 $-0.0012 < 0$
	42 -0.0039 < 0
	Least <i>n</i> is 41.
(iii)	There is a probability of 0.05 that we reject the null hypothesis that the mean working
	hours of teachers in the school is 60 hours when it is actually true.

11(a)	
	558 580 646
(b)	$X \sim N(580, 22^2)$
	Expected number
	$= 300 \times P(X > 600)$
	$=300 \times 0.18165$
	= 54.495
	= 54.5 (3 s.f.)
(c)	No. By combining the masses, it would give a distribution with 2 peaks instead of a single peak.
(d)	Let K and L be the selling price of a randomly chosen rock melon and watermelon
	respectively. K = 0.003X, $L = 0.0028Y$
	$K \sim N(0.003 \times 580, \ 0.003^2 \times 22^2)$
	$K \sim N(1.74, 0.004356)$
	$K_1 + K_2 \sim N(3.48, 0.008712)$
	$L \sim N(0.0028 \times 870, 0.0028^2 \times 30^2)$
	<i>L</i> ~ N(2.436, 0.007056)
	$K_1 + K_2 + L \sim N(5.916, 0.015768)$
	$P(K_1 + K_2 + L \le 5.9)$
	= 0.44930
	= 0.449 (3s.f.)
(e)	$P(K \le 1.70)^2 \times P(L \le 2.50)$
	$= 0.27224^2 \times 0.77694$
	= 0.057583
	= 0.0576 (3s.f.)
(f)	Although the probabilities for both events are for at most 5.90 payment, part (e) is a subset of (d) as part (e) is a special case where the cost of each type of melon is limited to at most
	\$1.70 and \$2.50, while in part (d) there is no restrictions as long as the total cost is at most
	\$5.90.
(g)	The masses/price of melons are independent of each other.