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2From GC, 7 9 3,  2 2 1, 9rp q q r s= =  = =  = =  

The key is (7,3,1,9)  

(b) From G.C, maximum S occur at t = 4 

Maximum S = 95.4 million (3 s.f.) 
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(e) For t ≥ 7, as t increases from 7 as t → ,   

d

d

S

t
 increases from 42.980−  (gradient less negative) until it approaches 0. Hence the manager 

expects the sales to decrease at a slower/decreasing rate until it stabilises at 6 million. 
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(b) Since P( | ) 0.2175 0.339 P( ),B A B ==  A  and B  are not independent.  

 

(c) Let W be the number of Tuesdays in which the unit price of X rises, out of 12 Tuesdays. 

( )

~ B(12,0.6)

P( 5) 0.101 3 s.f.

W
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8(a) 
• Set B will have a smaller r. 



The data points for Set B lie relatively closer to a straight line with negative gradient 

whereas Set A’s r value will be closer to 0 since the data points are more scattered with 

weak linear correlation between x and y. 

(b) (i)  

 

 

(ii) r = 0.83161 = 0.832 ( 3s.f.) 

Since r value is close to 1, it indicates a strong positive linear correlation between x and 

y which is seen in the scatter diagram where the data points lie close to a straight line 

with positive gradient. 
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(iii) equation of regression line of  y on x : 
3.4787 0.87005

3.48 0.870

y x

y x

= +

= +
  

 

 

 

 

 

equation of regression line of  x on y: 
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( , )x y = (50.78, 47.66) 

 

 

(iv) Using equation of regression line of  y on x : 
For 50,

3.4787 0.87005(50) 46.9812

x

y

=

= + =   

The mean household expenditure is estimated to be $46 981. 

 

The estimate is reliable since it is an interpolation where x = 50 ( 45.5 55.5x  ) and r 

is close to 1.  

(v) It is not valid because a strong positive linear correlation between income and 

expenditure does not imply causation. 
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9(a) ~ B(30, )
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Using GC graph,
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(b) ~ B(30,0.1)
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(c) Let Y  be the number of boxes with at least 2 defective phones, out of 10 boxes. 
~ B(10,0.81630)
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(d) E(X) = 30(0.1) = 3 

Var(X) = 30(0.1)(0.9) = 2.7 

Since n is large, by Central limit theorem    

X ~ N(3,
2.7

n
)  approximately  
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Using GC table,

88, P( 3.5) 0.9978 0.998

89, P( 3.5) 0.998 0.998
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Hence, greatest  n is 89.  

(e) The boxes are picked without replacement, hence the trials are not independent. 
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10 Let X be the mass of a randomly chosen mooncake. 

H0 :  = 150 

H1 :  < 150 

 

where  is the population mean mass of mooncakes. 

Since sample size of 9 is small, assume X follows a normal  

distribution. 

Under H0, 

26.73
~ N 150,

9
X

 
 
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Using GC, the test statistics 148x = gives 0.89153calcz = −  and  

p-value = 0.186322 0.186 (3 sf)  

 

Since the p-value = 0.186 > 0.1, we do not reject H0 and conclude that there is 

insufficient evidence at the 10% significance level that the mean mass of the mooncake 

is less than 150 g, i.e. insufficient evidence to reject owner’s claim. 

(b) (i) Assign each teacher in the country a number in consecutive order. Among these 

numbers assigned, use a calculator to generate n different numbers randomly and choose 

the corresponding numbered teacher. 

(ii) Let Y be the working hours of a randomly chosen teacher in  

the school. 

H0 :  = 60 

H1 :  ≠ 60 

 

Under 0H ,
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In order to reject 
0

H ,  p-value = 2 )P 05( 62 0.Y    

Using G.C 

n 2P( 62) 0.05Y  −  

40 0.00165 

41 0.0012−     ≤ 0 

42 0.0039−     ≤ 0 

 

 Least n is 41.  

 
 

(iii) There is a probability of 0.05 that we reject the null hypothesis that the mean working 

hours of teachers in the school is 60 hours when it is actually true. 

  

  



11(a)  

 

 

 

 

 

 

 

 

 

(b) 2~ N(580,22 )X   

Expected number  
300 P( 600)

300 0.18165

54.495

54.5 (3 s.f.)
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(c) No. By combining the masses, it would give a distribution with 2 peaks instead of a single 

peak.  

(d) Let K and L be the selling price of a randomly chosen rock melon and watermelon 

respectively. 
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~ N(1.74, 0.004356)

~ N(3.48, 0.008712)
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~ N(5.916,0.015768)
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0.44930

0.449 (3s.f.)
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(e) 2

2

P( 1.70) P( 2.50)

0.27224 0.77694
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0.0576 (3s.f.)
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(f) Although the probabilities for both events are for at most $5.90 payment, part (e) is a subset 

of (d) as part (e) is a special case where the cost of each type of melon is limited to at most 

$1.70 and $2.50, while in part (d) there is no restrictions as long as the total cost is at most 

$5.90. 

(g) The masses/price of melons are independent of each other. 
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