

TANJONG KATONG SECONDARY SCHOOL

Preliminary Examination 2022 Secondary 4

CANDIDATE NAME		
CLASS	INDEX NUMBER	

MATHEMATICS

Paper 2

4048/02 Monday 22 Aug 2022 2 hours and 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid/ tape.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 100.

Mathematical Formulae

Compound Interest

Total Amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Curved surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3} \pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2} ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

[Turn over for Question 1]

[Turn over

Answer all questions.

1 (a) Solve the inequality
$$\frac{y+6}{5} > \frac{2y-1}{8}$$
.

(b) Solve these simultaneous equations.

$$3x - 7y = -41$$
$$4y + 5x = 10$$

Answer $x = \dots$

 $y = \dots [3]$

(c) Express as a single fraction in its simplest form $\frac{2}{(x-2)^2} + \frac{x+3}{2-x}$.

(**d**) Simplify
$$\frac{(2a^3)^2}{27bc} \div \frac{a}{9b^2c^3}$$
.

(e) Simplify
$$\frac{y^2 + 3y - 10}{3y^2 + 30y + 75}$$
.

Answer[3]

2 Deli Burgers sells fish burgers, chicken burgers and beef burgers at Outlets A and B.The table below shows the average number of burgers sold in both outlets on a weekday.

	Fish burger	Chicken burger	Beef burger
Outlet A	250	280	260
Outlet B	320	300	290

(a) Represent the information in the table above in a 2×3 matrix **R**.

Answer
$$\mathbf{R} = \left(\begin{array}{c} \\ \\ \\ \end{array} \right) [1]$$

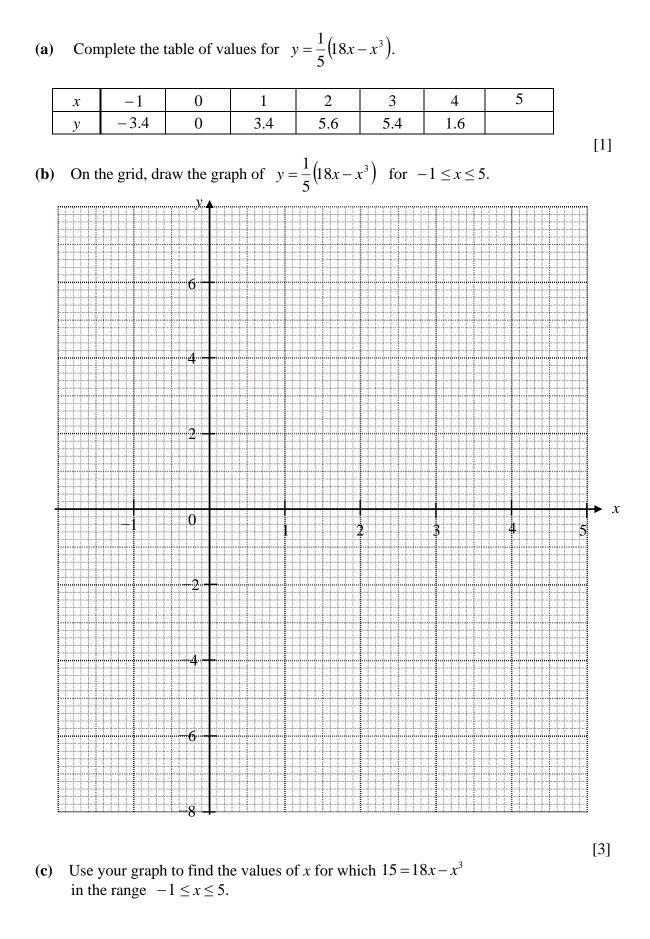
(**b**) (**i**) Evaluate
$$\mathbf{V} = \mathbf{R} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
.

Answer
$$\mathbf{V} = [1]$$

(ii) State what each element in V represents.

- (c) On average, Outlets A and B expect to sell 20% more fish burgers, 15% more chicken burgers, and 30% more beef burgers per day over the weekend.
 - (i) Write down a 3×1 column matrix **E**, such that **RE** will give the expected average number of burgers to be sold in the Outlets A and B on a particular day during the weekend.

(ii) Evaluate the matrix
$$\mathbf{Q} = \mathbf{RE}$$
. [1]

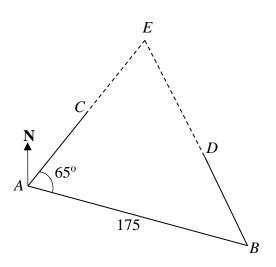

Answer $\mathbf{Q} = [1]$

(iii) Hence, represent the total number of burgers sold at each outlet in a week in a 2×1 column matrix **T**.

Answer
$$\mathbf{T} = [1]$$

(d) Outlets A and B sell each burger at \$3.50.Find the total sales for Deli Burgers in a week.

Answer \$[2]



Answer $x = \dots$ [3]

3

- (d) The line y = kx + 5 where k is a constant, is a tangent to the curve. By drawing a suitable straight line on the graph, find the value of k.
- (e) Explain why the equation $\frac{1}{5}(18x x^3) = p$ does not have solutions for some values of p in the range $-1 \le x \le 5$.

(f) The solutions of the equation $x^3 + Ax + B = 0$ are obtained from the *x*-coordinates of the points at which the line y = 2 - x intersects with the graph $y = \frac{1}{5}(18x - x^3)$. Find the value of *A* and the value of *B*.

In the diagram, *A*, *B*, *C*, *D* and *E* are on level ground. Ann and Tony start jogging at the same time from *A* and from *B* respectively. Ann jogs in the direction *AC* at an average speed of 1.5m/s. Tony jogs in the direction *BD*. Ann and Tony meet after 1.5 minutes at *E*. The bearing of *C* from *A* is 040°. Angle $CAB = 65^{\circ}$ and AB = 175 m.

(a) (i) Calculate AE.

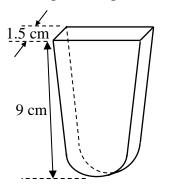
Answer m [1]

(ii) Calculate BE.

10

Answer m [2]

(b) Calculate the bearing of E from B.

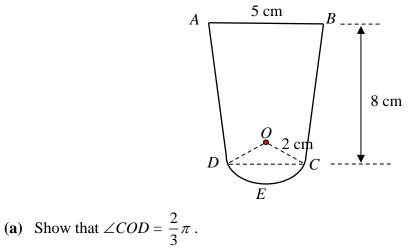

Answer[4]

(c) A 3-metre flagpole stands vertically at *D*. The greatest possible angle of elevation of the top of the pole from a point *F* along *AB* is 4° .

Calculate FD.

Answer m [2]

5 An ice-cream mould is in the shape of the prism shown below.

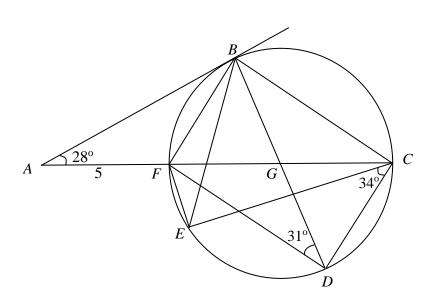


The thickness of the mould is 1.5 cm and it has a height of 9 cm.

The cross-section of the ice-cream mould consists of a trapezium *ABCD* and a segment *CED* as shown below.

In the trapezium, AB = 5 cm, the perpendicular distance between AB and DC is 8 cm.

Segment *CED* is part of a circle with radius 2 cm and centre *O*.



Answer

(b) Calculate the area of segment *CDE*.

(c) Calculate the volume of the ice-cream mould.

[Turn over

In the diagram, *B*, *C*, *D*, *E* and *F* lie on the circle. *AB* is a tangent to the circle at *B* where *BD* is the diameter. *AFC* is a straight line. $AF = 5 \text{ cm}. \angle DCE = 34^\circ, \angle BDF = 31^\circ \text{ and } \angle BAC = 28^\circ.$

(a) Show that G is the centre of the circle.

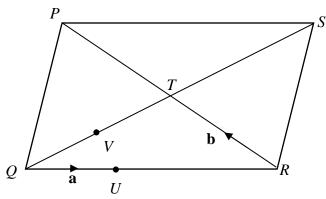
6

(b) Name a triangle that is congruent to triangle *FGD*.Show that they are congruent and give a reason for each statement you make.

 (c) Calculate the length of *GB*.

Answer cm [3]

(d) Giving a reason for each step of your working, find


(i) $\angle EBD$,

Answer [1]

(ii) $\angle BFE$.

Answer [2]

7 In the diagram, *PQRS* is a parallelogram. The diagonals *PR* and *QS* intersect at *T*. *V* is a point on *QT*. *U* is a point on *QR* such that QR = 3QU. *V* is the midpoint of *QT*. $\overrightarrow{QU} = \mathbf{a}$ and $\overrightarrow{RT} = \mathbf{b}$.

(a) Express, as simply as possible, in terms of **a** and/or **b**, (i) \overrightarrow{QT} ,

Answer \overrightarrow{QT} =[1]

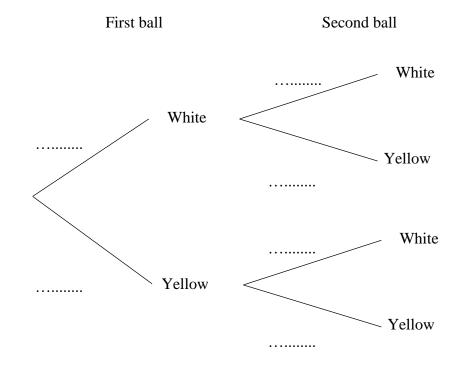
(ii) \overrightarrow{QP} ,

(iii) \overrightarrow{VU} .

(b) Prove that points *P*, *V* and *U* are collinear.

Answer

(c) Calculate the value of


(i) $\frac{\text{Area of } \Delta PQU}{\text{Area of } \Delta PQR}$,

Answer[1]

(ii) $\frac{\text{Area of } \Delta PQV}{\text{Area of } PQRS}$

[3]

- 8 A bag contains 15 balls, *n* of which are white and the rest are yellow. Jane picks two balls from the bag, at random, without replacement.
 - (a) Complete the tree diagram.

18

(b) The probability that Jane picks two yellow balls is $\frac{2}{35}$. Write down an equation to represent this information and show that it simplifies to

$$n^2 - 29n + 198 = 0.$$

Answer

[2]

(c) (i) Solve the equation $n^2 - 29n + 198 = 0$.

and yellow ball.

9 The marks of ten tests for two students Ramli and May are recorded below.

Ramli	77, 70, 59, 67, 66, 77, 88, 47, 74, 85
May	77, 73, 69, 85, 68, 74, 78, 45, 76, 77

(a) Complete the table.

	Mean	Median	Interquartile Range	Standard Deviation
Ramli	71			11.5
May	72.2	75	8	10.1

(b) Make two comparisons on the test performance of Ramli and May.

Answer

1.	
2.	

(c) The passing mark of the tests is 50 and the marks obtained in the tests is an integer. Ramli is given another chance to take the test that he failed. He wants to achieve a higher mean mark than May. Given that May's mean mark stays constant, what is the minimum marks he must obtain in the test?

[2]

(d) There was a glitch in the system for processing results. The results should all decrease by 2 marks.

State how the mean marks and standard deviation of the marks will be affected by this error.

21

Answer

1. Effect on the mean marks:

.....

.....

2. Effect on the standard deviation of the marks:

 [2]

Car Model	Engine capacity (EC)	Fuel consumption
		rate
Weisser Sunny	1500 CC	5.3 litre per 100 km
Modela Cooper	1600 CC	0.07 litre per km
MW Racer	2000 CC	12 km per litre

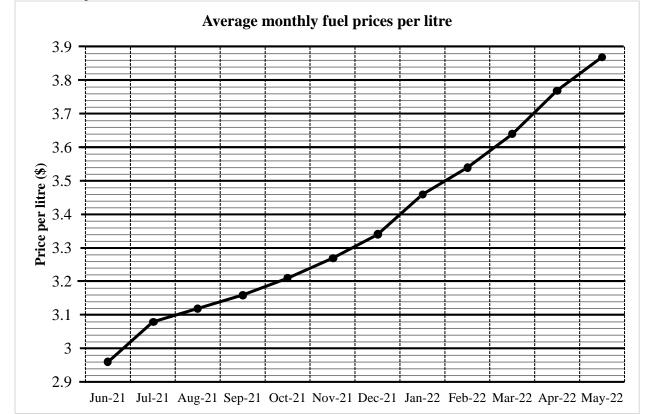
10 Mr Soh is considering to buy a car from one of the three models below.

(a) Determine which car's fuel consumption rate is the lowest.

Answer

.....[2]

(b) Mr Soh decides to buy Modela Cooper.The information given below shows the costs incurred to maintain his car.


Type of expense	Rate
Season parking (Residence)	\$110 per month
Season parking (Workplace)	\$75 per month
Parking charges (Miscellaneous)	\$36 per month
ERP charges	\$4 per day for 23 days a month
Car insurance	\$687 for 6 months
Car servicing and repair	\$2500 yearly

Engine Capacity (EC)	Road Tax Formula for 12 months
$EC \le 500CC$	400×0.782
1000CC< EC ≤ 1600CC	[500 + 0.75 (EC - 1000)] × 0.782
$1600CC < EC \le 3000CC$	[950 + 1.5 (EC - 1600)] × 0.782

The table below shows information related to paying Road Tax in Singapore.

Mr Soh drives 450 km per month on the average.

The graph below shows the average monthly fuel price per litre from June 2021 to May 2022.

(i) Using the information given, calculate the total amount of money Mr Soh has to put aside for all his car expenses from June 2021 to May 2022.

Answer \$..... [7]

(ii) State one assumption you made in your calculations for part (b)(i).

END OF PAPER

	1022 Secondary 4 Mathematics	- - - - - - - - - -		
No.	Answer		No.	Answer
la	<i>y</i> < 26.5		5a	Shown
1b	x = -2, y = 5]	5b	2.46 cm^2
1c	$-x^2 - x + 8$	1		
	$\frac{(x-2)^2}{(x-2)^2}$			
			5c	54.5 cm ³
1d	$4a^{5}bc^{2}$		6a	$\angle BGA = 2(31)$
	3			
1e	y-2			$= 2 \angle BDE$
	$\overline{3(y+5)}$			(accentre - 2) at circumiere
2a				
2a	(250 280 260)			Hence, G is the centre of the
	320 300 290		(1	circle. GF = GC = GB = GD(radius)
2bi	(790)		6b	$\angle BGC = \angle DGF$ (vertically opposite angles)
	910	N	2.95	ΔBGC (or ΔCGB) and ΔDGF are congruent (SA
	(910)		Sc.	r = 4.42 cm
2bii	It represents the total number	Nh	6di	$\angle EBD = 34^{\circ}$ (angles in the
	of burgers sold on average in	14.	Andrew (same segment)
	10 910 It represents the total number of burgers sold on average in Outlet A and B respectively on a weekday. 1.2 1.15 1.3 960 1106	619	6dii	124°
	on a weekday.		7ai	
2ci	1.2			QT = 3a + b
	1.15		7aii	QP = 3a + 2b
	1.3		7aiii	
				$VU = -\frac{1}{2}(a+b)$
2cii	(960) 50		7b	$\overline{VU} = -\frac{1}{2}(a+b)$ $\overline{PV} = -\frac{3}{2}(a+b)$
	(1106)		10	$\overline{PV} = -\frac{3}{2}(a+b)$
2ciii	(5870)	-		
20111	a contract part of the second s			$=3\overline{VU}$
	(6762)			
2d	\$44212			Since $\overrightarrow{PV} = 3\overrightarrow{VU}$, and V is a
3a	y = -7			common point, P , V and U
3b	Graph			are collinear.
3c	x = 0.9 and 3.7	1	7ci	
3d	k = 0.368	-	/01	1
		1		3
3e	There will be no solutions for	-	7cii	1
1977) 1	p if p is greater than the			8
	maximum value of the graph		8a	
	(i.e. <i>p</i> >5.9)			First ball Second ball
				$\frac{n-1}{14}$ White
3f	A = -23, B = 10			n White
4ai	135 m	1		$\frac{15}{14}$ Yellow
4aii	170 m			< ¹⁷
4b	331.1°	1		$15-n$ $\frac{n}{2}$ White
4c	42.9 m			13-n 15 Yellow
		-		
		-		$\frac{14-n}{14}$ Yellow

TKSS 2022 Secondary 4 Mathematics Prelim Paper 2 Answers

No.	Answer	No	. Answer
8b	Shown		Weisser Sunny is the mo
			fuel efficient as it uses t
8ci	n = 11 or 18		least fuel per 100km.
8cii	Because $n \le 15$, so $n = 18$ is	101	Road Tax yearly = $[500 +$
	rejected.		$0.75(600) \times 0.782$
8d	44	C	= \$742.90
	105		Petrol needed monthly = 45
	105		× 0.07
			- ³
			31.5 litres
			Sum of fuel prices in a year
			= 2.96 + 3.08 + 3.12 + 3.16
			3.21+3.27+3.34+3.46+
			3.54 + 3.64 + 3.77 + 3.87
			= \$40.42
9a	Median = 72	ery Whats	
e 100	Interquartile range = 11	JIN'S.	Petrol expense yearly $= 31.5$
9b	1. May performed better	100	× 40.42
	as the mean (or	d'	
	median) of her marks	6.	=\$1273.231
	is higher.		
	May is more consistent in her		Parking (total yearly) = (110)
	marks as her standard		$+75+36) \times 12$
	deviation is lower (or		= 221
	interquartile range is smaller)		12
9c	x > 59		=
	He should get 60 marks.		\$2652
9d	1. Mean will decrease by		$ERP (yearly) = 4 \times 23 \times 12$ $= 1104
	2 marks.		
	Standard deviation will be the		Car insurance = 687×2
	same.		= \$1374
			Total cost yearly = $742.90 + 1273.231 + 2652$
10a	Modela Cooper : 7 litres per		-742.90 + 1273.231 + 2032 +1104 + 1374 + 2500
	100 km		= \$9646.13
	MW Racer : 8.33 litre per	10	
	100 km	10	parking monthly at h
	Or		workplace or home
	Weisser Sunny : 18.8679 km		for 12 months.
	per litre		2. The distance travelle
	Modela Cooper: 14.2857km		per month is
	per litre		consistent.
	MW Racer: 12 km per litre		Fuel consumption rate of h
			car remain constant.
			cai remain constant.