Chapter 11 — Techniques of Integration 1

Chapter 11

Techniques of Integration

11.1 The Indefinite Integral
11.1.1 Introduction and Definitions

The process of integration is the reverse of differentiation. For example, when we differentiate
x%, ¥ + 1 or ¥* — 3 and so on, we obtain 2x. When we integrate 2x, the answer would be x> + C
where C is an arbitrary constant.

Consider two functions f{x) and F(x) which are related as follows:-
d
Ex_(F(x))= f(x) .

f(x) is called the derivative of F(x) with respect to x and F(x) is called an anti-derivative of f(x)
with respect to x.

If C is a constant, then we have

d d d

—| F(x)+C |=—]| F(x) |+—|C]| = + 0 = f{x).

LB+ C]=[F()]+[C] = ) + 0= fx)
Hence by our definition, the family of functions F(x) + C where C is an arbitrary constant are all
anti-derivatives of f{x) if F(x) is an anti-derivative of f{x).
We denote all anti-derivatives of f{x), F(x) + C, by the notation * I f(x) dx > which reads as ‘the
indefinite integral of f(x) with respect to x.’ That is, If(x) dx =F(x) + C.

Remarks:

1. The function f(x) within the integral sign ¢ J. ’ is called the integrand.
2. The process of finding J'f(x).dx is called integration.

3. The arbitrary constant C arising from integration is called the constant of integration.

11.1.2 Properties of the Indefinite Integral

1. |0 dx= C where C is an arbitrary constant.

2. ([fo)te)] dx= j flx) dr j al) dx.

3. Vif(x)dx= kJ.f(x) dx for any real constant k.
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11.1.3 Integration by Basic Formulae

Table 11.1 below are some examples of basic integrals. You have already encountered these
integrals in ‘O’ Level.

Table 11.1 — Basic Integrals

n+l
L _[kdx=kx+c 2 Ix"dx= X +C on#-1
n+
L de=tnxf+C
3. je‘d.x=e”+C 4. J‘; = |x|+
(Why do we use In|x| instead of Inx?)

Note: C is an arbitrary constant
11.1.4 Integration by Standard Forms

The four integrals in Table 11.2 below are some of the standard forms and many integrals can
be classified under one of them. The basic integrals in Table 11.1 are simplest cases of the standard

forms. The key to identifying standard forms is identifying the ‘ f(x)’ and the corresponding
(3 f’ (x) s.

Table 11.2 —Integrals of Standard Form

o n+l1
1. £ )] dx= % +C , where C is a constant,, n# -1
' n

-fl(x)

dx=In|f(x)|+C , where C is a constant

3. | fi(x)e™™ dx=e"® +C , where C is a constant

Question: Why did we ‘drop’ f (x) after ’}Efegratxonq
hf[ ) WH )L’H'l b HXJ 'F/(?{)

Example 11.1

Find the following integrals:

@ [er-9"ax ©) [ © [Loa @[
Solution:

f)=31—5
@ [6r-9" " o
f'(x) is 3 and you balance with %

%—fvczfx ~5)" dx
ax-5)" You will then ‘drop” f'(x) and only

)
= :-3— T divide by new power.
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dx=j(1—2x)_;dx

(b) j\/l—_lz

1

Change to indices form to realise that

the power is ——.
£ 2

A
== |20-297a f(x)=1-2x
1 f'(x) is -2 and you balance with
1 (1-2x)? 3 1
=71 C=-(1-2x)*+C | —= You will then ‘drop’ f'(x) and
— 2.
2 only divide by new power.
1 = =
© J' . j (1-2x)"dx o i _
1-2x f'(x) is -2 and you balance with
1 o
=3 —2(1-2x)"'dx —%. You will then ‘drop’ f'(x) and
=—-;—ln|1-2x|+C use standard form 2 in Table 11.2

(d) '[erde =%J‘2e2x+]dx=%eh+l +C

f(x)=2x+1
f'(x) is 2 and you balance with % .

You will then ‘drop’f'(x) and use
standard form 3 in Table 11.2.

Note:

In ‘O’ level, you learnt the result I(ax+b)" dx = 1

(ax+ b)"Jrl +C, n#-1. Can you see

a(n+1)

n+1
that this is a special case of J'f'(x)[f(x)]" dx = E(i)]l—+ C ,n#-1, where f(x)=ax+b?
n+

Example 11.2

Use appropriate standard forms in Table 11.2 to find the following integrals:

Ox
@ -[\]3 +x°

etanx

dx

2 N
& (b) j(ﬂ;‘)—dx © J'sin63xcos3xdx d) I

cos® x

O [Ze o0 ffse ® I(ng)m_izxdx
Solution:

= Rowr: : :
& = f‘h( 3499) % g ewrite the mtegrall in the

form jQx (3 +x° )_E dx
and check for f'(x) . Here
f(x) =3 +x and

f’(x) =2x

9x
@ -‘.\/3+x2

-Q 73
,_ijz-v(:srx )7E g

- @ (34K

2 =L
2z

+ ¢

= 0{(3+7F-)""L +C
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(1nx)3 Here f(x) = Inx and
- +C o(x) - 1
X

(b) j@dpji(hu)’dx:

Here f(x) = sin 3x and

(© ISinﬁ 3xcos3x dx
f'(x) =3cos3x

=%I(3cos3x)(sin3x)6 dx

(sin3x)’
21

+C

(d) j e™ dx =J. 12 e dy Here f(x) =tanx and
ke f'(x) =sec’x

cos’ x

=Iseczx e™* dx=e™" +C

(e) Il—xxz dx Here f(x) = 1 —x* and
1 1 f'(x) =2x
A fea0eerae sl

Here f(x)=1-¢"*and

0 [ oo

1 __er f’ (x) = _2elx
=1 1n|1—e2* +C
2
1 1 2 N Here f (x) = sin™' 2x and
(g) j dx =—j (sin™' 2x)'dx

(\/1 —4x* )sin'l 2x 2J J1-4x ¢ (x) _ 2
\]1— 2x)?
- —;-lnlsin" 2x|+C &1

Note: In examples 11.1 and 11.2, the “balancing” can only be done with constants.

Self-Review 11.1
Find the following integrals:

e —— 1., 8 1Y, [16 , 16

(a) ] 4x -3 dx |:—6-(4x 3) +C:| (b) I(4x+—J_;) dx [—3'x +?.X'A+]II|X|+C]
4 1 2

© _zf_dx |:51n( +1)+Ci| (d) j = dx [—%\/1—4x2+C]

J x +1 1—4x?
1

~ 1 . ,
(e) sec’ xtan® x dx I:Z tan’ x+ C] (f)J.xeh_d.x {geh 5 Ci\

1
® J (9x2+1)tan‘l 3xdx |:

l1n]tam‘1 3x\ +c]
3
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11.1.5 Integration of Trigonometric Functions
Table 11.3 below are some examples of standard trigonometric integrals.

Table 11.3 — Trigonometric Integrals

L; Isinxdx=—cosx+C 2 Icosxdx=sinx+C

3. jseczxdx=tanx+C 4. fcoseczxdx=—cotx+C

5. Isecxtanx dx=secx+C 6. Icosecxcotxdx =—cosecx + C

7. [tanx dx =Insecx|+C (MF 26) 8. [cotx dx=Insinx|+C (MF 26)
(=—ln|cosx|+C)

9. Isecxdx=ln|secx+tanx|+C (MF 26) | 10. Icosecx dx =—In|cosec x + cot x|+ C (MF 26)

Use of Trigonometric Identities:

The following trigonometric identities are very useful in integrating trigonometric functions:

e sin2x=2sinxcosx
e C0s2x=cos’ x—sin’ x
=2cos’x—1 for Jeos*xgx

=1-2sin’ x J ot o
e sin’x+cos’x =1 inl ran(0xt)peecdax )
e 1+tan® x=sec’ x JHn?q gx fseclontbyd = a
e 1+cot® x =cosec’x [ ot 2
A dix t oxth

. a\_(mw’:"wcos(az-"))—m(cos( < S

Further Trigonometric Integrals: d’k + b)
(22)))

1. .sin(ax+b)dx:—lcos(ax+b)+c
J a

2, .cos(ax+b) dx=-l—sin(ax+b)+C
J a

3. tan(ax+b)dx=%ln|sec(ax+b)|+C(=—lln|c0s(ax+b)l+C)
a

4. [sec? (ax+b) de=Ltan(ax+b)+C
a

5. [£'(x)sin[f(x)] dx=—cos[£(x)]+C

6. [£'(x)cos[f(x)] dx=sin[f(x)]+C

1, .-f'(x)tan[f(x)] dx =Insec[£(x)]|+ C(=~Infeos[£(x)] + C)
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Remarks:

You should have encountered integrals 1, 2 and 4 at ‘O’ level. Integrals 5, 6 and 7 are more general

versions of integrals 1, 2 and 3 respectively. We can verify the above integrals by differentiating
the RHS to obtain the integrand on the LHS.

For example, to verify integral 6, ad;{sin[f (x)]} = cos[f (x)]-f—;[f (x)]=f'(x)cos[f(x)].

Verify integrals 5 and 7 in a similar manner on your own.
Example 11.3
Find the following integrals:
@ [sin@x-1)a @ [sec(2rst)ar @ jmdx @ [xtan(x?) ax
Solution: ;
@ [sin(2v-1)dx [sinar+8) dv=-Leos(ax+p)+c

=—%cos(2x—1)+C

(b) Isec(2x +1) dx Isec(ax+b) dx= —1-h1|sec(ax+b)+tan(ax+b)|+C
a
=%ln|sec(2x+l)+ tan (2x+1)|+C
1
(C)J'sinz(lz——tlx)dx J.cose:c2 (ax+b) dx=—;cot(ax+b)+C

= 2_[cosec2 (1-4x)dx

= 2[— (_—_lz) cot(1 —4x)} +C

cot(1-4x)+C

N |-

@ [ xtan(xt) ar = JoxtntIon] [1(s)anlfe] dr=tnfecl o]+
=infsectar)f+ ¢

Example 11.4
Find: (a) _[sinzx dx (b _f 2¢cos’ %dx (c) j tan® 2x dx.
Solution:
2 dy You need to use
(@) Ism x cos2x =1-2sin’ x (double
g 3%) angle formula) and change
=ji(' - ¢os2% ) dx sin’x to a form found in
- L(x -Lsina)+c Table 11.3.
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(b) IZcoszidx=J- cosEH dx=isin2—x+x+C Use cos 2(£)=20082£—1
3 3 2 3 3 3

(double angle formula)

tan? 2x is not found in Table
11.3. You need to use
1+ tan?2x =sec’ 2x and

change tan’ 2x to a form
found in Table 11.3.

(c)jtan22xdx =!(sec22x—l)dx=%tan2x—x+C

Note:

The trigonometric identities cos2x= 2cos’x—1 =1-2sin’ x are particularly useful in finding
integrals of the type_[sin2 ke dx,jcos2 kx dx.

Example 11.5

Show that tan® x = tan xsec? x —tan x . Hence, ﬁndjtzm3 x dx.

Solution:
tan® x = tan® x tan x = (sec’ x— 1) tan x = sec” x tan x— tan x 1+tan® x = sec’ x
Itan3 xdx= I[secz xtanx—tanx] dx
= j[(sec xtan x)(sec x)l] d.x—J-tanx dx f(x)=secx
) f) f'(x)=secxtanx
= Esec2 x—In|secx|+C
2
Alternatively, Rl
Itan’xdx:jsec"x(tanx)' dx - | tan x dx £x)=
€2 $e) (x)=tanx
— 2 f' = 2
= —i+aﬂ1’x_ IH/SQCR/'*C (x) S€C X
rfra)71%

[ Sy g |

Q: The two results look different but they are actually equivalent. Can you explain why?
e B[ sectx-1) -hfseex|4¢

Self-Review 11.2
Find the following integrals:
1 1. . 1 :
(a) Icos 23xdx [E (x + gsm6xj + C] (b) .[smz xcos” x dx [g(x—%sm4x)+ C]
= [(s11xcosx) dey
=f(é5m2:af)2 doe
= j-[f’- ant2x dx

= [ (- cort ) dox
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11.1.6 Products of Trigonometric Functions
In this section, we shall consider trigonometric  integrals of the form

Isinmxcosnxdx, jcosmxcosnxdx or Isinmxsinnxdx where m > n. The Factor Formulae

may be used to transform the product of trigonometric functions to the sum or difference of
trigonometric functions of multiple angles.

Table 11.4 — The Factor Formulae

Sumof4 & B “Difference” of A & B

The factor formulae below are given in MF 26 | Not given in MF 26
(P#Q and P>Q) (4> B)

SiDP+Si11Q=28m%(P+Q)cos%(P-Q) 2sin Acos B =sin(A +B)+sin(A—B)

S]_nP—SmQ: 2005%(P+Q)Sm_;_(P_Q) 2cos Asin B =SIH(A +B)—Sm(A_B)

cosP+cosQ= 2cos%(P+Q)cos.12:(p_Q) 2c0s Acos B =cos( A+ B)+cos(4—B)

cos P—cosQ = —ZSin%(P+Q)sin%(P—Q) —ZSinAsinB =cos(4+B)—cos(4—B)

Example 11.6

Find the following integrals:
(@) [2cos3xsinxdx  (b) [ sin 2xsin3x dx

Solution: :
(a) 2cos3xsinx=sin(3x+x)—-sin(3x—x). You need not memorise the result -
Hence j‘2cos3-xsinxdx ZcosAsinB=sin(A+B)-sin(A—B)
‘| but instead use the factor formula in MF26:
=J'(sin(3x+x)—sin(3x—x))dx sin P—sinQ |
. P+Q . P-Q
=I(sin4x—sin2x)dx A
1 | and write P+Q=3x, P_Q=x
=—ZCOS4JC+50052I+C 2 2

Adding gives P = 4x

Subtracting gives Q = 2x.

2cos3xsin x =sin4x —sin2x

(b) sin2xsin3x =sin3xsin2x ~2sin Asin B =cos(A+B)—cos(4 - B)

= —%[cos(iix +2x)—cos(3x—2x)] | Rearranging, :
sin 4sin B = —E[COS(A+ B)~cos(4-B)]

= —%[cos 5x—cosx]
Isin 2xsin3x dx = —%[IcosSx dx—jcosx dx]

=_l[lsin5x—sinx]+C
2°5
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Self-Review 11.3

Find jsiansin4x d. [—llzsin6x+%sin2x+c:|

11.1.7 Standard Integrals

Table 11.5 below are standard integrals. The unknown ‘a’ denotes a positive real constant (ie

a>0). ;
xt
v%ﬂjﬁ—__—_-: dax = g ,; 1c
Table 11.5 — Standard Integrals V4™ -(x¢hy™

The 4 integrals below are given in MF 26 A more general form, not given in MF26.
f'(x) IRIC))
1. I ———edx =sin" ( )+C |x|<a I ( +C
Jat-x? (<) J@ - (f®)’
*The condition |x|<a is necessary so that
a’-x’>0

2 | 21 2dx=ltan_'(x)+c -—zfiz—dx=ltan“(-f—(i))+c
Ja +x a a Ja +(f(x)) a a

3. 21 zdx=i a+x| -~ r f'(x) 2dx=L1na+f(x)+C
Ja —x 2a |a—-x s a"—(f(x)) 2a |a—f(x)

4 [l =L w9 RGPS T LG ]
J x"—a 2a |x+a ’ (f(x)) —-a* 2a |(f(x)+a

Note:

When applying the formulae in MF26, care must be taken to ensure the integrand is written in

) : . 1 1
exactly the same way as those given in Table 11.5, that is »—— e¢tc. and the
\/az —x a +x
Befﬁcient of x’ is i-lJ. You may also use the more general forms on the 2™ column of Table
115 !
(X)) = - or T Ty

&% a Y e S —
a Ly
Exercise: =2 Vet

e

. 1 1
2. Differentiate tan™" (5) with respect to x. Hence show I_—de =—tan™ (£)+ A
a

2

) T )
1. Differentiate sin l(—) with respect to x. Hence show I
a

a +x a a
: i at+x l +
3. Differentiate In with respect to x. Hence show I ~dx=—1In k] P
a—-x a’-x 2a |la—-x

Example 11.7

Find the following integrals:

1 7 1 1
(@) J 1—9x2 & ® .[5+16x2dx © I,/g_zx_xl‘*dx @ .[7—6x—x2dx
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1 .
—— —dx (Self-Readin,
S P rrmrid £

Solution:

10

(@

J

Factor out 9 so that the coefficient of x*
is +1.

Alternatively, we rewrite the integral in
the general form and use the result

I fx) dx =sin™' (ﬂﬁ)+c as

=1 ———12———dx 1/a!z—-(f(x))2 &
3 (1 ) 2 below:
| —x
3 I_l.__dx = j 1 dx
e J1-9x J-Gx)?
3 T3 1-G3x)°
==sin"' (3x)+C
(3x) =%sin‘l 3x+C
(b) Factor out 16 so that the coefficient of
x*is £1.
.[ 5 +Z6 T g = @ ‘
x ; | Alternatively we use the general result:
= d~ £'(x) 1 £(x)
T [ .2 2 j-———dx=—tan"(—)+c
61z t2 F+(f(x) @ a

1

7

NN

[t
(V5) + axy

= _.@ _1L (4
= e — |+C
e TG/ +c oAl
7 -1 4x
=—=tan” —= +C
445 J5
(c) J' : dx We have used the more general result:
8—2x—x’ J 1 " -_1(x+b
( T il +C
N E—— T = ()
" \/—Tx2+2x—8)
.
J J-(x+1)"+9
r
1
—1 dx Sn—l(x+1) C
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1
@ .|'7—6x—x2 a

1
W - —
16—(x+3) 4 —(x+3)
|4+(x+3)| -
2(4 ) |4- (x+3)|
=l]n7+x c
8 |1-x

We have used the more general result:
a+(x+b)
—(x+b)

[ aem Lt
a’ —(x+b) 2

+C

1
— dx
(e) IZx2+4x—5

N —

2 7
o/ (x+1) —5
~
1

(]

1 | () \/7|
2\/7 ’(x+l)+\/7|

W V2E 2T
2\/_ I\/_x+~/§+«/—|

dx

N | —

L

We have used the more general result:
[t et x+5)-a
(x+b)2 —a? 2a |(x+b)+a

+C

Self-Review 11.4

Find the following integrals:

@ [——d sin—l(i)"‘c:l
4-x* L 2
L g [Lg(Et
() : 2x2+4x+20dx _6tan [ 3 ]+C]
1 (V2 (B2 +2x
SR S—, In
I v 5 [ﬁ+ﬁ_ﬁxJ+C]
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11.1.8 Integration of Rational Function of the form J- ——~dx , where f(x) is a

g(x)

polynomial and g(x) =ax? + bx + ¢

We consider two cases where
1. fx) is a constant and
2 f{x) is linear, ie fix)=dx+e

Note: Ifthe fraction E )) is improper, you need to do a long division. The integrand would
g(x

then be reduced to either case 1 or 2.
11.1.8.1 f(x) is a constant

In this case, we perform the following steps:
1.  Complete the square for g(x)(= ax® + bx +c) .
2. Refer to MF26 for appropriate formulae in Table 11.5.

Note that we have covered this in Example 11.7b, d and e.
11.1.8.2 f(x) is linear, ie f(x) =dx + ¢

In this case, we perform the following steps:
1. Let fix)=Ag'(x)+ B. Solve for 4 and B.

2. Rewrite the integrand [ 1) ax = [A8@*8 o, AL o 1 B

dx and integrate.

g(x) gx) g() g(x)
Example 11.8
Find the following integrals:
x+1 J‘ Ox+7
dx —dx
(@) jx +4x+6 ®) 9x* +6x+4
Solution: -
(a) Note that the fraction is proper. |
Letx+1=A(2x+4)+8B g(x)=x2 +4x+6
1 ,
compan'ngcoeffofx:l=2A::>A=E g'(x)=2x+4

We rewrite the numerator “x +1°
comparing constant: |=44+B = B=1-2=-1

1
vl " as‘x+1=5(2x+4)—l’soasto
I X +4x+6 introduce the expression
1 g rpd)—I *2x+4’ which is the derivative
B 5( x+4) of the denominator.
- _’- P dx b Thereafter, we “split™ the

integral.
1 J. 2x+4 .[ - 1 dx
X +4x+6 x +4x+6
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e o1
_Zln(x +4x+6) I(x+22 dx

)'+2
(xt2)? +Lﬁ)

k‘&-u )_‘_ c

= (x> +Ux+6) _j

Lina buxyo) -

Q: Why ‘| |” was not used for
In(x* +4x+6)?

(b)
Let9x+7=A(18x+6)+B

comparing coeff of x:9 =184 = A =%

comparing constant: 7=64+B =>B=7-3=4

Note that the fraction is proper.
g(x)=9x" +6x+4
g'(x)=18x+6

Rewrite the numerator ‘9x+7°

as‘9x+7=%(18x+6)+4’t0

Ox+7
9x” +6x-+4 introduce the derivative
:l 18x+6 + I “18x+ 6’ in the numerator. Then
2J9x* +6x+4 9x* +6x+4 split the integral.
=11n(9x2+6x+4)+— ey
2 2 4
J X +=x+—
r‘
=lln(9x2+6x+4)+i . -
2 (=5 (%)
x+=| +| =
3) \\3
x+
=11n(9x +6x+4)+ 41 —/ +C
A Vol
43
=—l—ln(9x2+6x+4)+—4—tan_' ﬁ(x+—-) +C
2 33 3
Self-Review 11.5
ShowthatJ. > dx:-l-ln|x2+x—1|— |2x+l J_|
x+x-1 2 25 |2x+1+s/"
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Process map for finding ( ) dx , where g(x) is a quadratic polynomial

2(x)

_| Perform long
"l division

Isfix)a Complete the square for g(x) and use MF26. See
constant? Example 11.7

Is f(x) the
derivative of

g(x)?

| Use standard form and integrate. See Example 11.2

i Split f(x) to the form Ag’(x) + B. See Example 11.8

11.1.9 Integration of Rational Function of the form f f(x) dx , where f(x) is a
J ve(x)
polynomial and g(x) = ax® + bx +¢

11.1.9.1 f(x) is a constant (See Example 11.7a and ¢)
In this case, we perform the following steps:

1. Complete the square for g(x)(= ax® +bx +c) :
2. Refer to MF26 for appropriate formulae in Table 11.5.

11.1.9.2 f(x) is linear, ie f(x) =dx +e
In this case, we perform the following steps:

1. Let fix)=Ag'(x)+B. Solve for A and B.
Ag'x)+B i
_I g'(x) jAg(x) ] "‘I B

g Jzo)
1
el

V)
= AJ.g'(x)[g (x)]n2 dx + BJ.

2. Rewrite the integrand I — i

Jg—x

14
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Example 11.9

Find I—x—dx.
\/2x—x2

Solution;
2
Write x= A(2—2x) + B. Solving gives A= ——, B =1 g(x)=2x-x
s g'(x) =2-2x
J =
2x—x Rewrite the numerator ‘x’ as

l!‘ 2-2x 1 1

TSP ST g pans

) {—Zx—xz Yl x 2(2 2x)+ to

=_% J' (2—2x)(2x— xz)% qis J' —IT dx l‘gtr_og;l,cfcthe expression
Vi ~(x-1) Complete the square for

i (2x—x2)% 2x — x* in the denominator.

+sin” (x-1)+C

2k

=—V2x—x* +sin” (x-1)+C

Self-Review 11.6

. x+3 1 : 3.
Find: (a) .[xz 116 dx [E(In(x + 16) + Etan (%)+C)]
2x+1 .-l x—1 2
(b) Im dx I:?!Sll'l (T)—Z (3+2x—x )+C:|

11.1.10 Integrating Rational Fraction by Partial Fractions

Another method to integrate rational function is via partial fractions decomposition. You need to
ensure that the rational function is a proper rational fraction.

The following partial fractions decomposition are given in MF 26:
Non—repeated linear factors: : =

px+q _ A . B
(ax+b)(cx+d) ax+b cox+d

Repeated linear factors:
pxi+gx+r _ A " B N e
(ax+b)(cx+d)’ ax+b cx+d (cx+d)’

Non-repeated quadratic factor:
pxt +gx+r _ 4 +Bx+C
(ax+b)(x2+cz) ax+b x*+c°
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Find Jz_l_dx,
x +x-2

Solution:

16

I 1 A B
x2+x—2_(x—l)(x+2)=x—1+x+2
By multiplying the entire equation by (x-1)(x+2) ,
1=A(x+2)+B(x—l)

Sub x=-2, B=—1
3

1

1. You can use the ‘cover-up’
method to obtain the values of
Aand B

Sub x=1,A=—
' 3 2. Remember to put | | sign
1 3. Can you solve this via
e 3 dx = hl .l Yy
jx2+x*2 IJc 1 x+2 | I 3]n|x+2|+C completing the square?
Example 11.11
Find J'2x+9
x +9x
Solution:
2x+9  2x+9 _ Ax+B E
x +9x x(x2+9) 2+9 x
2x+9=(Ax+B)x+C(x2+9)
Sub x=0, 9=9C=C=1
2. 0=4+C =>A4=-1

Comparing coefficient of x“ :
Comparing coefficientof x : 2=8

j—x+21)dx J‘ dxj‘ dedx
¥+9 x x+9 x249

— dxj 2dx+j dx
2 x+9 X +3

= —-1—ln(x2 +9)+—%tan_1 (—)+ln|x|+C
2 3 3

hl\xz + 9\ = 1n(x2 +9) (Why?)

Self-Review 11.7

x*+x-2
x+1)

Find I(3

7 2
[—Eln|3x—1|+%ln(x‘+1)+%tan_1x+C ]




Chapter 11 — Techniques of Integration 17

11.1.11 Integration by Substitution z

The basic idea of integration by substitution is to transform the original integral j'f (x)dx bya

change of variable into a new integral jg () du which is easy to find. Upon integrating, you must

remember to change the answer back in terms of x. Note that whenever the question requires the
use of substitution, the substitution is always given.

Example 11.12

Use the suggested substitutions (in parenthesis) to find the following integrals:

(a) Ix cos dx (u=x>) (b) IJ_ =x (¢ J.\/25—x2dx (x =5 sin u)

Solution:
@ u=r = d_a0 o g Make “dx” the subject.
dx T3y
2 3 2 3 du
dx = Pcii
Ix cos(x ) _[x cos(x )3x2
1
= ~d
Icos(u)3 u
= lJ-cos(u)du
3
—sinu+C
3 »
1 Remember to change the
= —sinlx’ ]+ C :
3 answer back to in terms of x.
1) u=x* > —a(-_u. = yx3 2 d = 7 duy | Make “dx” the subject.
= . = = L
~ i
Jeia
Vixe 9 Vl-ﬂc? ch? ‘J

Vi—u® u*
l
= ](— /ﬂ u{'c qﬂﬂ—l&k)_{_ ¢
Remember to change the
answer back to in terms of x.

(c) x=5sinu = ;E=5cosu:>dx=5008udu
u

j 25-x2 dx = [ 25— 25sin2u (5 cosu) du

= j f25(1—sin2u) (5 cos u) du
= .,/25c052u (5 cosu)du

= ZSI coszu du

2

Use cos2x=2cos“x—1

= 25“-%(1 +c0s2u) du
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25( 1. Use
=7 u+55m2u +C sin 2x = 2 sin x COS X
. .o x
= = u=Sm o~
=%[u+%(2sinucosu)i|+c S (5]
25 x=5sinu
=—(u+sinucosu)+C :
2 :>smu=—5-
] sm_1(5)+(i)(025—x2} +C cos u =+/1-sin’u
2 5 5 5 _ (xJz— 25— x?
N 5) \ 25
= l[zssm‘1(1)+xJ25—x2]+c
2 5 a 25-x"
5
Self-Review 11.8
(a) Find ° dx using the substitution u = ¢e* I:tan" (e")+C]
1+e*

2
(b) Find I_I\/x——z dx using the substitution x =sinf [%(sin‘1 x—xyl-x° )+ C]
-x

11.1.12 Integration by Parts

Let u# and v to be two functions of x

Then i(uv) = vd—u +u d by the product rule of differentiation.
d du dv
ting, — dx =I — dx+j —dx
Integrating j (uv) v u
du dv '
=|lv—dx+ |u—dx ’ ax = - ¢
uv j.v u Juv ax=uv fvu o

Rearranging, we have the following useful result:

Iug‘idx=uv—jv%dx
dx dx .

Integrating a product using this formula is called integration by parts. The aim is to ensure that

dv . .
v% is easier to integrate than ua; . Thus, care must be taken in the choice of ¥ and d_v )

In the method of integration by parts, we will let u to be part of the expression to be

‘s d .
differentiated while the remaining part, av , to be integrated.

As a general guideline, we assign ‘u’ to take the following functions in descending order of
priority (The so-called ‘LIATE’ rule):
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L: Logarithmic functions (e.g. In x)

I: Inverse trigonometric functions (e.g. sin’ x, tan x)
A: Algebraic functions (e.g. x, x*)

T: Trigonometric functions (e.g. sin x, cos x)

L E

Exponential functions (e.g. €, €*)

After assigning ‘u’ to the appropriate function, ° %’ will be assigned to the remaining function.

d
Note that in some cases the constant function ‘1’ will be assigned as Ev (see Example 11.13(c)

and (d)).

Note:

du
1. The part assigned as % > must be easily integrable. Moreover the resulting integrand * va-

. . o R dv
’ must be easier to integrate than the original integrand ua; %

2. The ‘LIATE’ rule provides only a general guideline to choose the appropriate ‘«’. It should
not be adhered to rigidly (see example 11.15).

Example 11.13

Find the following using integration by parts:

() Ilenxdx (b)jxsinxd.x (c)I]andx (d)jsin'lxdx
Solution:

Assign u to In x and ﬂ to
dx

1 2.

dv

& LIATE

dv 2
u=Ihx —=x
\dx J.uﬂdx=uv—jvd—udx

b 18 gLy & =
dx  x T

dv
Ifu and —1i itten i
dxlswn en in

X £ & 1 this order, the flow of the
I XInxdx = (lnx)= —I - (—)dx arrows corresponds to the

formula above.
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(b) j i s
u=x Y -gnx LIATE
dx i
du _ Assign u to x and — to
&—A'- V= -sx dx
sin x.
f?rSlhzd'x = XCOs™X - j(— cosx )(() dx
= ~%Oxdsiax ¢ C
Add in the constant

©) Iln?.xdx . jl-lnzxdx

u=ln2x ﬂ=1

dx
du 2
—=—v= =
o v jldx X

J.ln2xdx=(ln2x)x—J.x(-1—)dx =xln2x-x+C
x

function “1” to create an
algebraic function, “A”.

LIATE

d Ism_lx i = j' i ssinLp-ds

- dv
u=sin" x —=1

\ dx
du 1

_— =11 =
dxﬁ*vj‘dxx

jsm‘lxdx =xsin"x—j il
1-x*

= x sin—lx—ﬁj.(—lx)(l—xz)_% dx
_ L (1-2)*

s ]
= xsm x+—m—m@
1
2 Y

xsin " 'x+Vl-x* +C

+C

Il

Ad(_i in the constant
function “1” to create an
algebraic function, “A”.

The standard form

j FOUE@T de

n+l
_f@r
n+l
is used here

Example 11.14

Find J.e‘ cosx dx.

Solution:
=CoSX ili—e’
e dx
du . , X -y
_=—smx4--v=fe dx=e
dx
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je" cosx dx =(cosx)e —J.e’ (—sinx) dx

=¢e’ cosx+J‘e’sinx dx

dv_

dx

u =sinx ¥
du
— =cosXx 4—v=je*dx=e‘
dx

e" cosx dx=¢" cosx+[e’ sinx—J.e" Cos X dx:| —————

e"cosx dx=e"cosx+e*sinx

1 .
e* cosx dx=—2—dr (cosx +sin x)

J‘e" COSX dx=%e" (cosx+sinx)+C

Need to apply Integration by
Parts again with # = sin x

and dv

—=C.

Arrange (1) to make
J'e’ cos x dx the subject.

Since inclusion of the
arbitrary constant is
mandatory, we include the
constant of integration at the
final step in our answer.

Q: What if we let u = €*
and gli=sinx?Whatdo
dx

you get? Investigate it

yourself.

Example 11.15
Find: (a) (i)J'xe": dx, (ii) Ifef’ dx .

(b) (i)J-x\/xz—l dx, (i) Ix3\/x2—1 di.

Solution:

@ () _[xef dx=% I 2xe” dx=%e"2 +C

We can just use the standard
form

If'(x)e“*) dx=e'® +C

@) (i) f e dv = j < (xe) dx

B %—xe‘;
du \ e 3
—=2x *—v-jxe dx=—e

Note that LIATE cannot be
used.

We choose & = xe*
dx

because we have J xe* dx in
part (1).
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2=
O [wF-1e =% fﬂﬁ’-h\ dex

a (
= -;:ﬁ_ﬁ)— = —g(fx"'—”%-}c

O [ 2471 e [ 2 (7
u=x2 ﬂ=x\/;lt-i

\dx
du

3
E=2x B v=jx\]x2—l dx=?1,’-(x2—1)2

If Pldr=iy? («* —1)% —ljzx(x2 —1)% dx
3 3

x (Jc2 —1)——% (_x(zg;;l))i +C

=1. («* —1)% —-2—(x2 -1)'52'+c
3 15

We choose g—: =xyx’ -1

because we have

jxdxz 1 dx in part (i).

by letting u=x and %=e‘g?

Note: Example 11.15 illustrates the fact that the ‘LIATE’ rule should not be followed
rigidly. For instance in (a)(ii), do you know that we cannot apply integration by parts

Self-Review 11.9

Find: (2) [xnxdx sz(Zlnx—l)+C}

(b) [ cos™2x dx [x cos™ 2x —-;?w‘l —4x% + C}

(c) [ er dx [e’ (x2 -2x+ 2) + C] (Note: You will need to do by parts twice)
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11.2 The Definite Integral

Let F(x) be an anti-derivative of f{x) with respect to x i.e. If(x) dx = F(x) + C. The definite
b

integral of f(x) with respect to x from x = a to x = b, denoted by the symbol ‘I f(x) dx’, is

defined to be F(b) — F(a). That is, rf (x) dx = F(b) - F(a), where I f(x) dx=F(x)+C.

The values ‘a’ and ‘b’ are called the lower and upper limit of the definite integral respet‘:tive_l_y.
Note that unlike the indefinite integral, the definite integral has a numerical value. We will give
the precise geometrical meaning of the definite integral in chapter 12.

11.2.1 Properties of the Definite Integral

*a

1. f(x)dx=0

2. ..bf(x)dx=—rf(x)dx
3. | [f(x)+g(x)]dx _[f(x dx+j g (x)dx

4. kf (x)dx= kj f(x)dx for any real constant £.

b c b
5, f(x)dx=j f(x)dx+.[ f(x)dx where a<c<b

Example 11.16

% :
Evaluate (a) J- dx, (b) x“Inx dx

1
0 ,/1—9x2 1

Solution:

A Recall

(a) %——l—dx= —l—dx j\/:dx sin” ( )+C

Remember to factor out “9” so
¥ that the coefficient of x? is +1

1 1 When working with

- - dx differentiation and integration,

3 1 2 we need to use radians for

’ [ ] - angles.
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(b)
From Example 11.13(a)
3 3

Ilenx dx=x—lnx—x—+C
3 9

2 3 3 2
I Chxde=|Xnx-> =(§m2-§)-[0-l)
1 3 o] 379 9
= Rp 2
3 9

Example 11.17

1
Use integration by parts to find the exact value of j tan~'x dx.
0

Solution:
Let u = tan™'x and L =1
dx
du 1 _
76_ 14 = vex
1 1 X
I tan~'x dx =[7(+an-l‘x]; == Jo T+ 2 dx
0

= +an '\ --%-_[\nk\-\-m‘*-)] :’

-lin2
=z

£

For definite integral
b b d
! u?—d:dx=[uv]i—ja vaudx

Alternatively,
we can find the indefinite integral

(ie. Itan"x dx ) first and then

find the value of the definite
integral like Example 11.16(b)

11.2.2

Evaluating the Definite Integral Using Substitution

When evaluating a definite integral using substitution, extra care must be taken to ensure that the
limits of integration are changed to the corresponding values of the new variable.

Example 11.18

5

titution u# = x +4 to evaluate .[
Use the subs . m

Solution:

dx

exactly.

du
u=x+4 = a;=l:>dx=du
x=0=>u=4and x=5=>u=9
‘u—4
dx=J‘——du
o
9
=J. (u%—tiu_%)du

4

[z/_g/] _
3 "

X

[ 5

14
3

The word “exactly” means
that we cannot use GC to
evaluate the integral.
However, we can still use it
to check our answer.
Remember to change limits
of integration. Note that the
new limits for the new
integral must correspond
to those of the original
integral and there is no
need to change back to in
terms of x. (Why?)
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Example 11.19

1
Evaluate I V1-x* dx using the substitution x =cos@ .
0

Solution:
de Change limits of integration.
x=cosf = 0 —sind Note: Since the substitution is
one-one, we take principal
=l 5 B il w1 =i Gl angles of the trigonometric

function (pg 3 of MF26).

2
1 0
1—2dx=j —r -
L\/ x g,f( oS 0)( sinf) d6 Note that the new limits for the

new integral must correspond

" Ay
__ I sin? 0 do to those of the original integral.
: b a
=stin29d6 Use J.af(x)dx=—L £(x)dx.
0
_ J'fl_cos 26 40 Use double angle formula
2 cos 20 =1-2sin’f.
i 0p
=l[9_sm29
2 2 |,

-}(5-0-0-0)-2

11.2.3 Evaluating the Definite Integral Using the Graphic Calculator '

The GC can be used to evaluate a definite integral but if the question requires an exact answer,
then the analytical (non-calculator) method is implied.

Example 11.20

e2

Evaluate I dx to 3 significant figures.

e XInXx

E Solution:

Step 1: AUTO & Q[FORNAL FLGAT RUTG AEaL waozeN P [y
Press £ and
Select 4:fnlnt(

[Camas
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Step 2:

2
Key in the lower and upper limits ] . (wiw )

and the function to be integrated.

Press and the definite integral
can be evaluated.

MOPHAL FLORT AUTO REAL RRADIAN HF

. 0:6931471806.

'n.

&2

chce,j dx =0.693 (to 3s£)

e xlnx same command.

Note: You can also press @to call out the

11.3 Miscellaneous Examples

Example 11.21

Without using the graphing calculator, evaluate the following integrals:

(a) Ij1x|2x—1ldx (b) j_'le""l' dx

Solution:

(c) J‘E cos(|2x—l[) dx
0

o« y=2x-1

y=—(2x-1)..,\

-

@ [ dpx-tjac = 5 xlfx0] dx

1—_[' x(x ) doy

You should never integrate
with a modulus function.
To remove the modulus,
draw the function without
the modulus, i.e. y=2x-1
The portion of the graph
below the x-axis will be
reflected about the x-axis.
The equation of this portion
is y=—(2x-1). The
portion of the graph that is
not reflected has the
equation y=(2x-1).

You will “split” the integral
147 a 1 - P gr
[ T ’— J" t [-,7 1,7‘ with the appropriate limits.
(We “split” the integral at
-l !
g™ X = _2-)

1
P pen 2 _—(2x-) ot
) Ilel |dx=J:le dr+ |, s
= 2

___l[e—an]% +1[ezx-l:|
2 -1 3

;(e +e— 2)

Split integral at x = %
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() ".fcos (J2x-1]) dx
=J.05cos[——(2x—l):| dx+_[fcos(2x—1) dx
= —%[sin(—2x+l):|0% +%[sin (Zx—l)]g
=—%[—sinl]+—;-sin(7:—1)

=l[sin1+sinncos1—cos7tsin1] =sinl

Self-Review 11.10

3
Evaluate (a) J- (x-1) dx [4]
1
9
(b) va
s 1+4/x
2 28 :
() I lx —lldx [?] [Check all your answers using the GC]
-2

dx using the substitution u =1++/x [3+ 21n§ ]

Example 11.22

n

dx.

(a) Find dx in terms of n. Deduce the exact value of J.

o 1+4x° 1+4x2

[You may assume that tan™' x — 5 as x — o, Can you see why?]

(b) Given that n is a positive integer, find J xcosnx dx in terms of » in the simplest form.
0

Solution:
(a
[ et [ gl 1,
ol+4x 4 l_'_xz 4 1 3
04 0 5 +Xx
/[tan ] —tan '(Zn)
Z 1 IIM
dx = [t
.[) l+4x2 ’*’h’- ’\Qw 2 fC(,, 15(2"2]
i i
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(b) Using integration by parts,
I xcosnx dx =[£sinnx:| -——I—I sinnx dx
0 n o Ndo

_ T . 1 T
—;sm nm ——[~-cos nx]0

= %(cos nn—1)

0 if n is even

2 ...
-— ifnisodd
n

dv
u=x and — =cosnx
dx

gu_ =1 and v=lsinnx
dx n

cos 27 = cos 4m
=cosbm=...=1
ie cos (even no.xm) = 1

cos Tt = cos 3w
=08 58 = ...~ =l
ie cos (odd no.xm) = -1

Example 11.23 (MC N98 / I/ 18 modified)

a

(a) Find the positive integer a if

24+x°

d.x=J-Ecoslaxdx.
0

i o G L,
(b) By considering c_lx—I:E sin (x3 ):I or otherwise, show using integration by parts, that

J‘xscos(x3)dx = §x3sin(x3)—jx2sin(x3)dx.

3
Find J. xzsin(x3 )dx and hence obtain the exact value of I xscos(x3 )dx.
0

Solution:

v

L S | 1 x
LHS = —dx=j —— de=—|tan™| =
® YT N 2{ (2)
=t tan| £
2 2
== ] ®
2 2
=ltar1"l =
2 2

% %
RHS = I ? costax dx=%.|. 2(cos 2ax+1) dx
0 0

+
oo | a

1 . ] 1[1 ) T
=—|—sin2ax+x| =—|—sinan+—
2| 2a s 2|2a 2
Hence —I-tan'l £ Lt
e 2)T8 e
= tan | E = s Eoing=2
2) 4 2

|
A
N———
|

L
4

Use double angle
formula

cos 2ax = 2cos’ax—1

Q: Why is
sinar=07?
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®) a[gsm(xa)]%(w)cos(f)=xzcos(x3)

Rewrite the integral

Ixscos (x’) dx =j 2 xzcos(x3) dx

Let u=x’ % = x’cos(f)
du

< =3x *—— y= %sin (x3) from the above result

Using integration by parts,

jxscos(x3)dx = lx’sin(x’)—J‘3xz :

=%[—cos(x3)+c]==—%cos(x3)+C

Hence Jﬂxscos(f) dx = l:-1—x3sin(x3)+lcos(x3)]ﬁ
0 ! 3 3 .

1 . 1 1 2

=—T SINT+—COST——=——

3 3 3 3

29
Rewrite the result as
j x’cos (x3 )dx
= é—sin (¥)+C

split x*cos(x*) into
a product of x* and
x’cos (x3 ) because

we know the result of
szcos(f)dx.

Note that the integral
szsin (x3 ) dx can

be expressed in the
form

17, ;

gjf (x)sin £ (x) dx
= —%cosf(x) +C
where f(x) =x°
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Summary

30

1. Integration is the reverse operation of differentiation. Given a function £, the objective of

integration is to recover a function F such that de—[F(x)] =f(x).

2. A definite integral is an integral which has limits of integration while an indefinite integral

does not have limits of integration. A definite integral produces a definite value v'/hile an
indefinite integral produces a function F with an arbitrary constant C. The function F is

called the anti-derivative.

These three integrals are usually called

useful in integrating trigonometric functions:
sin2x =2sinxcosx *
cos2x =cos’ x—sin’ x
=2cos’ x—1 *
=1-2sin’ x
1+ tan® x = sec’ x
1+ cot? x = cosec’x

e , . f x n+l
3a . f'(x)[f(x)]"dx =%+ C, nz-1 standard forms. Many integrals belong
 £'(x) to one of these three forms. When
3b f—dx =In|f(x)|+C performing integration, it is a good
. ) strategy to check if the integral can be
3¢ |f'(x) e'®dx =e™ 4+ C rewritten as a standard form.
. il These four standard integrals are very
e | BV iy =i (;) +C (|x| = a) * important. When performing
3 integration, it is a good strategy to
4b - 1 dx = ltan“ (f) +C * check if the integral belongs to one of
Ja?+x? a a these types.
4e * 1 dx = 1 la+x +C * Note that t'he coefficient of x in the
Jat-x* 2a la-x integrand is+1.
F 1 1, |x—a .
4d ——dx=—1In +C * * formulae given in MF26
J x —a 2a |x+a
5. The following trigonometric identities are very

cos2x=2cos’ x—1 =1-2sin’x
The above identities are particularly
useful in finding integrals of the type

J-sinzkxdx,j‘cosz ke dc

* formulae given in MF26

. In dealing with integrals of the type

j f(x)
g(x)
function, it is often necessary to complete the
square for g(x) and apply integrals ‘3b’ and
‘4b’ or ‘4¢’ or ‘4d’ above.

dx where g(x) is a quadratic

Express I;g;

dx as follows:

f ’
j—(x) dx=AI—g (x) dx+BJ'——l dx
g(x) g(x) g(x)
where 4 and B are real constants. Then

use ‘3b’ for the first integral and ‘4b’
for the second integral.
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7. In dealing with integrals of the type

I f(x)

dx where g(x) is a quadratic
Je()

function which cannot be factorised into real
factors, it 1s often necessary to complete the

square for g(x) and apply integrals ‘3a’ and
‘4a’ above.

Express -[jg(:—x)) dx as follows:
10 o

e

-A[g()[e@)]” ex+B] g‘(x)

where 4 and B are real constants. Then

use ‘3a’ for the first integral and ‘4a’
for the second integral.

dx

8. For rational fraction, if the denominator is
factorisable in linear or quadratic factors, we

can find its partial fractions before integrating.

9. The technique of substitution transforms the
original integral in ‘x’ into a new integral in
the new variable ‘u’.

Remember to change the original limits of the
integral to the corresponding limits in the new
variable.

dx
Use the replacement ‘ dx = —d;du "

10. The integration by parts formula states:
Iug‘idx=uv—jvgdx
dx dx

This technique is usually applied to
integrals consisting of a product of two
different functions, for example,

Ixsinx dx,jx2 In x dx . The choice of
‘u’ is guided by the ‘LIATE’ rule.
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10.
11.
12.
13.
14.

15.

16.

17.

18.

Appendix A
Table of Integrals
; (ax+ b)n+1
b) dx - C #-1
I(ax+ ) a(n+1) ¥ L )

[—— & = Limjacss| + C
ax+b a

Iem+bdx — leanb +C
a

[E@[EE)] ax = [fC]™ +C

n+l
dex = hlf(x) +C

f(x)

J-f'(x)ef(’) dx = ¢ + ¢

_[sinxdx = —cosx + C

Icosx dx = sinx +C

Itanxdx = In(secx) + C (|x|<%n) *
Icotxdx = In(sinx) + C (0<x<1c) *
Isecxdx = Injsecx + tanx| + C *
Icosecx dx = —1n|cosecx+cotx| + C *

Iseczxdx = tanx + C

Icoseczx dx = -cotx + C

j (all—xz) it = sm(g) +C (| < a)
1

1 e
J’a2+x2 & = —tan 1[3) +C  (xe R)
dx 1 a+x _
(£ ec (<)
dx 1 x—a
jxz-a2 =5;]n(x+a)+c (|x|>a)

* formulae given in MF 26

32



Chapter 12 — Applications of Integration

{Chapter 1 2

Applications of Integration

In chapter 11, we introduced the definite integral. In this chapter, we conceptualize the definite
integral as a limit of a sum and geometrically as the area under a curve and volume of a solid
obtained when a region under a curve is rotated about the axes.

12.1 Area of Region

12.1.1 Area under a curve

Area above the x-axis

If a region A4 is completely above the x-axis, i.e.
f(x)20for a <x<b, then the integral be dx>0.

Area of the region 4 = ry dx

Area below the x-axis

If a region B is completely below the x-axis,

ie. f(x)<0 for a<x<b then the integral | y dx <0.

Since area is always positive,

Area of region B = —Iby dx

y

/ ¥ =10

* y=ﬁX)/

0 a b X

Note that the negative sign is necessary since the integral is negative.

Find the exact area of the region bounded by the graph of y = x, the lines x = 1, x = 4 and the x-

Example 1
axis.
Solution:
y 4
) b
The area of region R = L ydx
- dxs= 1
j (4 f , ATax
3] u Y
= —}__ - Q___ - L = 2/
1 ) 7 7

Uny'ty

=y

Always draw a sketch of the
curve to check whether the
required region is above or
below the x-axis.

4
Note that I ydx > 0 since
1

R is above the x-axis.
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Self-Review 1

1.
1 . = = _
Show that the exact area under the curve y = = between the lines x = —3 and x - is

%
In8 units?.

Example 2
- %
(i) Find the exact value of j-/ cos x dx.
7

(i) The figure below shows a curve given by the equationy = cos x for values of x bet\fveen 0 and
2n. Find the exact area of the region R enclosed by the curve and the x-axis between

x—Eandx-?’—ﬂ
- - g
N/
| /2 3n/2
R
Solution:

2 2
3x , Sly
(i) j 7% cosx dx = C“’"XJ ,.,: 34
% %2 2 Note that I cosxdx<O0
= sy =Sth:_ - |=-2 5

2 - 2
3 since R is below the x-axis.
(ii) The area of regionR = — ¥ WIXdxe = — (~2)=2milj?
2

Self-Review 2

Show that the exact area under the curve y = between the lines x =2 and x =4 is
-x

In3 units’.
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12.1.2 Area of the Region Bounded by a Curve y = f(x), the Horizontal Lines y = ¢ and
»y =d and the y-axis

If a region R is completely to the right of the y-axis,

y A
d
then the integral L xdy>0. d Vs
. R y =1flx)
Area of the region R =I x dy ”
0 £
If a region L is completely to the left of the y-axis, - (%) x\
d x d
then the integral _[ xdy <0, L
< c
d - -
Area of the region L = — I x dy 0 i

Again the negative sign is necessary since the integral is negative.

Example 3

Find the exact area of the region bounded by the graph of y = x* where x > 0, the lines y = 1,
y =4 and the y-axis.

Solution:

You should always
sketch the graph to
determine the

W appropriate expression
to use when finding

1 : - area under the graph.

yﬂ
4 y=x

‘What is exact area of the
y=x* = £x=tJy (M@ XZ0,- 'X:Jg) region bounded by the

— 2
The area of the region W graph of y = x* where
x<0,thelinesy=1,

%4
:f:mdp) :J‘:"rv'dy s [.g-:]‘ :;-(X.O:g'w“l‘y=4andthey-axis?

Self-Review 3
Show that the area bounded by the graph of y = +/x , the line y = 2 and the y-axis is —§- units?,

A NR  area= [4PY
-2

jﬂ;
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12.1.3 Area of Regions on both sides of the x-axis or y-axis

Suppose we want to calculate the total area of two or more regions which lies on either side of the
X-axis.
If we compute the total area (sum of areas of regions A, B and C)

a
by simply writing I y dx, our answer will be wrong

Hence, the total area is given by

yll

y = fx)
d
as _Lydx=AreaofA+AreaofB+AreaofC B
b c d >
=Lydx+_[bydx+jc ydx. 0 al/b \"d x

Lo fyasecfy o

Note: It is important to sketch the graph of y = f(x) when finding the area under the.curve.
Similarly, for the shaded region bounded by the curve x = g(»), the y-axis, and the lines y = a and

y=a
total area = Area of L + Area of R
= —be dy +J:x dy.
L
[Negative

3

I
R
2 [Positive]

Example 4

A curve C is given by the cartesian equation y = x(x —1). '

(i) Find the exact area of the region enclosed by the curve C, the x-axis and the lines x =-1
and x = 3.

(ii) The area of region B bounded by the curve, the positive x-axis, y-axis and the line y = k (k—1)
is 5 times the area of region 4 bounded by the curve and the x-axis. Find the value of k.

A
y=x(x-1)

¥=k(k-1)

B

A k
Solution: \—/

i) Required area =jf,('¥"’»?l)ol’)c— } L (A "Z)J'V + ] ?(’Y"nr).lq

1,1201312]1[13123
= — i —_— — —— +_ —_———
[3x 2IL [3x ¥ 73T T2

—> x

Note that the curve cuts
the x-axis at x = 1.
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.. . | g tp-t) - [Ep2_ Clearly, the area of
(ii) Area of region B = | £* (&~1) - [[(&x* =) 4 region B  fho wreaof
Given: Area of region B =5 x Area of region A the rectangle minus the

area under the curve

k
kz(k—l)—j (xz_x)dx=5x(—r(xz—x) dx] from x=1to x=k.
ka,(k-l)l.. U B ’ /)
3] =%
- U 4t 1y )16

=2 X T _ i
_,?')IL 1k - \=p

Using GC, k = 1.46 (3 s.f)

Self-Review 4

Find the area enclosed by the curve y = x* — x> —2x and the x-axis. [?—; units?]

12.1.4 Area of a Region Bounded between Two Curves

y
Ya y = f(x) ?
y =1x)
)70 (AT
0 a b K 0 a R F b X
y =g
For both figures above,

Area of region S = Area under the curve y = f(x) — Area under the curve y = g(x)
b b
= [ f(x)dx- j g(x)dx

= Ib [£(x)—g(x)]dx, where f(x)>g(x) for a<x<b.

Note: 1. Always use “upper” curve — “lower” curve to find the area between two curves.
2. Even if some portion of the region § is below the x—axis, the area of the region § is

still j" [£(x)—g(x)]dx.
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Area of region S

Area of region §

= [ [f()-g@]dx

Independent reading _ _
Let S be the region above x-axis and .52 be the region below x—axis.

= ["f0)dx-[ gl dx - [ gy dx

Area of region §; = — I ‘ g(x)dx

= Area of region S + Area of region $2
= [l [lem - [[ewar] + (- [ ewo)
- f(x)dx-(j: g dr+ [ gx)de+ [ g() dx)

=[ fryde- [ g(x)dx

Y 4

O

If we wish to obtain the area of the region
as shown on the right, then it is not feasible
to perform the integration with respect to x.
Instead, we integrate with respect to y

as follows:

Shaded area = j" [h(y) -k (>)]dy

B

0

Note: Always use ‘right’ curve — ‘left’ curve to find the area between two curves

Example 5

Find the exact area of the region bounded by the curve y =x* —1 and the straight line y = x + 1.

Solution:

y=x-1

Ya

y=x+1

Let x’-1=x+1

= x=-lorx=2

/I\Q/

For intersections of the two curves,

= x-x-2=0 >

Area of the region R = J_q; [

(x+1)(x-2)=0

-0ty

1)

2)

3)

Key steps to find area as a
definite integral:

Draw diagram and
identify correct
region

Find points of
intersection if any
Write down the
correct definite
integral (is it a sum
of areas, subtraction

or a combination of
both?
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2 3 2
= [x-d+2dc=|Z X 49,
-1 2 3 7

8 1 1 1
=[2—-=4+4|-| ==(-2)=2| = 4= ynits?
[ 3 ] [2(3) ] by i
Alternative Solution

Co_nsider region R as two parts. One portion, R}, is above the x-
axis and the other portion, R, is below the x-axis.

Area of region R = j_zl (x+1)dx—_“12(x2 —l)dx

xz 3 x3 ’
=|—+x| -|=-x
2 -1 3 1

=[4—(—%)]-[§—(—§)] ~ 422 i

Area of region R>
3 1
=— 1(x2—1)<1x=— X x| =- (1—1 —[—1+1)
-1 3 i 3 3

Area of the region R = Area of region R, + Area of region R

=(4l—i)+i= 4l units?
2 3) 3 2

_[2 (x+1)dx is the area of
-1

the triangle bounded by
y=x+ 1, the x-axis and
x=2

‘Which is the easier method?

Example 6

Find the exact area bounded by the parabola 3> = 4x and the line y =

Solution:

2x—4.

For the points of intersection,
(2x-4)?=4x =>x*-5x+4=0
=>x-1)(x-4=0=>x=1or x=4
Whenx=1, y=2(1) 4=-2

x=4, y=24)4=4

1
Y=4x= x=%y2 and y=2x-4 = x=5(y+4).
.. Shaded area

- [ ‘bt 19D - 7Y 4y
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1, I 51
==y +2y—-—
[4y Y 12}']_2

=| L ay Ly |- Lo +2(2) - L <2y | = 9 units?
[4(4) +2(4) 12(4)] [4( 2)" +2(-2) 12(2)} ugils

Example 7

Find the exact area of the region bounded by the parabola (y—1)* =4(x-1), x 21 and the lines
x=5and x=10.

Solution :
+ - 17 =4(x—1)
\/ b p>1
W
\§ > X
<1
x=5 x=10
Note that '

—1)2=4x-1) = y-l=tJax-1) = p=1£2Jx-1 We can consider that
o= (== ¥ =1 ¢ the required region is

Area required = J‘m (y,—y,)dx bounded by the two
§
= curves, y, =1+2vx-1
= j 5 1+ e (V=205 ) o (“upper” curve),
¥, =1-24x-1

o 1
= JUXAY T goc
J5 (“lower” curve), and

the lines x =5 and

= U l("(—l?/ v - l ?,_ =
[1 )-—]s ’T[M_“_] x=10.
15
& < 0w,
= (1F-§)7 57wl

12.1.5 Using GC to Calculate Areas

We mentioned before that when finding the area bounded by a curve, it is important to sketch the
graph so that we can actually ‘see’ the area we wish to find so as to determine the appropriate
method and formulae to use. The GC can help us achieve just that by shading the required area
and at the same time compute the required area. Quite often, we will have to find the points of
intersection of the curve and the x-axis to determine the limits of integration.

Example 8
Sketch the graph y = l—%x(x + 4)(x — 5 ) and shade the area bounded by the curve and the x-axis

using a GC. Write down the value of the shaded area correct to 3 significant figures.
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Solution:

1. Press & and enter
Y1 = 0.1X(X + 4)(X - 5) to graph out the curve.

NORMAL FLOAT AUTO REAL RADIAN MP n

)

2. Press F =

function.

to call out the calculate

m"m—_u
CBLCULRTE
1:value
2:zero
3:minimum

4 : maximum
S:intersect
6! du/dx
f(x)dx

3. Select 7:] f{x)dx. You will return to the graph

screen.

Y1=X/ 10K+ 4)(X~5) /

4. Enter the value x = — 4 as the lower limit and

press .

i

WORHAL FLOAT AUTO BEAL EADIAN 1P al INORMAL FLOAT AUTO REAL EADIAM NP
CHLC THTEGRAL OVER INTERVAL [iCALC INTEGRAL OVER INTERVAL

Vl'KI“O(‘;O(:’s / Y43 :vmx-uxx-n
X=-4H ryrLimi vee

15
3

5. Enter the value x = 0 for the upper limit and

press to find the shaded region above the
x-axis.

‘HORHRL FLOAT AUTO REAL RADIAN HP
CﬁLC INTEGRAL OVER INTERVAL

"gv/ )

l_tealx-? 4666667

6. Repeat steps 4 and 5 using lower limit 0 and
upper limit 5 to find the area of the shaded
region below the x-axis. Note that the value is
negative since the shaded region is below the

X-axis.

‘NURHﬁL FLOAT AUTD REAL RADIAN HP n
CRLC INTEGRAL OVER INTERVAL

SE(X)IN="13.54167
[0:51

7. The area bounded by the curve and the x-axis
is 7.467 + 13.542 ~ 21.0 (to 3 sig. figs.)

Negate the value of the definite integral to
retrieve correct area
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Note: . ' .
1. It is wrong to calculate the area of the shaded region by simply setting the lower limit

1
as —4 and the upper limit as 5. i.e. j Ex(x+4)(x—5)dx =-6.075.
4

2. In general, an integral of the form J': f(x) dx does not necessarily give the area bounded

by the curve y = f{x), the x-axis and the lines x = a and x = b. This happens when part
of the curve lies below the x-axis (see section 12.1.3).
3. Use of GC is NOT allowed if the question ask for the EXACT area.

12.1.6 Area Under a Curve Given its Parametric Equations

When the parametric equations, x = f(f) and y = g(f), of the curve are given, the formulae for
areas in the earlier sections still hold. The evaluation is then similar to integration by substitution
method, i.e. start off with either

d
Ib ydx or I xdy,
depending on the required area. Using the parametric equations to do substitution, it is either

b ) d f
Lydx:L g()f'(t)dt or Lxdy=£ £()g' ()de
Note: You need to change the limits and the integrand.

Replace dx by f'(¢)d¢ for Ibydx. (Since x=1(t) = dx=f'(s)d¢) -

Replace dy by g'(f)d¢ for rxdy. (Since y=g(t) = dy=g'(®)dr)

Example 9
The curve C is defined parametrically by x = Jt , y=t*—1 where ¢>0. The region bounded by

the curve C, the x-axis, x =1 and x=2 is denoted by R. Find the area of the region R.

Solution:

y The required area = I 12 y dx

=V

0/1 2

When x=1,t= |/
x=2,t=¥%

x=+t and y=£-1

o a *
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11

_[? _ (2 _\ 1 We need to change x=1 to t=1,
Hence area _I‘ y & _'[’ (t 1)2_J; de x=2 to t =4, and replace dx by
' 1
=5.2 units’ by GC 2
Wt

Example 10 (N2016/2/3)

A curve D has parametric equations x =¢—cost, y =1-cost, for 0<¢<27.

(i)  Sketch the graph of D. Give in exact form the coordinates of the points where D meets the
x-axis, and also give in exact form the coordinates of the maximum point on the curve. (4]

(i) Find, in terms of a, the area under D for 0<¢ <a, where a is a positive constant less than

27 . [3]
The normal to D at the point where ¢ = % cuts the x-axis at £ and the y-axis at F.
(i) Find the exact area of triangle OEF, where O is the origin. [4]
Solution:
()

When D meets the x-axis, then

y=1l-cost=0 = wstiﬁ,l 12 om0

When £=0, x=| X = (- cop = O=A9=""

When ¢ =27, x=rﬂ‘= /-cost w2 -~ o2 =2~/

|

Hence D meets the x-axis at (—1,0) and (27 -1,0)

vt
(r+1,2)
=7
t3A2n
'=0/ o X
(-1,0) 2n-1,0)
x=t—cost = —t=1+si11t
d )
y=1-cost = 2 _sint
b _dy b __sint
dx dt dt l+sint
) d int
For maximum point, let 2= sm. =0, then
dx 1+sinf

sint=0 = =0, 7, 27

When t=0, x=-1,y=0.

When ¢ =271, x=27-1,y=0

Note thatat 1 =0, 7, 27, the

gradient of the curve is 0.
Notice the shape of the curve
at these points.
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12

x=t-cost=
y=l-cost=[ - stzl_cottt - (k)

The coordinates of the stationary points are (-1,0), (7 +1,2)
and (27 -1, 0).

From the graph, we see that (7 +1, 2) is the maximum point.

thnt:;r, )
-y 2T -C-l)op ¥ J

(ii) When =0, x=-1 and when t=a, x=a—cosa.
Area under D for 0<¢<a

=Id—005¢ly dx

-1

=J: (1-cos?)(1+sin¢) dt

a
=Io 1—cost+sint—sinfcost df

4

(a-cosa,l-cosa)

Q .
= = tsiat - Ly +
jb\ cost it sintkd

ﬁ 1
z [_1!- sint, —cwst, feosztar]
o
=(a-5knq- ,
(a-5maq e cmZﬁ}-(lJ-D-H“?")

A - S1ng-0©A 4L
1T cortat

(iii) When t=%,
x = t—cost=£——cos£=-’f——0=£
2 2 2 2

Y= 1—cost=1—cos%=1

sin—

\ I

/1
dy  sint _ 2 1 /
= _25 r

|
—
-
(=}
N

/2, 1)

(2n-1,0) x

dx l+4sint 7
2 (_la

(=]

)

Hence, gradient of normal =-2

. T,
The equation of normal at ¢ = ] is

4
y-y="20(x-x) = y—1=—2(x——2-).

At point F,
71' /4
x=0,y—l=—2(0—5) = y=1_2(‘_5)=1+7[
At point £, y =0,
T 7+l

0-1=2(x-—=) = —=X—-7 = X=_—t_—=—"

(3-2) = 5=x-3 :
Area of triangle OFF

1 1 l+z, (+x) .,
= _xOF xOE==(1+7 = units-.
2>< X 2( X 3 )

b 4
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Self Review 5 (MJC Prelim 2007/1/6 modified)
A curve is defined by the parametric equations

x=t35 y=ﬁ, —2<Lt<2.

Show that the region R bounded by the axes, the curve and the line x = ¢® , where a >0 is given

a 3
y jo TP d. Hence find the exact area of region which is bounded by the axes, the curve and

the line x = 1. [3[1_£]]
4

12.2 Area under a Curve as a Limit of a Sum of the Areas of Rectangles

Let f{x) be a function defined on a closed interval [a, b].
y

1\

.
L
x ~—

b-g
n
Suppose we would like to approximate the area of the shaded region 4 using » rectangles. To do

so, we divide [a,b] into n equal subintervals such that the width of each interval = . . We then

n
construct a rectangle on each subinterval as shown where the height of each rectangle is given by

the y-coordinate on the curve corresponding to the “left” endpoint of each subinterval. For
example, the height of first rectangle is fla).

T

yl

Summing up the area of all the rectangles will give us an approximation of the area under the

curve.
In this case, the total area of the rectangles is an under-estimate of the actual area under the curve.
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If the “right” endpoints of each subinterval are used to construct the rectangles instead, the total
area of the rectangles will be an over-estimate of the actual area under the curve.

Note:
Whether total area of rectangles is an under-estimate or over-estimate of the actual area under the

curve depends on the shape of the graph (e.g. increasing & concave downwards as shown in the
figure) and the way the heights of the rectangles are constructed (i.e. “left” or “right” endpoints

used). Therefore, you should always have a graph to visualize.

A —
y /

Example 11
The diagram shows the graph of y = 1 in the interval [1, 2] with » rectangles of equal width.
X

Show that the total area of n rectangles, S = ZL ;
pry B

n
. 1
Deduce the exact value of lim E
n—»wo =l n+r
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y A
y=1i
1 <P > *
n
Solution:
Width of each rectangle = 2-1 =l Note that 2 =1+~
n n n
S = Area of the n rectangles
1l
= ! r- - "1 ’ j
g‘(n)(u_t) =&l . +,)
‘ n r=t
_ !
Sw Al Lx— :
'1 —
LS T AR Tk L &
ST b -, Sl hmz = the area
T o t iie = é o e ntr
n 1 (nff - 1
: _ Jl—"dfx - Inzw:f under the curve y=—
nsei=p 4 r L2 : x
! over the interval [1, 2]
Example 12

The diagram below shows part of the graph of y = x?, with rectangles of equal width approximating

the area under the curve betweenx =0 and x= 1.

A
y y

D
=X

3

wn| s
| v

12
5 5

=Y

| B
()  Show that the total area of the four rectangles shown may be expressed as §(Z r')_

r=1

(ii) Let A4 be the total area of the (n—l) rectangles, each of width —1-, under the curve. Given

that Z":rz =%(n+l)(2n+l), show that A=

r=1

(iii)

(n-1)(2n-1)

6n”

n

Deduce the area bounded by the curve, the x-axis and the line x=1.
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Solution:

16

(i) Area of the four rectangles under the curve

1(1]21(2J21 3V 1 (4Y
==x|=| +=x|=| +=x|=| +=%x| =
515) '5°\s5) "57\5) 5°\5
]

=5—3 (1 +2°+3 +4%)

5lE) e

-1
s Lmas L*‘-\)v:)

-

(7]
% ':\L":_:) (=) #1)( 1A

- ______(n e lg’(jn ), (shown)
(i)
Required area = (\m (3~

g \aLv\r’\

=—x1x2 =— units
6 3

s M\Lh;')m—-—’)

The width of each of the 4
rectangles is %

Theizr heightsz are 2 2
5 (6 () =0)

respectively.

Important idea
When n (the number of rectangles) — oo,

the sum of area of the rectangles — actual area bounded by the curve and the x-axis from a to b.

Independent reading

Let f{x) be a function defined on [, b]. The region bounded by the curve y = f{x), the x-axis and

the lines x = a and x = b is divided into n equal subintervals [xo ,x1], [x1 ,x2],....,
a = xo and b = x, and the width of each interval & = =2,

We then construct a rectangle on each subinterval where the height of the k™ rectangle is given by
the y-coordinate f(x, ) corresponding to xx. Then the area of the k® rectangle is given by [f(x,)]0x

and the total area of the n rectangles is Z [f(x,)]0x.

k=1

Thus the area, 4, bounded by the curve and the x-axis from a to b is

[xn-1 ,%n], where
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A=lim kz'i:[f(xk N6x= [ [f)] dx . i o) v=1)

(%n , flxn))

Self-Review 6
The diagram shows the graph of y =1—x’in the interval [0,1] with 7 rectangles of equal width.
Show that the total area of the n rectangles is given by

n-1
S=1-—=>r%. . s

n =

n-1
Deduce the exact value of lim(1- —13-2 r’)
n—o n

r=1

[Ans: 2/3]

12.3 Volume of a Solid of Revolution as a Limit of a Sum of the Volume of
Cylindrical Discs

12.3.1 Volume of a Solid of Revolution Formed by Rotation About the x-axis Through 2n

radians
ﬂ

y 4

y = fx)

HWL

Q
oy
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Let f{x) be a function defined on [a, 5]. The region bounded by the curve y = f{x), the x-axis and
the lines x = a and x = b is rotated about the x-axis through 360° to form a solid of revolution. We
wish to find the volume, ¥, of the solid of revolution.

-

B e L
-

HV

_———— -

-

Divide the interval [a,b] into n equal subintervals [xo X1], [x1,%x2],...., [%n-1 %], each of length
= b-a
n
Let 6V denotes the volume of the k™ circular disc, f(xx)
with radius f{xx) and width &x.
Then 6Vi = n[f(xx)]*éx.
There are n such discs.
Thus, the total volume of the disks is

, Where a = xg and b = x,,.

V= Z a[f(x, )]’ §x which can be regarded as an approximation ox

k=1
to the value of the actual volume 7 of the solid.
We see that as the number of discs increases, .easn — o, V, = V.
Therefore &

V =lim " alfx,)f6x = I:n[f(x)]z dx

From our discussion above, the volume of the solid generated when the region R is rotated through
2n radians about the x-axis is given by

[ v, = zf ydx = af [ff dx

Scan the QR code to visualize the volume
of solid of revolution about the x- axis

(=] [m]
7]




Chapter 12 — Applications of Integration 19

Example 13
The region R is bounded by the curve y = x?, the x-axis and the lines x = 1 and x = 2.

Find the exact volume of the solid of revolution obtained by rotating R about the x-axis through
four right angles.

Solution:
The required volume
=7 J.lz y?dx
o {.'12\4/‘1.
el [j_fjx *7:[,2 Y1
s v~ s ‘—S’J I:#w..;,)
Self-Review 7

The region bounded by the graph of y =+/x , the line x = 2 and the x-axis is rotated completely
about the x-axis. Show that the volume of the solid formed is 27 units’.

12.3.2 Volume of a Solid of Revolution Formed by Rotating Region Bounded Between Two
Curves About the x-axis

Volume of the solid formed when the region S bounded between the curves with equations
y = g(x) and y = f{x) is rotated through 27 radians about the x-axis is given by

V.=m Lb[f(x)]z dx- Jr.[:[g(x)]z dx Ya
=f {[£f -[ef | dr

Example 14

The region R is bounded by the curve y =4 - x* and the line y =4—2x. Show this region clearly
on a sketch and find the exact volume of the solid formed when this region is rotated through four
right angles about the x-axis.
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Solution:
y A
4
\ y=4-x
(0] 2
y=4-2x
To find the points of intersections of the two curves, we set
4-2x=4-x = x(x-2)=0 = x=0 or 2. Alternatively,
When x=0, y=4-2(0)=4 7[; (4-22) dx
When x=2, y=4-2(2)=0 372
: . ”[(4 ~2x) J
* RSN . > dx - -
Volume, V, = l\'jo (4-%%) ‘]"tjt ('u 12) 3( 2) 0
32
2 = —
=7 [ (16-8x" +x*)-(16-16x+42*) dx 3"
2
=% IO 16x—12x" +x* dx Could we use volume of
[P cone to replace
=7r|:8x2—4x3+gx5} 71_[02(4—2x)2dx ? What
0
2 1 would be the radius and
=r(32-32 +?) == units® height of this cone?

Example 15 (MB N74/1/7) (Self-Reading)
The region R in the 1* quadrant bounded by the lines y = x, x = 2, y = 0 and the curve y = u is
x
rotated completely about the x-axis. Compute the exact volume of the solid formed.
y A

Solution: o y=x

7,

A

We divide the region R into regions A and B as shown above.

¥V, = volume of cone with height 1 unit and radius 1 unit = %7‘[(1)2 (1= %71’ units®
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2 1 17 1 1
o= o] e cn[ ] oLt L e

b x x ],

1
Required volume = 37 L2 " s % 7 units®,

Self-Review 8
The region bounded by the curve y =x” +1 and the straight line y = x + 3 is denoted by R. Show

that the volume of the solid formed when R is rotated through 2n radians about the x-axis is

1—1—7-71’ units’.
5

12.3.3 Volume of a Solid of Revolution Formed by Rotation about the y-axis through 27
radians '

The region T is bounded by the curve x = h(y), the lines y = ¢, y = d and the y-axis.
Volume of the solid formed when the region 7 is rotated through 27 radians about the y-axis is

v, = HE x*dy = n_[j [h(y)]2 dy yt

Scan the QR code to visualize the volume of
solid of revolution about the y- axis

OF 0
e z

Example 16

The region R is bounded by the curve y = » where x > 0, the y-axis and the line y = 2. Find in
terms of m, the volume of the solid generated when R is rotated through 4 right angles about the y-
axis.

Solution: y T / y=x
v=a iy =xf ydy = = I 2 y=2
y 0 0 -Lan‘b]'*; s AH s U & R
U, % 5
0
Example 17

A region R is bounded by the curve y = 2 and the lines y = 2x, x = 0 and y = 4. Show this region
X

clearly on a sketch. Find, in terms of, the volume of the solid formed when this region is rotated
through 4 right angles about the y-axis.
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Solution:
yll y = 2_x
=4
X [
B
R P(1,2)
2
Y ==
X
d 1 x'

The points of intersection of y = 2 and y=2x:
x

Set3=2x = x¥=1= x=+].
X

So P has coordinates (1, 2) as shown.
By dividing the region R into regions 4 and B as shown,
required volume

. "'L'Lﬂ.f.“ 4 e l
5 ® Ly V[-;J 0t 2&*1;(»7—]

Rotating region A about y- axis
results in a cone

S
J T wnay
Example 18 y
The diagram shows the graph of y* = x—1. The region ‘r P=x—1
bounded by the curve, the y-axis and the lines y = -2 2 : y=2
and y =2 is denoted by R. Find the volume of the solid - /.E
generated when R is rotated through o 1 5 =
(1) 2 radians about the y-axis, !
(ii) 7 radians about the x-axis. 2 ¥=-2
Solution:
2 2 2 2 Do you know where the
; _ 24 2 _ 4 2
@ V= n[zx dy = ZEJ‘O (v +1) dy = 2“_[3 0" +2y"+Ddy | sormmetrical property of the
graph is used?
5 3
=2n y—+zl+y =il—%n units’
5 3 s 15
(i) Let B be the region in the first quadrant bounded by the
curve, the line x = 5 and the x-axis. %};
Required volume P=x=1
2 T— y=2
: A B |
Volume of cylinder Volume generated by d R
= | (4+B) of radius 2 units — | B (rotated about the x- D 1 5 X
and height 5 units axis). '
-2 —— y=-2
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=m(2)*(5) - ﬂ[fyzd,c

= -rnfs

= 207 /;(?-')dry

=100 -k [;','x*-;;]f-fzorg-gn
s127tuaits 2

Note the angles of rotation in
this example. Can you
explain the difference?

12.3.4 Volume of a Solid of Revolution Formed by Rotating Region Bounded Between Two

Curves About the y-axis

Volume of the solid formed when the region § bounded between the curves with equations
x = g(v) and x = f{y) is rotated through 27 radians about the y-axis is given by

V,=x [ [hO)] dy-=[ k)] dy

=" (b)) - [k} &

Example 19 (Example 14 revisited)

it

A

x=h0) . _ 1)

A J
-

The region R is bounded by the curve y = 4-x" and the line y =4—2x. Find the exact volume
of the solid formed when R-is rotated through four right angles about the y-axis.

Solution:

Points of intersections of the two curves:

(0,4) and (2,0).
y=4-x1 = x*=4-y
-3

2

y=4-2x = x=

volume Vy = TL[: (4-Y) dy - Lg 2*)Y)

yA

4
\ y=4-x

y=4-2x
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12.3.5 Volume of a Solid of Revolution Formed by Rotation through 2% radians about a line
parallel to the x- or y-axis

In handling problems of this nature, it is a common practice to translate 'the graph parallel to the
X- Or y-axis to obtain a new graph so that the line which the region is rotated about is

correspondingly translated to coincide with the x or y-axis. The desired volume is then computed
in the usual way.

Example 20

The graph of y =—x"+4x+2 is rotated about the line y = 2 from x = 0 to x = 4. By performing
an appropriate transformation or otherwise, find the exact volume of the solid thus formed.

Solution:

Perform a translation in the direction of y-axis by —2 units. Then the line y = 2 will be mapped to
the x-axis; the graph of y = —x* +4x+2 will be mapped to the graph of y =—x’ +4x. Thus the

volume required = volume of the solid formed by rotating the graph of y = —x* +4x in the x-axis.

yﬂ;
y==x+4x+2
| l y=2 ¥ 2
\ "[ T,by -2 . y==x"+4x
£ LN, ‘I: _ i \14 .

y
Volume of solid formed ?Cjo (- x4vR) dx = [Cf:;(’&" £-527 462" Jol

- 2
2 50" e lq1]? = B puagys

Example 21

The region R is bounded by the curve y = x?, the x-axis and the line x = 2. Find the volume of the
solid generated when R is rotated completely about the line x = 2.

Solution:
Yy
Ya /y=x2 ﬁl/yZ(x+2)2
> \/é
0 >x -2 0 i
x=2

) 2 goay)
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—

= fe
4=t _:7 5_(1_{2_}1.
VY 225

}=V§-—Z al xa>—?

Vi z i -
922 by, - =SNG T Ay 2 fopuaies3 (oot

£

Example 22
The diagram shows the region R bounded by the curve with equation x = (- 3)2 -9, the x-axis
and the line x = -9. Y

A

x=@-37-9 >/ xtq +3=4
/__
G313
I
R > x
0

Find x=-9
(i) the area of the region R,

(i) the volume of the solid of revolution formed when the region R is rotated through 360° about
the y-axis, leaving your answer in terms of m, leaving your answers exact.

Solution:

Areacth = 73 vmqdx = [ x-2(xq)], = e
Y=y g => 34 (x44)3

NG Y3, gz 3yt

Alternatively,
Area of R = Area of rectangle — Area of §

= 9(3) - [—J.:[(y—ﬂz -9]dy)

3
=27+ [l(y—?’)} —9y:l
3 0

=27 — 18 = 9 units® as above

(i) Volume generated Vol generated

=M (9)*(3) -n A ’ 2 lcg = volume of cylinder with
_ r r=9,h=3
=141 - Iﬁ_ [(7_314 .q T’ dy — volume S (rotated about

the y-axis)
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= 24311:—11:.[3(_}}2 —6y)2dy
0

3
= 2431t—1tj (y4 -12y° +36y2)dy
0

3
0

=243n—1t[§y5 -3y +12y3] =§§—7num'ts3

12.3.6 Motion problems — displacement function, velocity function & acceleration function

Recall that, for a particle moving in a straight line, if s(¢) is the displacement function, v(¢)is the

velocity function, then v(z) = %

Thus, the displacement function of the particle is given by: s(t) = _‘-v(t) dr.

Also the displacement in a time interval a<t <bis given by: s(¢) = Ibv(t) dt = 5(b) —s(a) .

If a(z) if the acceleration function of the particle, then a(t) = % . Thus v(¢) = Ia(z) dr.

Example 23 (Independent learning)

A particle P moves in a straight line with velocity function v(t) =t* -3t +2 ms’. Given that at

time ¢ = 0, P is 3 metres away from a given point O on the line.
()  What is the initial velocity and acceleration of P?

(i) Find the displacement function of P.

(iii) Find the times when P is at instantaneous rest.

(iv) How far does P travel in the first 4 seconds of motion?
(v) Find the displacement of P at the end of 4 seconds.

This means that P starts to
move away from point O

Solution:
. N_dv_ 4, t=0
(1) a()= qr =23 J<'3'n‘1‘>
When ¢ = 0, we have - =
v(0) =0 =3(0)+2=2 ms™, R

a(0)=2(0)-3=-3 ms™.

(ii) The displacement function is:
1 3
—- 2 _ —_ 3 _— 42

s()=[veyde= [ -3t+2dr S0 -5 vt

At t=0, s(0) =3, we have

3 =l(0)3_-3-(0)2+2(0)+c
3 2
= c=3

1 3
Therefore, s(¢) =-§t3 _Etz +2t+3

At time ¢
k.3.n_‘l._\o- >
0 ¢ P

with velocity 2 ms™!, and the
velocity is initially
decreasing at the rate of
3ms2.

Can s5(f) be negative?
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(iii) When P is at instantaneous rest, thenv(¢) = 0
?=3+2=0 = (@-1)(r-2)=0 = =12

(iv) We have 5(0) =
s(1) ——(1)3 —(1) +2(1)+ 3_2_63

-1 3 11
s(2)= 3(2) (2) +2(2)+ 3_?
1 25

s(4)=§(4)’ (4) +2(4)+3_—3—

Distance travelled from¢=0tos=11is:

1
di= Lv(t)dt=|s(l)-—s(0)| ——3) ( =%
Distance travelled from ¢ =1 tot—21s

2 23 1] 1
dr= || V(@) dt|=|s2)=s(D)|=|=———|=|"=|==
2= ], v def = s@) s = |5 - 2 6’6
Distance travelled fromt—2tot—4i5'

4 11| [14] 14
ds= _[ v(t) dt| = |s(4) s(2)| ———-3— 3\ 3

5:1 14
Total distance travelled in the ﬁrst4s—-g+6+? =5 ( )

Alternatively,
Total distance travelled in the first 4 s

=[] de = [[|f? -3t +2]at _5.67(m) (By GC)

(v) Displacement after 4 s
= final position — original position
1
= 5(4)-5(0) = -2—2—3 5—(m)
Alternatively, dlsplacement after 4 s

—j w(t) dt = s(4) - s(O)———3 sk (m)

That is, after 4 s, P has a displacement of 5 P m in the direction

away from the fixed point O.

The velocity function, v(f),
changes sign at =1 s and
t=2s.

From the diagram, we can
see that at ¢ = 0 s, the particle
P starts to move away from
point O. Att=1s5, it
reverses its direction to move
towards O and thenat t =2 s,
it reverses its direction again
and moves away from O.

Note that distance is not a
vector

Note that displacement is a
vector
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12.3.7 Miscellaneous Examples

Example 24 [ACJC Prelim 2017/2/2]

. : ) {1 T
A curve C has parametric equations x =cost, y = Esm 2t, where —2— <t<

()  Find the equation of the normal to C at the point P with parameter p.

28

(2]

The normal to C at the point when ¢ = ZTH cuts the curve again. Find the coordinates of the point

of intersection.

[2]

(ii) Sketch C, clearly labelling the coordinates of the points where the curve crosses the x- and

y-axes.
(iii) Find the Cartesian equation of C.

[1]
[2]

The region bounded by C is rotated through 7 radians about the x-axis. Find the exact volume

of the solid formed.

Solution:

[3]

(i) x=cost = E=—sint
de

J’=lsin2t =5 d—y=l(2c:052t)=cos21r
2 e 2
dy
dy 4 cos2t dy cos2p
—_—=—= - = — =
dx dx —sin¢ dx]_, -sinp
dr
= gradient of normal = Slnp
cos2p

. 1 .
Equation of normal at the point [cos p,Esm 2 p):

sin p

y—i—;-sian: (x—cos p)

cos2p

i sin p cos
= y=—1—sin2p+ L LY o
2 cos2p cos2p

sin p x+sin2p_25inpcosp

= yzcosZp 2 2cos2p
= y= L) x+l(sm2p—tan2p)
cos2p 2

at this point,
sin 2
EY 2
y= — 3 5 +l sin 2(2—”)—tan 2(—£)
2r 3 3
cos 2(—3—)

Substitute p = 23£ into the above to find the equation of normal
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B
ey
2

= y=——\/§x—%(3\/§) ...... (1)

To find the other point of intersection of normal and C:
Substitute x =cos? and y = %sin 2t into (1):

—;-sinZt =-s/§(c0st)—%(3\/3_')
%sin2t+\/§(cost)+%(3\/§)= 0

From GC,
t =2.094395 (corresponds to ¢ = %71) or t=3.495928

Hence, t = 3.495928 is the parameter of the point where the
normal cut the curve again.

Thus x = cost =c0s3.495928 = —0.938,
y= %sin 2(3.495928) =0.325

Therefore, the coordinates of the point is (=0.938, 0.325)

(ii)

Lo .

(iii) To find the Cartesian equation of the curve C, we just need
to eliminate the parameter ¢ from the equations

X =cost, y=%sin2t

x=cost = x'=cos’t

J'=%Sin2t = y=sin/cost

= yz=si112tcos2t=(l—coszt)cos:"t=(l—x2)x2

.. Cartesian equation: y* = (1 -x )xz

At x-intercept,
y=0

sin2t=0
2t=0,7,27,37
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Volume required = j-_u, ayt dz
0 0 3 5 0
ol 1) aeeaf s aeer] 2]

2 "
=—7 units
15

Example 25 (N2009/1/4)
It is given that

7-x* for0<x<2,
f(x)=
2x-1 for2<x<4,
and that f(x) =f(x+4) for all real values of x.
(i) Evaluate £(27)+£(45).
(i)  Sketch the graph of y =f(x)for -7<x<10.

3
(i) Find Lf(x) dx .

Solution:

@ f@27)
=f(23+4) =£(23) = £(19+4)=f(19) =---= f(3) = §
(In fact, 27=4x6+3 = f(27)=f(3)=5)

Similarly, £(45)= f(11x4+1)=f(1)=6
- fQR7)+£(45)=5+6=11
(ii) y=7-2

(=7.6)

(10, 3)

v x

-6 -4 -2 23 4§ 10

Gi) [ £0) dv =[£G e [ ) det [[ o) e [0 e

From the graph, we see that
J ot ae= o) 0= [} (1) =3

0
4
2

[ 00 de= [ £(x) du= [ (21 ) dx=10,

[ £ de=[ (20-1)dx=4

34 34 2
Hence, j: f(x) de= 410+ +4 =36




