

National Junior College

2016 – 2017 H2 Further Mathematics

Topic: Further Special Discrete Probability Distributions Assignment Solutions

Qn	Suggested Solution	MS
1(a)	• It is equally likely to snow on any one of the days in the winter season.	B1
	• Snowing occurs independently across all days in the winter season.	B1
1(b)(i)	Let <i>X</i> denote the number of days from 1 December for it to first snow. Then	
	$X \sim \text{Geo}(0.2)$. Hence $P(X = 20) = (0.2)(1 - 0.2)^{19} = 0.0028823$	B1
1(b)(ii)	$P(X < 5) = 1 - (1 - 0.2)^4 = 0.5904$	B1
1(b)(iii)	$P(X > 20 X > 5) = P(X > 15) = (1 - 0.2)^{15} = 0.035184$	M1, A1
1(b)(iv)	Let <i>n</i> be the least number of days from 1 December for the probability that	
	the first snow falls on or before the n^{th} day is at least 0.95.	
	$1 - (1 - 0.2)^n \ge 0.95$	M1
	$0.8^n \le 0.05$	
	$\ln\left(0.8^n\right) \le \ln 0.05$	
	$n \ln 0.8 \le \ln 0.05$	
	ln 0.05	2.01
	$n \ge \frac{1}{\ln 0.8}$	MI
	$n \ge 13.4$	
	Therefore, least value of $n = 14$.	A1
2(a)	• Particles are emitted from the material at a constant mean rate .	B1
	• Particles are emitted from the material independently of one another	B1
	across the hour.	
2(b)(i)	Let X denote the number of particles that are emitted in a randomly chosen	
	10 hour period. Then $X \sim Po(2.8)$. Hence	MI
	$\frac{P(X > 2) = 1 - P(X \le 2) = 0.53055}{1 - P(X \le 2) = 0.53055}$	AI
2(b)(11)	Let Y be the number of periods with more than 2 particles emitted each, out of these rendemines the second to have nexis de Theory $V = D(2, 0.52055)$	N/1
	of three randomly chosen 10 nour periods. Then $I \sim B(5, 0.55055)$.	
2 (h)	Hence $F(I-2) = 0.39045$	AI
2(D) (iii)	Let W denote the number of particles that are emitted in a randomity chosen	
(111)	<i>m</i> minute period. Then $W \sim \text{Po}\left(\frac{m}{150} \times 0.7\right) \Rightarrow W \sim \text{Po}\left(\frac{7m}{1500}\right)$.	M1
	For the probability that no particles are emitted in a <i>m</i> minute period to be	
	at least 0.99,	
	$\mathbf{P}(W=0) \ge 0.99$	
	$e^{-\frac{7m}{1500}} \left(\frac{7m}{1500}\right)^0$	
	$\frac{(1500)}{0!} \ge 0.99$	M1
	$e^{-\frac{7m}{1500}} \ge 0.99$	
	$7m$ > 1 \pm 0.00	N/1
	$-\frac{1500}{1500} \ge 100.99$	
	$m < \frac{\ln 0.99}{2} = 2.1536$	
	$(-\frac{7}{1500})$ 2.1000	
	Therefore, the longest time period is 2.15 minutes.	A1

Qn	Suggested Solution	MS
2(b)(iv)	Let U and V denote the number of particles emitted in the first n hours and	
	the last $20 - n$ hours of a randomly chosen 20 hour period. Then	
	$U \sim \operatorname{Po}\left(\frac{7n}{25}\right), \ V \sim \operatorname{Po}\left(\frac{140 - 7n}{25}\right) \text{ and } U + V \sim \operatorname{Po}\left(\frac{28}{5}\right).$	M1
	P(U = 4 U + V = 6) = 0.324135	
	$P(U = 4 \cap U + V = 6)$ 0.224125	2.41
	P(U+V=6) = 0.324135	MI
	$P(U = 4 \cap V = 2)$ 0.224125	
	$\overline{P(U+V=6)} = 0.324135$	
	$P(U = 4) \times P(V = 2) = 0.224125$	M1
	$\frac{1}{P(U+V=6)} = 0.324133$	1011
	$e^{-\frac{7\pi}{25}}(7n)^4 e^{-\frac{140-7\pi}{25}}(140-7n)^2$	
	$4!(\overline{25}) \times 2!(\overline{25}) = 0.324135$	
	$e^{-\frac{28}{5}}(28)^6$	
	$\overline{6!}$ $\overline{5}$	
	$e^{-\frac{7n}{25}} \times e^{-\frac{140-7n}{25}} \times 6! \times \left(\frac{7n}{25}\right)^4 \left(\frac{140-7n}{25}\right)^2 = 0.324135$	MI
	$\frac{1}{10^{-\frac{28}{5}}} \times \frac{1}{4!2!} \times \frac{1}{(\frac{28}{5})^6} = 0.524135$	111
	$6! \left(\frac{7n}{25}\right)^4 \left(\frac{140-7n}{25}\right)^2$ 0.224125	
	$\frac{1}{4!2!} \times \frac{1}{\left(\frac{28}{5}\right)^4} \times \left(\frac{28}{5}\right)^2} = 0.324135$	
	$15\left(\frac{n}{20}\right)^{4}\left(1-\frac{n}{20}\right)^{2} = 0.324135$	
	$\left(\frac{n}{20}\right)^4 \left(1 - \frac{n}{20}\right)^2 = 0.021609$	
	$\left(\frac{n}{20}\right)^2 \left(1 - \frac{n}{20}\right) = 0.147$	M1
	$n^2(20-n) = 1176$	
	$n^3 - 20n^2 + 1176 = 0$	
	n = 12.644, 14, or -6.6436 (rej.)	A 1
	I herefore, there is exactly one integer solution for $n, n = 14$.	AI

Qn	Suggested Solution	MS
3	Since f is the probability distribution function for a geometric distribution,	
	$f(x) = p(1-p)^{x-1}$, for $x = 1, 2, 3,,$	M1
	where <i>p</i> is a positive constant such that $0 . Note that f(1) = p. Hence,g(x) = \left(\frac{2 - f(1)}{1 - f(1)}\right) f(2x)$	
	$= \left(\frac{2-p}{1-p}\right) \cdot p(1-p)^{2x-1}$	M1
	Since $0 , 1 < 2 - p < 2 and 0 < 1 - p < 1, therefore g(x) > 0 for all x \in \mathbb{Z}^+.$	B1
	$\sum_{x=1}^{\infty} g(x) = \sum_{x=1}^{\infty} \left(\frac{2-p}{1-p}\right) \cdot p(1-p)^{2x-1}$ $= \left(\frac{p(2-p)}{1-p}\right) \sum_{x=1}^{\infty} (1-p)^{2x-1}$	
	$= \left(\frac{1-p}{1-p}\right) \frac{(1-p)}{1-(1-p)^2}$ $= \frac{p(2-p)}{1-(1-p)^2} \cdot \frac{1-p}{2}$	M1
	$= \frac{p(2-p)}{1-p} \cdot \frac{2p-p^2}{p(2-p)} = 1$	A1
	Therefore, g is a probability distribution function.	
	$\mathrm{E}(X) = \sum_{n=1}^{\infty} x \mathrm{g}(x)$	
	$= \sum_{x=1}^{\infty} x \left(\frac{2-p}{1-p} \right) \cdot p(1-p)^{2x-1}$ $= \left(\frac{p(2-p)}{1-p} \right) \sum_{x=1}^{\infty} x(1-p)^{2x-2+1}$	M1
	$(1-p)_{x=1} = p(2-p)\sum_{x=1}^{\infty} x [(1-p)^2]^{x-1}$	
	$= p(2-p) \left[1 - (1-p)^{2} \right]^{-2}$ $= \frac{p(2-p)}{(2-p)^{2}}$	M1
	$=\frac{p(2-p)^{2}}{p^{2}(2-p)^{2}}=\frac{1}{p(2-p)}$	A1

Qn	Suggested Solution	MS
	$E(X(X-1)) = \sum_{x=1}^{\infty} x(x-1)g(x)$	
	$= \sum_{x=1}^{n} x(x-1) \left(\frac{2-p}{1-p} \right) \cdot p(1-p)^{2x-1}$	M1
	$= \left(\frac{p(2-p)}{1-p}\right) \sum_{x=1}^{\infty} x(x-1)(1-p)^{2x-2+1}$	
	$= p(2-p)\sum_{x=2}^{\infty} x(x-1)\left[(1-p)^2\right]^{x-1}$	
	$= p(2-p) \cdot 2 \left[1 - (1-p)^2 \right]^{-3}$ $2 n(2-n)$	M1
	$=\frac{2p(2-p)}{(2p-p^{2})^{3}}$	
	$=\frac{2p(2-p)}{p^{3}(2-p)^{3}}=\frac{2}{p^{2}(2-p)^{2}}$	A1
	Therefore, $E(X^2) = E(X(X-1)) + E(X)$	
	$=\frac{2}{p^{2}(2-p)^{2}}+\frac{1}{p(2-p)}$	M1
	and	
	and $\operatorname{Var}(X^2) = \operatorname{E}(X^2) - [\operatorname{E}(X)]^2$	
	$=\frac{2}{p^{2}(2-p)^{2}}+\frac{1}{p(2-p)}-\left\lfloor\frac{1}{p(2-p)}\right\rfloor$	M1
	$=\frac{1}{p^{2}(2-p)^{2}}+\frac{1}{p(2-p)}$	
	$=\frac{1}{p^{2}(2-p)^{2}}+\frac{p(2-p)}{p^{2}(2-p)^{2}}$	
	$=\frac{1+2p-p^{2}}{p^{2}(2-p)^{2}}$	A1