

RAFFLES INSTITUTION H2 Mathematics (9758) 2024 Year 5

Term 4 RTT2: Post-Promo Revision Lesson Worksheet Session 3: C4A to C4C: Vectors

1 Referred to the origin *O*, the points *A* and *B* have position vectors **a** and **b** respectively. The vectors **a** and **b** are given by

$$\mathbf{a} = 2p\mathbf{i} - 6p\mathbf{j} + 3p\mathbf{k}$$
 and $\mathbf{b} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$,

where p is a constant.

Find
$$\frac{|\mathbf{a} \cdot \mathbf{b}|}{|\mathbf{a}|}$$
 and give a geometrical interpretation of $\frac{|\mathbf{a} \cdot \mathbf{b}|}{|\mathbf{a}|}$. [2]

Find $\mathbf{a} \times \mathbf{b}$ and give a geometrical interpretation of $|\mathbf{a} \times \mathbf{b}|$. [2]

Given that
$$\mathbf{a}$$
 is a unit vector, find the possible value(s) of p . [2]

[REMARKS] What is the geometrical interpretation of $|\mathbf{a} \cdot \mathbf{k}|$? Answer : $|\mathbf{a} \cdot \mathbf{k}|$ represents the length of projection of **r** onto the *z*-axis. $\mathbf{a} \times \mathbf{b} = \begin{pmatrix} 2p \\ -6p \\ 3p \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = p \begin{pmatrix} 2 \\ -6 \\ 3 \end{pmatrix} \times \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix} = p \begin{pmatrix} 9 \\ 7 \\ 8 \end{pmatrix}$ which is a vector. $\mathbf{a} \times \mathbf{b} = (|\mathbf{a}||\mathbf{b}|\sin\theta)\hat{n} \implies |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}||\mathbf{b}|\sin\theta$ Area of triangle $OAB = \frac{1}{2} |\mathbf{a}| |\mathbf{b}| \sin \theta = \frac{1}{2} |\mathbf{a} \times \mathbf{b}|$ $\therefore |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| |\mathbf{b}| \sin \theta$ = area of parallelogram formed with adjacent side OA and OBSince **a** is a unit vector, $|\mathbf{a}| = 1 \Rightarrow \begin{bmatrix} 2p \\ -6p \\ 3p \end{bmatrix} = \begin{bmatrix} p \\ 2 \\ -6 \\ 3 \end{bmatrix} = 1$ $|p|\sqrt{2^2 + (-6)^2 + (3)^2} = 1$ 7|p| = 1 $p = \pm \frac{1}{7}$ [REMARKS] Be careful. It is quite common for students to miss out $p = -\frac{1}{7}$ as one of the answers.

2 DHS Prelim 9758/2020/01/Q6b modified

With reference to the origin *O*, the points *A* and *B* are such that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. It is given that $\overrightarrow{OX} = \frac{2}{3}\mathbf{a}$, $\overrightarrow{OY} = \frac{3}{4}\mathbf{b}$ and the line *ON* bisects the line *XY* at the point *M*.

- (i) By considering the ratio XM : MY, find the vector \overrightarrow{OM} in terms of **a** and **b**. [1]
- (ii) Given that $AN: NB = \lambda: 1 \lambda$ and ON: OM = k: 1 where λ and k are real constants, find the ratio AN: NB. [4]

	Let <i>P</i> be a point which divides <i>AB</i> in the ratio $\lambda : \mu$, then $\mathbf{p} = \frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$ (MF27).	
(ii)	Since $AN : NB = \lambda : 1 - \lambda$ for some $\lambda \in \mathbb{R}$, $\overrightarrow{ON} = (1 - \lambda)\mathbf{a} + \lambda \mathbf{b}$ $A \bullet \lambda \qquad \qquad$	
	Moreover, since $ON : OM = k : 1$, $\overrightarrow{ON} = k \overrightarrow{OM} = \frac{1}{3}k\mathbf{a} + \frac{3}{8}k\mathbf{b}$ Hence, $\frac{1}{3}k\mathbf{a} + \frac{3}{8}k\mathbf{b} = (1 - \lambda)\mathbf{a} + \lambda\mathbf{b}$.	
	Vectors a and b are not parallel and non-zero:	
	$\frac{3}{8}k = \lambda \implies k = \frac{8}{3}\lambda$ $\frac{1}{3}(\frac{8}{3}\lambda) = 1 - \lambda \implies \lambda = \frac{9}{17}$ Let a and b be non-zero and non-parallel . If $\alpha \mathbf{a} + \beta \mathbf{b} = s\mathbf{a} + t\mathbf{b}$ for some $\alpha, \beta, s, t \in \mathbb{R}$, then $\alpha = s, \beta = t$.	vectors:
	$\therefore AN: NB = 9:8$	

- 3 (a) The non-zero vectors \mathbf{a} , \mathbf{b} and \mathbf{c} are such that $\mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{a}$. Given that $\mathbf{b} \neq -\mathbf{c}$, find a linear relationship between \mathbf{a} , \mathbf{b} and \mathbf{c} . [3]
 - (b) The variable vector $\mathbf{v} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ satisfies the equation $\mathbf{v} \times (\mathbf{i} 3\mathbf{k}) = \mathbf{j}$. Find the set of vectors \mathbf{v} and describe this set geometrically. [3]

(a)	$\mathbf{a} \times \mathbf{b} = \mathbf{c} \times \mathbf{a}$	
	$\mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{a} = 0$ Important property of cross product : $\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u}$	
	$\mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c} = 0$	
	$\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = 0$ \longrightarrow $\mathbf{a} \times \mathbf{b} = 0 \Rightarrow \mathbf{a} = 0 \text{ or } \mathbf{b} = 0 \text{ or } \mathbf{a} \parallel \mathbf{b}$	
	Given that $\mathbf{a} \neq 0$ and $\mathbf{b} \neq -\mathbf{c}$ which implies $\mathbf{b} + \mathbf{c} \neq 0$, \mathbf{a} is parallel to $(\mathbf{b} + \mathbf{c})$	
	$\therefore \mathbf{a} = \lambda (\mathbf{b} + \mathbf{c}), \ \lambda \neq 0.$	
(b)	$ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix} = \begin{pmatrix} -3b \\ 3a+c \\ -b \end{pmatrix} $ Since cross product satisfies the equation, the values of <i>a</i> , <i>b</i> and <i>c</i> are restricted by RHS of the equation.	
	$\begin{pmatrix} -3b \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$	
	$\begin{vmatrix} 3a+c \end{vmatrix} = \begin{vmatrix} 1 \end{vmatrix} \Rightarrow b = 0 \text{ and } 3a+c = 1$	
	$\begin{pmatrix} -b \end{pmatrix} \begin{pmatrix} 0 \end{pmatrix}$	
	Now <i>a</i> can still vary, but <i>b</i> = 0, and value of <i>c</i> depends on <i>a</i> . a = a $b = 0 \Rightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ 0 \\ 1-3a \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + a \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}$	
	$\mathbf{v} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \\ -3 \end{pmatrix}, \ \lambda \in \mathbb{R}.$ Hence describe it in terms of a line.	
	v describe the set of position vectors of all points on the line which passes through the point $(0, 0, 1)$ and is parallel to $\mathbf{i} - 3\mathbf{k}$.	

ACJC Promo 9758/2020/Q8 4

The lines *l* and *m* are defined by the equations

$$l: \mathbf{r} = \mathbf{i} - \mathbf{k} + \lambda(2\mathbf{i} - 6\mathbf{j} + 3\mathbf{k}),$$

$$m: \frac{x-1}{4} = \frac{a-y}{a} = \frac{z+3}{4}.$$

(i) Given that the lines intersect, show that $a = 6$. [2]

- (ii) Find the position vector of N, the foot of perpendicular from the point A(5,0,1) to the line *l*. [3]
- (iii) Find the position vector of the two points on l that are 5 units from A. [3]

Solution:

(i)

$$l: \mathbf{r} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-6\\3 \end{pmatrix} \qquad m: \mathbf{r} = \begin{pmatrix} 1\\a\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$m: \frac{x-1}{4} = \frac{a-y}{a} = \frac{z+3}{4}$$

$$Let \frac{x-1}{4} = \frac{a-y}{a} = \frac{z+3}{4} = \mu$$

$$\Rightarrow x = 1+4\mu, \quad y = a-a\mu, \quad z = -3+4\mu$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 1+4\mu\\a-a\mu\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\a\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 1+4\mu\\a-a\mu\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\a\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} 1+4\mu\\a-a\mu\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\a\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\a\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\a\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\a\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\a\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\4 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\-3 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\-3 \end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} x\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix} 1\\-3\\-3 \end{pmatrix} + \mu \begin{pmatrix} 4\\-a\\-3\end{pmatrix}$$

$$\Rightarrow \mathbf{r} = \begin{pmatrix} 1\\-3\\-3+4\mu \end{pmatrix} = \begin{pmatrix}$$

[2]

г г

$\left(-4+2\lambda\right)$
$\therefore AB = \begin{vmatrix} -6\lambda \end{vmatrix} = 5$
$\left(-2+3\lambda\right)$
$\Rightarrow \sqrt{(2\lambda - 4)^2 + (-6\lambda)^2 + (3\lambda - 2)^2} = 5$
$\Rightarrow (4+36+9)\lambda^{2} + (-16-12)\lambda + 16 + 4 = 25$
$\Rightarrow 49\lambda^2 - 28\lambda - 5 = 0$
$\Rightarrow (7\lambda - 5)(7\lambda + 1) = 0$
$\Rightarrow \lambda = \frac{5}{7} \text{ or } \lambda = -\frac{1}{7}$
$\therefore \overrightarrow{OB} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix} + \frac{5}{7} \begin{pmatrix} 2\\-6\\3 \end{pmatrix} \text{ or } \overrightarrow{OB} = \begin{pmatrix} 1\\0\\-1 \end{pmatrix} - \frac{1}{7} \begin{pmatrix} 2\\-6\\3 \end{pmatrix}$
$=\frac{1}{7} \begin{pmatrix} 17\\ -30\\ 8 \end{pmatrix} = \frac{1}{7} \begin{pmatrix} 5\\ 6\\ -10 \end{pmatrix}$
Note that point N is the midpoint of these two possible positions of B .

5 9740/2015/02/Q2

The line *L* has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 4\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$.

(i) Find the acute angle between L and the x-axis.

The point *P* has position vector $2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$.

- (ii) Find the points on L which are a distance of $\sqrt{(33)}$ from P. Hence or otherwise find the point on L which is closest to P. [5]
- (iii) Find a cartesian equation of the plane that includes the line L and the point P. [3]

<u>Solution</u> :

[2]

	$\therefore \overrightarrow{OA} = \frac{1}{7} \begin{pmatrix} 13 \\ -5 \\ -46 \end{pmatrix} \text{ or } \begin{pmatrix} 3 \\ 1 \\ -10 \end{pmatrix}$		
	Point on L closest to P is the midpoint of the above two points.		
	\therefore Required position vector is $\frac{1}{2} \begin{bmatrix} 13 \\ -5 \\ -46 \end{bmatrix} +$	$ \begin{pmatrix} 3\\1\\-10 \end{pmatrix} \end{bmatrix} = \frac{1}{7} \begin{pmatrix} 17\\1\\-58 \end{pmatrix}. $	
	That is, the point closest to P is $\left(\frac{17}{7}, \frac{1}{7}, \frac{-58}{7}\right)$).	
(iii)	Let <i>B</i> be the point on <i>L</i> such that $\overrightarrow{OB} = \begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix}$		
	(-4) Then $\overrightarrow{BP} = \begin{pmatrix} 1\\7\\-2 \end{pmatrix}$. $\begin{pmatrix} 1\\7\\-2 \end{pmatrix} \times \begin{pmatrix} 2\\3\\-6 \end{pmatrix} = \begin{pmatrix} -36\\2\\-11 \end{pmatrix}$ $\mathbf{r} \cdot \begin{pmatrix} -36\\2\\-11 \end{pmatrix} = \begin{pmatrix} 1\\-2\\-4 \end{pmatrix} \cdot \begin{pmatrix} -36\\2\\-11 \end{pmatrix} = 4$	Vectors Equation of a plane : $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b} + \mu \mathbf{c}$, where b and c are parallel to the plane. To find a vector equation of a plane, we need • the position vector of a point on plane, • 2 vectors parallel to the plane. To find the scalar product or Cartesian form of a plane, we need • the position vector of a point on plane, • a normal to the plane (take cross product of 2 vectors parallel to the plane).	
	Cartesian equation of plane containing L and	1P is -36x + 2y - 11z = 4.	

6 JPJC Promo 9758/2020/Q9 modified

The plane
$$p_1$$
 has equation $\mathbf{r} = \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, where λ and μ are real parameters..
(i) Find an equation of p_1 in the form $\mathbf{r}.\mathbf{n} = d$. [3]
The plane p_2 has equation $2x - y + z = 12$.
(ii) State the relationship between p_1 and p_2 . [1]
The line *l* has equation $\mathbf{r} = t \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix}$, where *t* is a real parameter.

- (iii) Find the acute angle between l and p_1 . [2]
- (iv) Find the foot of perpendicular from the origin to p_2 . Hence, or otherwise, find the exact distance between p_1 and p_2 . [4]

Solution :

(i)
$$p_1: \mathbf{r} = \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$
, where λ and μ are real parameters.
Normal of p_1 is $\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$
Since p_1 contains the origin, $p_1: \mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 0$
(ii) Since the normals of p_1 and p_2 are the same, p_1 and p_2 are parallel planes.

$$6\mu = 12$$

$$\mu = 2$$

$$\overrightarrow{OA} = 2 \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ -2 \\ 2 \end{pmatrix}$$

Since *O* is on p_1 and p_1 is parallel to p_2 .
distance between p_1 and $p_2 = |\overrightarrow{OA}| = \sqrt{4^2 + (-2)^2 + 2^2} = \sqrt{24} = 2\sqrt{6}$

More Practice Questions

7 MI PU3 Mid-Year CT 9758/2018/01/Q3

Relative to the origin *O*, two points *A* and *B* have position vectors a and b respectively. It is given that **b** is a unit vector, $|\mathbf{a}| = \sqrt{3}$, and $|4\mathbf{a} - 3\mathbf{b}| = \sqrt{41}$. θ is defined as the acute angle between **a** and **b**.

(i) By considering the scalar product
$$(4\mathbf{a}-3\mathbf{b})\cdot(4\mathbf{a}-3\mathbf{b})$$
, find θ . [4]

(ii) Give the geometrical meaning of $|(\mathbf{a} - \mathbf{b}) \times \mathbf{b}|$ and find its exact value. [2]

(i)
$$|\mathbf{a}| = \sqrt{3}, |\mathbf{b}| = 1 \text{ and } |4\mathbf{a} - 3\mathbf{b}| = \sqrt{41}.$$

 $|4\mathbf{a} - 3\mathbf{b}|^2 = 41$
 $|4\mathbf{a} - 3\mathbf{b}|^2 = 41$
 $|4\mathbf{a} - 3\mathbf{b}|^2 = 41$
 $|4\mathbf{a} - 3\mathbf{b}| \cdot (4\mathbf{a} - 3\mathbf{b}) = 41$
 $16\mathbf{a} \cdot \mathbf{a} - 12 \cdot \mathbf{a} \cdot \mathbf{b} + 9 \cdot \mathbf{b} \cdot \mathbf{b} = 41$
 $16|\mathbf{a}|^2 - 24 \cdot \mathbf{a} \cdot \mathbf{b} + 9|\mathbf{b}|^2 = 41$
 $48 - 24\mathbf{a} \cdot \mathbf{b} + 9 = 41$
 $24 \cdot \mathbf{a} \cdot \mathbf{b} = 16$
 $\mathbf{a} \cdot \mathbf{b} = \frac{2}{3}$
 $\cos \theta = \frac{2/3}{|\mathbf{a}||\mathbf{b}|} = \frac{2/3}{(\sqrt{3})(1)}$ Definition of $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|\cos \theta$
 $\cos \theta = \frac{2}{3\sqrt{3}}$
 $\theta = \cos^{-1}\left(\frac{2}{3\sqrt{3}}\right) \approx 67.4^{\circ} \text{ (to 1 d.p.)}$
(ii) $|(\mathbf{a} - \mathbf{b}) \times \mathbf{b}| = |\mathbf{a} \times \mathbf{b} - \mathbf{b} \times \mathbf{b}| = |\mathbf{a} \times \mathbf{b}|$ since $\mathbf{b} \times \mathbf{b} = \mathbf{0}$

Method 3: Cross product formula

$ (\mathbf{a} - \mathbf{b}) \times \mathbf{b} = \mathbf{a} \times \mathbf{b} $ since $\mathbf{b} \times \mathbf{b} = 0$ = $ \mathbf{a} \mathbf{b} \sin \theta$
Since $\cos\theta = \frac{2}{3\sqrt{3}}$ from part (i),
$3\sqrt{3}$ θ $\sqrt{\left(3\sqrt{3}\right)^2 - 2^2} = \sqrt{23}$
$\sin\theta = \frac{\sqrt{23}}{3\sqrt{3}}$
$\therefore \mathbf{a} \mathbf{b} \sin \theta = (\sqrt{3}) (1) \left(\frac{\sqrt{23}}{3\sqrt{3}}\right) = \frac{\sqrt{23}}{3}$

8 9758/2019/02/Q5

With reference to the origin *O*, the points *A*, *B*, *C* and *D* are such that $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, $\overrightarrow{OC} = 2\mathbf{a} + 4\mathbf{b}$ and $\overrightarrow{OD} = \mathbf{b} + 5\mathbf{a}$. The lines *BD* and *AC* cross at *X* (see diagram).

(i) Express \overrightarrow{OX} in terms of **a** and **b**.

[4]

The point *Y* lies on *CD* and is such that the points *O*, *X* and *Y* are collinear.

(ii) Express \overrightarrow{OY} in terms of **a** and **b** and find the ratio OX : OY. [6]

9 9758/2019/01/Q12

A ray of light passes from air into a material made into a rectangular prism. The ray of light is sent in direction $\begin{pmatrix} -2 \\ -3 \\ -6 \end{pmatrix}$ from a light source at the point *P* with coordinates (2,2,4). The prism is placed

so that the ray of light passes through the prism, entering at the point Q and emerging at the point R and is picked up by a sensor at point S with coordinates (-5, -6, -7). The acute angle between PQ and the normal to the top of the prism at Q is θ and the acute angle between QR and the same normal is β (see diagram).

It is given that the top of the prism is a part of the plane x + y + z = 1, and that the base of the prism is a part of the plane x + y + z = -9. It is also given that the ray of light along *PQ* is parallel to the ray of light along *RS* so that *P*, *Q*, *R* and *S* lie in the same plane.

- (i) Find the exact coordinates of Q and R. [5]
- (ii) Find the values of $\cos \theta$ and $\cos \beta$. [3]
- (iii) Find the thickness of the prism measured in the direction of the normal at Q. [3]

Snell's law states that $\sin \theta = k \sin \beta$, where k is a constant called the refractive index. (iv) Find k for the material of this prism. [1]

(v) What can be said about the value of k for a material for which $\beta > \theta$? [1]

(i)	$\overrightarrow{PQ} = \lambda \begin{pmatrix} -2 \\ -3 \\ -6 \end{pmatrix}, \lambda > 0 \text{ and } Q \text{ lies on } \underbrace{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1$	Q can be seen as the point of intersection between line PQ and
	$\overrightarrow{OQ} = \lambda \begin{pmatrix} -2 \\ -3 \\ -6 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$	prism. Similarly, <i>R</i> can be seen as the point of intersection between line <i>RS</i> and plane that contains the base of the prism.
	$\overrightarrow{OQ} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1 \Longrightarrow -2\lambda + 2 - 3\lambda + 2 - 6\lambda + 4 = 1 \Longrightarrow \lambda$	$=\frac{7}{11}$
	Q is $\left(2-\frac{14}{11}, 2-\frac{21}{11}, 4-\frac{42}{11}\right) = \left(\frac{8}{11}, \frac{1}{11}, \frac{2}{11}\right)$	Answers need to be exact.
	$\overline{RS} = \mu \begin{pmatrix} -2 \\ -3 \\ -6 \end{pmatrix}, \mu > 0 \text{ and } R \text{ lies on } \underline{r} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = -9$	
	$\overrightarrow{OR} = \begin{pmatrix} -5\\ -6\\ -7 \end{pmatrix} - \mu \begin{pmatrix} -2\\ -3\\ -6 \end{pmatrix}$	
	$\overrightarrow{OR} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = -9 \Longrightarrow -5 + 2\mu - 6 + 3\mu - 7 + 6\mu = -9 \equiv$	$\Rightarrow \mu = \frac{9}{11}$
	<i>R</i> is $\left(-5 + \frac{18}{11}, -6 + \frac{27}{11}, -7 + \frac{54}{11}\right) = \left(-\frac{37}{11}, -\frac{39}{11}\right)$	$-\frac{23}{11}$

(ii)	$\cos\theta = \frac{\begin{vmatrix} -2 \\ -3 \\ -6 \end{vmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{vmatrix}}{\sqrt{4+9+36\sqrt{3}}} = \frac{11}{7\sqrt{3}}$
	$\overline{RQ} = \frac{1}{11} \binom{8}{1} - \frac{1}{11} \binom{-37}{-39} = \frac{1}{11} \binom{45}{40} \\ 25$
	$\cos \beta = \frac{\begin{pmatrix} 45\\40\\25 \end{pmatrix} \cdot \begin{pmatrix} 1\\1\\1 \\ 1 \end{pmatrix}}{\sqrt{45^2 + 40^2 + 25^2}\sqrt{3}} = \frac{110}{\sqrt{12750}} = \frac{22}{\sqrt{510}}$
(iii)	Thickness of the prism is $\frac{\left \overrightarrow{RQ} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right }{\sqrt{3}} = \frac{1}{11} \begin{pmatrix} 110 \\ \sqrt{3} \end{pmatrix} = \frac{10}{\sqrt{3}}$ Thickness of prism is length of projection of \overrightarrow{RQ} onto normal of prism.
(iv)	$k = \frac{\sin \theta}{\sin \beta} = \sqrt{\frac{1 - \cos^2 \theta}{1 - \cos^2 \beta}} = \sqrt{\frac{1 - \left(\frac{11}{7\sqrt{3}}\right)^2}{1 - \left(\frac{22}{\sqrt{510}}\right)^2}} = \frac{\sqrt{170}}{7} = 1.86 $ (3 s.f.)
(v)	Since $0^{\circ} < \theta < \beta < 90^{\circ}$, we have $0 < \sin \theta < \sin \beta < 1$.
	Thus, $0 < \frac{\sin \theta}{\sin \beta} < 1$, that is, $0 < k < 1$.