H2 PHYSICS

SUGGESTED SOLUTIONS

November 2017

N	Paper 1 Iultiple Choice				
Question	Key	Question	Key	Question	Key
1	Α	6	Α	11	D
2	В	7	D	12	В
3	С	8	С	13	D
4	D	9	D	14	D
5	С	10	Α	15	В
16	С	21	Α	26	В
17	D	22	D	27	D
18	С	23	D	28	С
19	В	24	С	29	В
20	С	25	Α	30	С

Notes:

Questions that candidates found more challenging were Questions 5, 12, 14, 15, 16, 17, 21, 22 and 26.

Question 5

Option A - a momentum change of less than *p* would result in the ball continuing to move in the same direction.

Option D – an elastic bounce will result in a change of momentum of 2p

Question 12

Note that work is done on the system.

Question 14

Those who chose option **B** did not realise that one full cycle corresponds to a rotation of 2π radians.

Question 15

Those who chose option **A** did not realise that frequency is constant as a wave moves from one medium to another.

Question 16

Those who chose option **A** did not recognise that the relationship between Θ and order *n* of maxima is not proportional.

Question 22

Those who chose option **B** did not realise that the 2 A current is added to the 4 A current to give 6 A through the bottom 30 Ω resistor.

Question 26

Those who chose option **C** did not recall that the mean power in a resistive load is half the peak power for a sinusoidal alternating current.

Paper 2 Structured Questions

Notes: Ensure that all steps in a 'show that' question are clearly presented and that all assumptions made are declared. As a logic check, final numerical answers should be realistic.

Question		Marks
1(a)	F = kx	
	$k = \frac{F}{x} = \frac{mg}{L - L_0} = \frac{(140 \times 10^{-3})(9.81)}{(10.8 - 8.0) \times 10^{-2}}$	M1
	$= 49.1 \text{ N m}^{-1}$	A1
1(b)(i)	$k = \frac{mg}{L - L_0}$ $\frac{\Delta k}{k} = \frac{\Delta m}{m} + \frac{\Delta (L - L_0)}{(L - L_0)} = \frac{\Delta m}{m} + \frac{\Delta L + \Delta L_0}{(L - L_0)}$ $= \frac{1}{100} + \frac{2}{108 - 80}$	М1
	$\Delta k = k \left(\frac{1}{100} + \frac{2}{108 - 80} \right)$	
	$= 49.1 \left(\frac{1}{100} + \frac{2}{108 - 80} \right)$	
	$= 4.0 \text{ Nm}^{-1} (2 \text{ s.f.})$	

Notes: Portion in square bracket not necessary but as a reminder, if need to evaluate absolute uncertainty, give to more than 1 s.f..

$$\frac{\Delta k}{k} \times 100\% = \left(\frac{1}{100} + \frac{2}{108 - 80}\right) \times 100\%$$

= 8.1%

A1

B1

1(b)(ii)

$$\frac{\Delta k}{k} \times k = \Delta k = \frac{8.1}{100} (49.1)$$

= ±4 N m⁻¹ (1 s.f.)
 $k = 49 \pm 4$ N m⁻¹

Notes: When presented in this form, the absolute uncertainty is 1 s.f. and the precision of the quantity follows that of the absolute uncertainty (i.e. in this case, k must be quoted to the nearest '1')

Question		Marks
1(c)(i)	magnitude of upthrust is equivalent to reduction of elastic force	
	for (10.8 - 10.3 =) 0.5 cm of extension	C1
	$U = kx_{0.5 \text{ cm}} \approx (49)(0.5 \times 10^{-2})$	C1
	= 0.25 N	A0
1(c)(ii)	volume of block,	
	$V = \frac{m_{block}}{\rho_{block}} = \frac{140 \times 10^{-3}}{7750}$	M1

Notes: This is not the final answer, so in your calculator/working work with more s.f.'s.

Upthrust is the weight of liquid displaced

 $(=1.81\times10^{-5} m^3)$

$$U = m_{liquid} g = V \rho_{liquid} g$$

$$\rho_{liquid} = \frac{U}{Vg} = \frac{0.25}{\left(\frac{140 \times 10^{-3}}{7750}\right)(9.81)}$$
M1
$$= 1410 \text{ kg m}^{-3}$$
A1

Notes: Remember to distinguish between *mass* and *weight*.

Question

2(a)(i)

2(b)

Marks

$$v_c = r_c \omega_c = r_c \left(\frac{2\pi}{T_c}\right)$$

 $T_c = \left(\frac{2\pi}{T_c}\right)$ (4.75 4.04 4.03) $\left(\frac{2\pi}{T_c}\right)$ 5.400 4.05

$$T_{\rm c} = r_{\rm c} \left(\frac{2\pi}{v_{\rm c}}\right) = (1.75 \times 10^4 \times 10^3) \left(\frac{2\pi}{0.200 \times 10^3}\right) = 5.498 \times 10^5 \text{ s}$$
 M1

number of days =
$$\frac{5.498 \times 10^5}{24 \times 60 \times 60}$$
 M1
= 6.36 days A0

Notes: Remember to (show how to) convert the number of seconds into days.

2(a)(ii)2. same side of Charon observed all the time

$$g_{P} = G \frac{M_{P}}{R_{P}^{2}} = (6.67 \times 10^{-11}) \frac{1.31 \times 10^{22}}{(1.20 \times 10^{6})^{2}}$$
M1

B1

 $= 0.607 \text{ kg m}^{-3}$

Notes: Be careful with the power-of-ten, and to square the radius.

2(c)(i) Loss in Gravitational E_p of rock = Gain in E_K of rock B1

$$U_{initial} - U_{final} = KE_{final} - KE_{initial}$$

 $0 - \frac{GM_{Pluto}M}{r} = \frac{1}{2}Mv^2 - 0$
 $v = \sqrt{\frac{2GM_{Pluto}}{r}}$ M1

$$v = \sqrt{2\left(\frac{GM_{Pluto}}{r^2}\right)}r$$

Since
$$g_P = \frac{GM_{Pluto}}{r^2}$$
, M1
 $v = \sqrt{2g_P r}$

Notes: Need to explicitly show the (i) conservation of energy and (ii) algebra and substitution clearly.

2(c)(ii)

$$V_{min} = \sqrt{2g_P r} = \sqrt{2(0.607)(1.20 \times 10^6)} = 1210 \text{ m s}^{-1}$$
 B1
Notes: Be careful with the power-of-ten

Question		Marks
3(a)	Oscillations in one direction,	B1
	in a plane <u>normal to the direction of transfer of energy</u> .	B1
	Notes: not asking for definition of transverse wave and need to mention	
	either "oscillation" or "vibration".	
3(b)	speed, <i>v</i> , is the rate of change of <u>distance (</u> <i>s</i>) with <u>time</u> taken (<i>t</i>)	
	$v = \frac{s}{t}$	M1
	for a progressive wave, it travels one wavelength (λ) in a period <i>T</i> :	
	$v = \frac{s}{t} = \frac{\lambda}{T}$	M1
	Since $f = \frac{1}{T}$, $v = \lambda \left(\frac{1}{T}\right) = \lambda f$	A0
	Notes: Start with the definition of speed	
3(c)(i)	Path difference BP – AP = $\sqrt{12^2 + 5.0^2} - 12 = 1.0$ km	
	Number of wavelengths within path difference:	
	$\frac{BP - AP}{BP - AP} = \frac{BP - AP}{BP - AP} = \frac{1.0 \times 10^3}{1000000000000000000000000000000000000$	
	λ $\mathbf{c} \div \mathbf{f}$ $(3.00 \times 10^\circ) \div (1200 \times 10^\circ)$	IVIT
	since waves are emitted at source in phase and meet with path difference	M1
	or integer multiple of wavelengths at P,	
	waves reach in phase, undergo constructive interference, a maximum is detected	A1
	Notes: It is not sufficient to just state the conditions for	
	constructive/destructive interference. To <i>explain</i> , data needs to be used, such as the relationship between wavelength and the path difference.	
3(c)(ii)	resultant amplitude varies between maxima and minima with constant	B1
	trequency (OR at a constant rate)	
3(c)(iii)	use polarisers at both A and B	B1
- (- / (/	axis of polarisation is aligned perpendicularly to each other	B1

Notes: <u>both</u> sources need to be polarised 90deg relative to each other.

Question

3(d)

assuming point source transmitters

$$I = \frac{P}{4\pi r^2} \rightarrow I \propto \frac{1}{r^2}$$

$$I_1 = \frac{P}{4\pi r^2} = (13)^2$$

Marks

$$\frac{I_A}{I_B} = \frac{I_B}{r_A^2} = \left(\frac{10}{12}\right)$$
= 1.2 (do not accept fraction) A1

= 1.2 (do not accept fraction)

Notes: cannot leave as 169/144. Do not confuse A for amplitude/area.

4(a) at least 3 concentric circles with increasing distance from each other **B1** each circle labelled with clockwise arrows **B1**

(X)

Notes: best to bring your compass (alongside geometry set) for exams.

4(b)

magnetic flux density due to long straight wire:

$B = \frac{\mu_0 I}{2}$	$=\frac{(4\pi \times 10^{-7})(8.5)}{(8.5)}$	M1
$2\pi d$	$2\pi(19 \times 10^{-2})$	
= 9.0 × 10	⁻⁶ T	A1

Notes: Be careful when converting cm to m.

Marks

Question

)(i)

$$B_{H} = \frac{120}{B_{Wire}}$$

$$tan(12^{\circ}) = \frac{B_{Wire}}{B_{H}}$$

$$B_{H} = \frac{B_{Wire}}{tan(12^{\circ})} = \frac{9.0 \times 10^{-6}}{tan(12^{\circ})}$$

$$= 4.2 \times 10^{-5} \text{ T}$$
M1

Notes: The examiners were looking out for (at least) a vector diagram showing how the 2 magnetic fields combined to form the resultant field with the angle.

4(c)(ii) (if more marks allocated / if more numerical accuracy required) Find the distance from wire that will result in same magnitude of flux as with Earth's field:

$$B_{\rm H} = \frac{\mu_0 I}{2\pi d} = \frac{(4\pi \times 10^{-7})(8.5)}{2\pi d}$$
$$d = \frac{(4\pi \times 10^{-7})(8.5)}{2\pi (4.21 \times 10^{-5})} = 0.0404 \text{ m}$$

X to be marked 4.04 cm (about 1/5 distance between wire and compass) from wire at the 3 o'clock position.

North 12

 \otimes

X

Magnetic flux density is a vector quantity.

At X, the magnetic flux density due to wire is pointing **B1** downwards, opposite to the upward Earth's magnetic field.

The point is nearer to the wire than the compass in Fig. 4.3 so that the magnitude matches that of the Earth's.

A1

Notes: Need to explain how the 2 fields cancel out (magnitude and direction).

Question		Marks
5(a)(i)	$R = \frac{\rho L}{A} = \frac{\rho L}{\pi r^2} = \frac{\rho L}{\pi \left(\frac{d}{2}\right)^2}$	C1
	$=\frac{4\rho L}{\pi d^2} = \frac{4(1.7 \times 10^{-8})(96)}{\pi (0.18 \times 10^{-3})^2}$ = 64 \Omega	M1 A1
5(a)(ii)	Since volume = <i>L</i> x <i>A</i> , increased length causes reduced <u>cross-sectional</u> <u>area</u> , Since $R = \frac{\rho L}{A}$, resistance increases.	B1
	Notes: Need to consider the reduction in cross-sectional area as a result of stretching.	
5(a)(iii)	16 resistors in parallel: $\frac{1}{R_{\text{effective}}} = \frac{16}{R}$ $R_{\text{effective}} = \frac{R}{16} = \frac{64.1}{16} = 4.0 \ \Omega$	A1
5(b)(i)	$P = I^2 R = (2.5)^2 (4.0)$ = 25 W	M1 A1
5(b)(ii)	current of 2.5 A is split equally across 16 strands $I = Anvq = \pi \left(\frac{d}{2}\right)^2 nvq_e$ $v = \frac{4I}{\pi d^2 nq_e} = \frac{4I}{\pi d^2 nq_e} = \frac{4\left(\frac{2.5}{16}\right)}{\pi (0.18 \times 10^{-3})^2 (8.5 \times 10^{28})(1.6 \times 10^{-19})}$ $= 4.5 \times 10^{-4} \text{ m s}^{-1}$	M1 A1

Question		Marks
6(a)	the de Broglie wavelength of the electrons is of same order of magnitude as inter-atomic spacing between carbon atoms in the graphite film. <u>Diffraction of electrons occurred at the graphite film</u>	B1
	Notes: Common misconceptions:	
	> photons produced when electrons collided with graphite	
6(b)	the kinetic energy of the electrons increased the momentum of the electrons increased	M1
	$p=rac{h}{\lambda}$ so the de Broglie wavelength decreased	M1
	$d \sin \theta = \lambda$; angle of diffraction decreased diameters of the concentric circles decreased	A1
6(c)	Loss in Electric E_p = Gain in E_k	B1
	$Q\Delta V = \frac{p^2}{2m}$ $p = \sqrt{2me\Delta V}$	C1
	Using $\lambda = \frac{h}{p}$,	C1
	$\lambda = \frac{h}{\sqrt{2me\Delta V}}$	
	$=\frac{5.53\times10^{-31}}{\sqrt{2(9.11\times10^{-31})(1.6\times10^{-19})(1200)}}$	
	$= 3.5 \times 10^{-11} \text{ m}$	A1

Question		Marks
7(a)(i)	alide ratio – Horizontal distance	
	Vertical distance	
	40 – Horizontal distance	
	8500-1500	
	<i>Horizontal distance</i> = 2.8×10^5 m	A1
7(a)(ii)	Maximise lift through the long wing span of 71.9m	B1
	Small mass of 2300 kg for a long wing span plane	B1
	Streamlined aircraft body to reduce drag	(B1)
	Notes: Data concerning aircraft features need to be linked to the good glide ratio.	
7(a)(iii)	During horizontal flight, lift = weight	
	$\int \int \frac{d}{dt} dt = \int \frac{d}{dt} \int \frac{d}{dt} dt = \int \frac{d}{dt} \frac{d}{dt}$	
	glide ratio = $40 = \frac{1}{40} = \frac{1}{40}$	M1
	drag (2300)(9.81)	
	diag = $\frac{40}{40}$	
	= 560 N	A1
7(b)(i)	amount of stored energy per unit mass	B1
	Notes: Do not mix <i>quantities</i> and <i>units</i> e.g. <i>energy</i> per <i>kg</i> .	
7(b)(ii)	amount of energy stored in four batteries:	
	$= (4)(41 \text{ kWh}) = (164 \times 10^3)(60)(60)$	
	$= 5.9 \times 10^8 \text{ J}$	A1
7(b)(iii)	During horizontal flight of constant speed, forward force = drag force	
	Energy stored = Work done by forward force	M1
	$5.9 \times 10^8 = F \times s$	
	$s = \frac{5.9 \times 10^8}{10^8}$	
	3	Δ1
	$=1.1\times10^{6}$ m	

Question		Marks
7(c)	Light energy is absorbed as it passes through atmosphere.	B1
	The more it passes through, the more of it is being absorbed.	
	Network Opening an interface in childred with method light an energy in last	
	Notes: Common mistakes included not noting that light energy is lost when travelling through atmosphere. Some proposed the per logical idea	
	that aircraft would be nearer the Sun (change in distance is insignificant	
	compared to distance from the Earth to the Sun).	
7(d)	It needs to collect energy to store for use during night flight	B1
7(e)	1. in parallel	
		B1
	$2I_s$	
	2. in series	
		B1
		_
7(f)(i)	power collected is <u>directly proportional</u> to the area of photovoltaic cells	B1
7(f)(ii)	power	
- (-)()	intensity = $\frac{power}{area}$	B1
	represents intensity of sunlight captured/collected	
7(f)(iii)	$qradient = \frac{73.0 - 0.0}{1000}$	
	300 - 0	M1
	$= 0.243 \text{ kW m}^{-2}$	Δ1
	$= 243 \text{ Wm}^{-2}$	
7(a)(i)	$M = 1.556 \ I_1 = 0.836 \ \text{kW} \ \text{m}^{-2}$	B1
• (9/(•/		
7(g)(iii)	Even distribution of points on both sides of the curve	
	Notes: Quality of curves were poor when the curve did not pass through	
	points or did not reach final point. Some force-fitted a straight line through	
	mistakenly.	
7(a)(iv)	$l_1 = 0.895 \text{ kW m}^{-2}$	B1
· (3/('*/		

Question		Marks
7(g)(v)	efficiency $= \frac{l}{l_1} \times 100\% = \frac{0.243}{0.895} \times 100\% = 27.2\%$	B1
	Notes: Common mistake was to use a value from table (max value of 0.947 was common) instead of own value for the required point above Japan. Need to ensure that the units for both intensity values are the same.	
7(h)	1. can only transport passengers during day time and fair weather	B1
	conditions so that there is available solar energy	
	 efficiency of collection of solar power by current generation of solar cells at 27.2% is too low to support high volume air travel more passengers means more mass and more lift force required. The wingspan necessary may be too long to be practical 	B1
	Notes: Responses need to be specific to <i>passenger air craft</i> – many were over-general that will affect all types of solar aircraft.	

Paper 3 Longer Structured Questions

Question		Marks
1(a)	air resistance increases with speed resultant force = weight – air resistance \rightarrow so resultant force decreases weight = air resistance \rightarrow no resultant force and acceleration. Hence constant velocity	B1 B1 B1
1(b)(i)	$F_{net} = ma$ mg - kv = ma $g - a = \frac{kv}{m}$	B1 B1 A0
1(b)(ii)	$v = 0 \text{ m s}^{-1} \qquad a = 9.81 \text{ m s}^{-2} \qquad (g - a) = 0 \text{ m s}^{-2}$ $v = 30 \text{ m s}^{-1} \qquad a = 5.8 \text{ m s}^{-2} \qquad (g - a) = 4.0 \text{ m s}^{-2}$ $v = 40 \text{ m s}^{-1} \qquad a = 0 \text{ m s}^{-2} \qquad (g - a) = 9.81 \text{ m s}^{-2}$ Correct values of a for $v = 0 \text{ m s}^{-1}$ Correct values of a for $v = 40 \text{ m s}^{-1}$ $v = 30 \text{ ms}^{-1}, a \approx \text{ gradient of tangent to graph at that point}$ gradient = $\frac{y_1 - y_2}{x_1 - x_2} = \frac{44 - 20}{6 - 1.8}$ 5.7 ms ⁻² [accept 5.8 ± 0.2 ms ⁻²] For $(g - a)$ column, all three entries to be calculated correctly from 9.8 – a Notes: Should recognise immediately that gradient of graph at $t = 0$ is $a = 0$	
1(b)(iii)	9.8 immediately. since $(g - a) = \frac{kv}{m}$, $\frac{(g - a)}{v} = \frac{k}{m}$ should be constant $v = 20 \text{ ms}^{-1}$, $\left(\frac{k}{m}\right)_1 = \frac{(g - a)}{v} = 0.080 \text{ s}^{-1}$ $v = 30 \text{ ms}^{-1}$, $\left(\frac{k}{m}\right)_2 = \frac{(g - a)}{v} = 0.14 \text{ s}^{-1}$ The values of $\frac{k}{m}$ are not close to each other, hence the student's	

suggestion is not justified

Question		Marks
2(a)(i)	Total momentum of A and B is not zero before collision By Principle of Conservation of Linear Momentum, total momentum must not be zero throughout.	M1
	So both are never stationary at the same time	A1
2(a)(ii)	magnitude of average force $ F = \left \frac{\Delta P_A}{\Delta t}\right = \frac{(1.5)(0.90 - (-0.70))}{0.3}$	C1
	= 8.0 N	A1
	Notes: Do not confuse the change in momentum of A, with the difference in momentum between A and B.	
2(b)(i)	According to Newton's 3^{rd} Law, the force on B = force on A	
	$F\Delta t = m_B(2.2 - v_B)$	C1
	$(8.0)(0.3) = 1.2(2.2 - V_B)$	
	$v_{B} = 0.20 \text{ ms}^{-1}$	A1
2(b)(ii)	answer to 2(b)(i) is a vector quantity. Having the same positive sign as the initial velocity of B implies that B's direction continues to be to the left.	B1
2(c)	relative speed of approach = $0.90 - (-2.2) = 3.1 \text{ ms}^{-1}$ relative speed of separation = $-0.20 - (-0.70) = 0.5 \text{ ms}^{-1}$	
	relative speed of approach not equal relative speed of separation so inelastic (<i>comparisons using</i> E_{κ} <i>not given credit</i>)	A1
	Notes: Common mistake was to give the relative speed of approach as	

1.3 instead.

Question		Marks
3(a)	a region of space where a <u>mass</u> experiences a <u>force</u>	B1 B1
3(b)(i)	Let m_{Sun} be mass of the Sun	
	Gravitational force provides the centripetal force	B1
	$\frac{GMm_{Sun}}{r^2} = \frac{m_{Sun}v^2}{r}$	M1
	$v = \sqrt{\frac{GM}{r}}$	A0
3(b)(ii)	$v = \sqrt{\frac{GM}{r}}$	
	$M_{galaxy} = rac{V^2 r}{G}$	
	$M = \frac{(230 \times 10^3)^2 (2.4 \times 10^{20})}{6.67 \times 10^{-11}}$	C1
	$= 1.9 \times 10^{41} \text{ kg}$	C1
	$\frac{M}{m_{sun}} = \frac{1.9 \times 10^{41}}{2.0 \times 10^{30}} = 9.5 \times 10^{10}$	A1

Notes: Need to square the velocity.

Notes: Need to label the axes with values

Question		Marks
4(b)(i)	$y = -y_0 \cos(\omega t) = -y_0 \cos\left(\frac{2\pi}{T}t\right) = -1.5 \cos\left(\frac{2\pi}{0.60}t\right)$	C1
	$y = +0.20 \ cm,$	
	$+0.20 = -1.5\cos\left(\frac{2\pi}{0.60}t\right)$	
	<i>t</i> ₁ = 0.163 s	C1
	$y = -0.20 \ cm,$	
	$-0.20 = -1.5\cos\left(\frac{2\pi}{0.60}t\right)$	
	<i>t</i> ₂ = 0.137 s	
	Shortest time from -2.0mm to +2.0 mm = $t_2 - t_1 = 0.163 - 0.137 = 0.026$ s By symmetry, shortest time from +2.0mm to -2.0 mm = 0.026 s	A1
4(b)(ii)	time = $t_2 - t_1 \approx 0.65 - 0.55$ (read to half small square) = 0.10 s	A1
4(c)	for oscillation moving through same total distance of 4mm duration of 0.026 s near zero displacement is much shorter than duration of 0.10 s at maximum displacement	M1
	determination of cube at its zero displacement position is more certain and accurate	A1

Question		Marks
5(a)(i)	position of first minima: $\sin\theta = \frac{\lambda}{d}$	C1
	since θ is small, $\theta \approx \sin \theta \approx \tan \theta = \frac{\frac{1}{2} \text{ width}}{2.4}$	
	width \approx (2)(2.4) $\left(\frac{\lambda}{d}\right)$	
	$= (2)(2.4) \left(\frac{590 \times 10^{-9}}{0.60 \times 10^{-3}} \right)$	C1
	= 4.7 mm	A1

Notes: Need to see that the distance between centre and first minimum ,s half the width of the central maximum

Notes: b is not the distance between screen and slit

Question		Marks
6(a)	Energy gained = work done by electric force	
	= electric force × s	
	= q (field strength) × s	
	ΔV	
	$= q \frac{d}{d} s$	M1
	$=q\frac{\Delta V}{d}\left(\frac{2d}{3}-\frac{d}{3}\right)$	M1
	$=\frac{1}{3}q\Delta V$	
	where	
	s is the displacement	

s is the displacement

q is the charge of the α -particle

 ΔV is potential difference between the plates

Since the expression does not contain *d*, work done is independent of *d*.

Notes: need to explain all symbols introduced, especially since E can mean either energy or field strength.

Question

6(b)

change in kinetic energy = final E_k – initial $E_k = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$

From plate B to
$$x = \frac{d}{3}$$

 $\frac{1}{3}q\Delta V = \frac{1}{2}mv^2 - 0$ C1
 $v = \sqrt{\frac{2}{3}\left(\frac{2e}{2}\right)\Delta V} = \sqrt{\left(\frac{1}{2}\right)\left(\frac{1.60 \times 10^{-19}}{1.60 \times 10^{-19}}\right)(750 - 0)}$

$$v = \sqrt{3} \left(\frac{4u}{4u} \right) \Delta V = \sqrt{\left(\frac{3}{3} \right) \left(\frac{1.66 \times 10^{-27}}{1.66 \times 10^{-27}} \right)} (750 - 0)$$

= 1.55 × 10⁵ ms⁻¹ C1

From plate B to
$$x = \frac{2d}{3}$$

 $\frac{2}{3}q\Delta V = \frac{1}{2}mv^2 - 0$ C1
Velocity at $x = \frac{2d}{3}$:
 $v = \sqrt{\frac{4}{3}\left(\frac{2q_e}{4u}\right)\Delta V} = \sqrt{\left(\frac{2}{3}\right)\left(\frac{1.60 \times 10^{-19}}{1.66 \times 10^{-27}}\right)(750 - 0)}$

$$= 2.20 \times 10^5 \text{ ms}^{-1}$$

Change in speed =
$$2.20 \times 10^5 - 1.55 \times 10^5 = 6.4 \times 10^4$$
 ms⁻¹

Notes: $\frac{1}{2}$ mv² - $\frac{1}{2}$ mu² $\neq \frac{1}{2}$ m(Δ v)²

Marks

Question		Marks
7(a)	to eject an electron, energy of photon must be more than work function energy of metal	B1
	energy of a UV photon energy is more than work function energy energy of a red light photon energy is less than work function energy	B1
	Notes: need to bring in idea of individual photons.	
7(b)	β -particles have are high speeds / energy electrons	B1
	when charged particle is accelerated	M1
	electromagnetic radiation produced	A1
	β-particles stopped in lead produce X-ray radiation which escapes	B1
7(c)	mass is concentrated in <u>very small nucleus compared to atom</u>	B1
	hence only small proportion of particles approach nucleus closely	
	atom contains positively charged nucleus	B1
	<u>electrostatic repulsion</u> between atom and alpha particle can result in large deflections	B1

Question		Marks
8(a)(i)	two bodies are at <u>same/equal</u> (*NOT constant) temperature	B1
8(a)(ii)	no <u>net</u> transfer	A1
	of thermal energy from one body to another	M1
8(b)(i)	Ice is at a lower temperature than its surroundings.	B1
	Net thermal energy is transferred from surrounding to ice	
	not in thermal equilibrium	A0
8(b)(ii)	Heat gained by ice = thermal energy from heater and from atmosphere	
	$m_{water}L = IVt + Rt$	C1
	$(114.0 - 32.4)(330) = (6.3)(12.0)(5.0 \times 60) + R(5.0 \times 60)$	M1
	<i>R</i> = 14 W	A1
8(c)(i)	internal energy = sum of kinetic energy and potential energy	B1
	no intermolecular forces present between ideal gas molecules	D4
	potential energy is zero	B1 B1
	kinetic energy is directly proportional to thermodynamic temperature	B1
8(c)(ii)1.		
	$pV = nRT \rightarrow n = \frac{r}{RT}$	
	Initial $n = \frac{(1.0 \times 10^5)(2.0 \times 10^{-2})}{(8.31)(25 + 273.15)} = 0.807 \text{ mol}$	M1
	Final $n = \frac{p}{T} = \frac{(1.5 \times 10^5)(2.0 \times 10^{-2})}{(8.31)(174 + 273.15)} = 0.807 \text{ mol}$	M1
	Since amount of gas <i>n</i> is constant, and $n \propto$ mass, mass remains constant	A1
8(c)(ii)2.	mass of gas = 20 <i>n</i> = 20(0.807) = 16.14 g	
	$oldsymbol{Q} = oldsymbol{m} c \Delta oldsymbol{T} = oldsymbol{m} c \Delta oldsymbol{(} oldsymbol{\mathcal{T}_{\textit{final}} - \mathcal{T}_{\textit{initial}} oldsymbol{)}}$	C1
	1220 = (16.14)c(174 - 25)	C1
	$c = 0.51 \text{ J g}^{-1} \text{ K}^{-1}$	A1
8(c)(iii)	Since the increase in temperature is the same in both instances, increase in internal energy is same for both cases	B1
	when gas expands, work is done by gas against atmospheric pressure	M1
	additional thermal energy has to be supplied	A1

Question		Marks
9(a)	the value of the steady direct current	B1
	which would dissipate heat at the same average rate in a given resistor	B1
9(b)(i)	By comparing $V = 240 \sin(377t)$ with $x = x_0 \sin(\omega t)$	
	$\omega = 2\pi f$	C1
	377	A1
	$T = \frac{1}{2\pi} = 60.0$ HZ	
9(b)(ii)	$(V_0 /)^2$	
	$P = \frac{V_{rms}^2}{\sqrt{2}}$	C1
	$=\frac{1}{2}\frac{V_{0}^{2}}{V_{0}^{2}}=\frac{1}{2}\left(\frac{240^{2}}{2}\right)$	C1
	2 R 2 (38)	UT .
	= 760 W	A1
A () (1) A		-
9(C)(I)1.	induced e.m.f. in a conductor is proportional to	B1
	the rate of change of magnetic hux linkage	DI
9(c)(i)2.	alternating current gives rise to changing flux in core	B1
•(•)(·)=·	flux links the secondary coil	B1
	by Faraday's law, changing flux induces e.m.f. in secondary coil	B1
	the induced e.m.f. is continuously switching polarity as flux is continuously	B1
	increasing and decreasing and reversing.	
9(C)(II)1.	no power loss in transformer so input power equals output power	B1
9(c)(ii)2		
U (U)(II) Z .	$\frac{N_s}{N_l} = \frac{V_{rms,s}}{V_l}$	
	$N_p V_{rms,p}$	
	$\frac{N_s}{5000} = \frac{12}{(2100)}$	M1
	$\left(\begin{array}{c} 240 \\ 1 \end{array} \right)$	
	$N_{\rm r} = 350$	Δ1
9(c)(iii)1.	increase flux linkage	B1
-	reduce flux loss	B1
	low hysteresis	(B1)
0 (.)())) 0		
9(C)(III)2.	reduces eddy currents	M1
	so reduce thermal energy/heat losses in the core	AT
	(do not allow prevent energy losses)	