

HWA CHONG INSTITUTION 2019 C2 H2 CHEMISTRY PRELIMINARY EXAM SUGGESTED SOLUTIONS

Paper 3

- **1 (a) (i)** $MgCO_3(s) \rightarrow MgO(s) + CO_2(g)$ [1]
 - (ii) L.E $\alpha \frac{q_+q_-}{r_++r_-}$ [1]

Both MgCO₃ and MgO have the <u>same charges and cationic radius [0.5]</u> <u>Anionic radius for CO_3^{2-} is bigger than O^{2-} [0.5] Magnitude of L.E. of MgCO₃ is smaller than that of MgO.</u>

(iii) ΔS is positive as gaseous CO₂ is evolved [1]. Hence, $-T\Delta S$ term is negative.

 $\Delta G = \Delta H - T \Delta S$

Since the decomposition of MgCO₃ is endothermic, ΔH is positive. So for the decomposition to be spontaneous, for ΔG to be negative, the decomposition should take place at high temperature [1].

(iv) MgCO₃ has the lower decomposition temperature. [0.5]

Both Mg²⁺ and Ba²⁺ have the same charge. The ionic radius of Mg²⁺ is smaller than Ba²⁺ (0.5). So Mg²⁺ has a higher charge density (0.5) and a greater polarizing power and it can distort the electron cloud of the CO_3^{2-} to a greater extent (0.5 for either point), weakening the C-O covalent bonds in CO_3^{2-} to a greater extent (0.5), hence less energy is needed for decomposition (0.5).

(b) (i) Type of reaction (reaction 1): Nucleophilic Addition [1]

[1]

[1]

Type of reaction (reaction 2): Elimination/Dehydration [1]

(ii) H_{N}^{H} H_{C}^{H} H_{C}^{H} H_{C}^{H}

(iv)

(iii) The geometry about the center C is trigonal planar [1]. Hence, there is equal probability for the CN⁻ ion to attack from either side of the plane [1], giving rise to an equimolar mixture of two stereoisomers.

2019 HCI C2 H2 Chemistry Preliminary Exam / Paper 3

- (b) constitutional/structural/functional group isomerism [1]
- (c) The LF molecule is polar and can form strong/favourable permanent-dipole permanent-dipole interactions/hydrogen bonding/ion-dipole interactions with water molecules. [1]
- (d) (i) When the onion is cooled, less LF will vaporise and come into contact with the eyes. [1]
 - (ii) Heating the onion can <u>denature the enzyme</u> *LF* synthase so that <u>LF will not be</u> formed. [1]
- (e) (i) condensation [1]
 - (ii) $C_9H_{16}OS_3 + 17O_2 \rightarrow 9CO_2 + 8H_2O + 3SO_3$ [1]
 - (iii) $n(\text{cepaene}) = 5 \times 10^{-3} / 236.3 = 2.116 \times 10^{-5} \text{ mol } [\frac{1}{2}]$ $n(O_2) = 2.116 \times 10^{-5} \times 17 = 3.597 \times 10^{-4} = 3.60 \times 10^{-4} \text{ mol } [\frac{1}{2}] \text{ ecf from ii}$ volume of O₂ mixture at r.t.p. = 3.597 $\times 10^{-4} \times 24000 = 8.63 \text{ cm}^3 [\frac{1}{2}]$ volume of mixture = 8.63 $\times 100/40 = 21.6 \text{ cm}^3 [1]$
 - (iv) Role of copper: reducing agent [1] $Cu + \frac{1}{2}O_2 \rightarrow CuO$ [1]
 - (v) The blue crystals are CuSO₄ [1], which can be formed from the reaction of CuO with SO₃. [1]

 $CuO + SO_3 \rightarrow CuSO_4$

(vi) Order of gases released: CO₂, then SO₂, then water. [1]

CO₂ is a non-polar molecule, hence intermolecular forces are the weakest – only dispersion forces, so it is released first at a lower temperature. followed by SO₂.

 SO_2 is a polar molecule with *both* intermolecular permanent-dipole permanent-dipole interactions, which are stronger than dispersion forces, *and* dispersion forces, which are also stronger than those of CO_2 due to SO_2 having more electrons and the larger electron cloud size than CO_2 .

Water has intermolecular hydrogen bonding, which are the strongest intermolecular forces, and most energy required to vapourise it, and hence it is released last.

[1] correct types of intermolecular forces for all 3 molecules[1] correct comparison of the strength of the 3 different intermolecular forces and relate to energy required to overcome the intermolecular forces for the gas to escape to the detector.

- 3 (a) Transition elements are d-block elements that form one or more stable ions with partially filled d-subshell. [1]
 - (b) (i) Precipitation occurs when I.P. = Ksp

For Cr³⁺: Ksp = [Cr³⁺][OH⁻]³

 $1.6 \times 10^{-20} = 1.23 \times 10^{-2} [OH^{-}]^{3}$ [OH^{-}] = 1.09 × 10^{-6} mol dm^{-3} [1]

For Co^{2+} : Ksp = $[Co^{2+}][OH^{-}]^{2}$

 $5.92 \times 10^{-15} = 5.77 \times 10^{-3} [OH^{-}]^2$ [OH^-] = 1.01×10^{-6} mol dm⁻³ [1]

Since the [OH⁻] required for IP = Ksp is similar for both precipitates to form, it does not allow for the separation of the two metal ions. **[1]**

(ii) either

 $Cr(OH)_3$ is sparingly soluble and dissolves to give small concentrations of Cr^{3+} and OH^{-} .

 $Cr(OH)_3 \ll Cr^{3+} (aq) + 3OH^{-} (aq)$ (1) [1]

When excess OH⁻ is added, complex formation takes place. Cr³⁺ (aq) + 6OH⁻ (aq) \ll [Cr(OH)₆]³⁻ [1] (accept if [Cr(OH)₄⁻]) The [Cr³⁺] falls shifting the position of equilibrium of (1) to the right, causing the precipitate to dissolve. [1]

or

 $[Cr(H_2O)_3(OH)_3]$ (s) + 3OH⁻ (aq) $\ll [Cr(OH)_6]^{3-}$ +3H₂O (*l*) [2]

([1] for $[Cr(H_2O)_3(OH)_3]$ and $[Cr(OH)_6]^{3-}$, [1] for balancing equation)

When the $[OH^-]$ increases, position of equilibrium shifts forward to offset the increase in the $[OH^-]$ concentration. This causes the solid to dissolve. [1]

The 5 *d* orbitals can be classified into two groups. The $d_{x^2-y^2}$ and d_{z^2} have their lobes along the axis, while the d_{xz} , d_{xy} and d_{yz} have lobes in between the axis. Since the ligands approach the central metal ion along the axis, **the repulsion** for the *d* and *d* are the *d* and *d* are the *d* and *d* are the *d* are *d* are the *d*

felt by the d_{xz} , d_{xy} and d_{yz} orbitals is less than for the $d_{x^2 - y^2}$ and d_{z^2} orbitals. [1] As such the d_{xz} , d_{xy} and d_{yz} orbitals are at the lower energy.

(ii) When an electron is promoted from the lower energy d-orbitals, energy is absorbed corresponding to a wavelength in the visible spectrum. [1]

The colour observed is the complement of the colours absorbed. [1]

- (iii) Ligand exchange reaction. [1]
- (iv) Identify the 1:4 ratio for Co²⁺: SCN⁻ [1]

[Co(SCN)₄]²⁻ [1]

(d) (i) The energy levels of 3d and 4s electrons in cobalt are similar, hence once the 4s electrons are removed, some or all of the 3d electrons may also be removed without requiring much more energy. [1]

However in calcium, once the 4s electrons are removed, the subsequent removal of electrons must come from an inner quantum shell which requires too much energy. [1]

+0.40

(ii) $[Co(NH_3)_6]^{3+} + e \ll [Co(NH_3)_6]^{2+}$ E $O_2 + 2H_2O + 4e \ll 4OH^-$

$E_{cell} = +0.40 - (+0.17) = +0.23V$ [1]

(e) (i) AgCl [1]

The number of moles of free Cl^- ions/ Cl^- counter ions are different in both the complexes. [1]

S has one Cl^- ion datively bonded to the Co^{3+} while **T** has two Cl^- ion datively bonded to the Co^{3+} central metal ion.

2 +

(ii) complex from S

[1] (mark for dative bonds and positive charge)

(iii) complex from T

[1] (as long as *trans* structure is shown, ignore dative bonds/charges etc.)

(f) Reactant molecules, CO and H₂O are **adsorbed onto the active sites** of the catalyst surface by formation of weak attractive forces.

This brings the molecules closer together, weakens the C[~]O and O–H bond, orientating them in the right position for reaction, hence lowering the activation energy. ([2] for all 3 points, [1] for any 2 points)

Once the reaction has taken place, the aldehyde formed **desorbs and diffuses away** from the catalyst surface so that the **active sites are exposed** for further reaction.

[1] adsorb and desorb + active sites

[1] deduct 0.5 for every mistake

 $E^{\odot}_{Zn2+/Zn} = -0.76 \text{ V}$ $E^{\odot}_{Cu2+/Cu} = +0.34 \text{ V}$ $E^{\odot}_{Ag+/Ag} = +0.80 \text{ V}$ (0.5 for these 3 values correctly quoted)

At the <u>anode</u>, Zn is oxidised to Zn^{2+} (can be described in equation form) as $\underline{E}_{Zn2+/Zn}^{\oplus}$ is more negative than $\underline{E}_{Cu2+/Cu}^{\oplus}$ and dissolves into the <u>electrolyte</u>. **[0.5]**

Ag will not be oxidised as $\underline{E}_{Ag+/Ag}^{\ominus}$ is more positive than $\underline{E}_{Cu2+/Cu}^{\ominus}$, [0.5] hence Ag drops off as anode sludge. [0.5] can be drawn in diagram

At the <u>cathode</u>, only Cu^{2+} is reduced as <u> $E^{\Theta}_{Cu2+/Cu}$ is more positive than $E^{\Theta}_{Zn2+/Zn}$. [0.5] Hence Cu is collected, whereas <u> Zn^{2+} is not reduced/remains in solution</u>. [0.5]</u>

any 3 [1] any 2 [1/2] HO₂C CO₂H B is (not required to show cis or trans arrangement) [1] (e) dilute HCl, heat (i) [1] (accept NaOH(aq), heat followed by dilute aqueous acid e.g. HCl) (ii) ΔH would be <u>similar</u> (or the same) as the <u>same bonds are broken and formed</u>. [1] (iii) Reaction 1 has a more negative / less positive ΔG (from $\Delta G = \Delta H - T\Delta S$). [1] ecf from (e)(ii) Hence, <u> K_1 is larger</u> than K_2 (from $\Delta G = -RTInK$). [1] ecf from ΔG

2019 HCI C2 H2 Chemistry Preliminary Exam / Paper 3