

HWA CHONG INSTITUTION 2024 C2 H2 CHEMISTRY PRELIMINARY EXAMINATION SUGGESTED SOLUTIONS

Paper 4

- 1 (a) (i) <u>Test 2</u>
 - Obs 1. white/ off-white ppt formed (*with 1cm³ NaOH(aq)*)
 - Obs 2. brown ppt formed/ brown ppt observed on the wall of the boiling tube/ white ppt turned brown
 - Obs 3. (white) ppt partially soluble / insoluble in excess NaOH
 - Obs 4. brown residue (on filtering)
 - Obs 5. colourless filtrate (on filtering)
 - Obs 6. white ppt formed (when dilute H₂SO₄ is added to the filtrate)
 - Obs 7. (white) ppt soluble in excess dilute H₂SO₄

<u>Test 3</u>

- Obs 8. white ppt (with dropwise addition of NH₃(aq))
- Obs 9. brown ppt/ some white ppt turns brown/ brown ppt observed on the wall of the test-tube
- Obs 10. ppt insoluble in excess aq. ammonia

Test 4

- Obs 11. white ppt (with aq. barium nitrate)
- Obs 12. (white ppt) insoluble in dilute HNO₃

There are 12 Obs. They are scaled to 6 marks as follows.

- 11 12 =[6] 9 – 10 = [5] 7 - 8 =[4] 5 - 6 =[3] 3 - 4 =[2] 1-2 = [1] 0 [0] =
- 1 (a) (ii) Al^{3+} : Based on test 2, white ppt forms in the filtrate when dilute H_2SO_4 is added to it. [1]

Mn²⁺: Based on test 2 (&/or 3), white ppt rapidly turns brown. [1]

SO_{4²⁻}: Based on test 4, white ppt insoluble in dilute HNO₃[1]

1 (a) (iii) Effervescence of $\underline{CO_2}$ is due to the <u>acid-base reaction</u> between CO_3^{2-} and the H⁺(aq) produced from the hydrolysis/ionisation of $[Al(H_2O)_6]^{3+}$. [1]

The white ppt observed is due to the <u>precipitation</u> of insoluble <u>MnCO₃ and Al(OH)₃</u>. [1]

- **1** (b) (i) Obs 1. pale brown / colourless filtrate (after dilute HNO₃ is added)
 - Obs 2. solution decolourises / remains colourless (when **FA 2** is added)
 - Obs 3. brown ppt/solution observed when NaOH(aq) is first added
 - Obs 4. brown ppt dissolves/ brown solution decolorises shortly after appearing
 - Obs 5. this is followed by effervescence of colourless, odourless gas
 - Obs 6. that relights a glowing splint
 - Obs 7. gas evolved is oxygen
 - Obs 8. brown ppt formed dissolves more slowly (with excess NaOH(aq)) / brown ppt remains eventually. (effervescence ceases)

There are 8 Obs. They are scaled to 3 marks as follows.

- 6-8 = [3] 4-5 = [2] 2-3 = [1]0-1 = [0]
- 1 (b)
 - (b) (ii) The brown intermediate formed on adding NaOH(aq) increases the rate of decomposition of H₂O₂. [1]

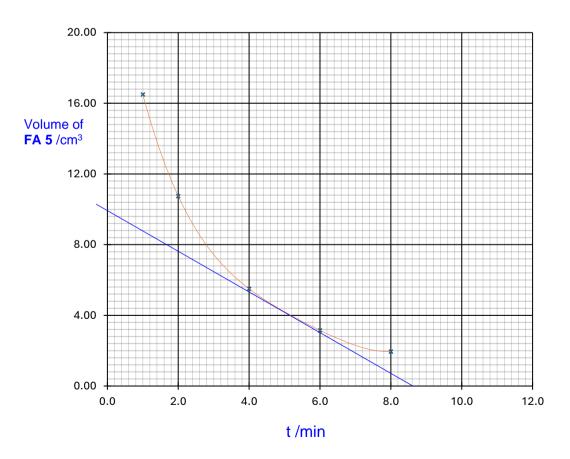
OR

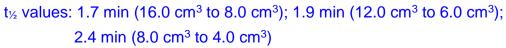
Since O_2 evolved when NaOH(aq) is added, H_2O_2 is being oxidised in an alkaline medium. This implies that H_2O_2 is a stronger reducing agent in an alkaline medium.

OR

 H_2O_2 decomposes more rapidly in alkaline medium as compared to in acidic medium.

2	(a)	Headers and units for transfer time and t		
		Transfer time in min & s, to nearest s.	[1]	
		t correctly calculated to 1 d.p.		
		Headers and units for burette readings and volume of FA 5		
		Correct calculation of volume of FA5 added	[1]	
		All burette readings and volumes of FA5 to 2 d.p. (0.05 cm ³).		
		5 sets of data, 1 st and 2 nd aliquot within 1 st and 2 nd min of expt (accept up to 1.9 and 2.9 min), last aliquot not exceeding 10 min	[1]	


Example


Transfer time		<i>t</i> /min	Final burette reading /cm ³	Initial burette reading /cm ³	Volume added	
min	S			burelle reading /cm	/cm ³	
1	01	1.0	16.50	0.00	16.50	
2	00	2.0	27.25	16.50	10.75	
4	00	4.0	32.75	27.25	5.50	
6	00	6.0	35.90	32.75	3.15	
8	00	8.0	37.85	35.90	1.95	

2 (b)

Label axes & units, suitable scale (not odd, plots occupy at least half the grid in x and y directions).			
All points correctly plotted within $\pm \frac{1}{2}$ small square.	[1]		
Suitable best-fit curve ignoring anomalous points.	[1]		

Example

2024 HCI C2 H2 Chemistry Prelims / Paper 4

2 (c) Show working for at least two half-lives. [1]

Conclude the order of reaction based on whether $t_{\frac{1}{2}}$ is (approximately) constant. [1]

E.g. Since volume of FA 5 (V_{FA5}) is directly proportional to concentration of MnO_4^- in the reaction mixture, for V_{FA5} to decrease from 16.0 cm³ to 8.0 cm³, the half-life is 1.7 min. For V_{FA5} to decrease from 12.0 cm³ to 6.0 cm³, the half-life is 1.9 min.

Since the two half-lives are almost identical, I <u>agree</u> that the order with respect to MnO_4^- is one.

2 (d) (i) Draws tangent at t = 5.0 min, tangent line must touch the curve at t = 5.0 min [1]

An example is drawn on the graph in 2(b).

- (ii) Gradient of tangent = (7.6 0.0) / (2.0 8.6)= -1.15 cm³ min⁻¹ (answer must be negative) [1]
- (iii) rate of change in amount of $S_2O_3^{2-}$ ions = $-1.152 \times 10^{-3} \times 0.0050$ = -5.76×10^{-6} mol min⁻¹ [1]

2 (d) (iv) rate of change in amount of MnO_4^- ions in 10 cm³ = $-5.76 \times 10^{-6} \times 1/2 \times 2/5$ = -1.15×10^{-6} mol min⁻¹ [1]

- (v) rate of change of the concentration of MnO_4^- ions = $(-1.15 \times 10^{-6}) / 0.010$ = -1.15×10^{-4} mol dm⁻³ min⁻¹ [1]
- 2 (e) (i) Sigmoidal, showing the gradient becoming more negative (or increase in magnitude) before the point of inflexion and then becoming less negative (or decrease in magnitude) after that. [1]

Reaction starts slowly at the beginning, then speeds up, then slows down at the end. [1]

(ii) Without adding FA 1, the reaction is slow initially (as both MnO₄⁻ and C₂O₄²⁻ are negative ions. This leads to a high activation barrier); the Mn²⁺ produced (auto)catalyses the reaction explaining the increase in reaction rate/ increase in magnitude of gradient of the curve after some time. [1]

For the graph in 2(b), FA 1 is added in step 3.

FA 1 contains the <u>catalyst</u> Mn^{2+} and the reaction proceeds via the alternative catalysed pathway, causing <u>reaction rate to be high</u> right from the <u>start of the reaction</u>. **[1]**

3 (a) (i) Correct calculations of each titre value. Mark lost if initial and final readings are swapped. **[1]**

Correct recording of titration values to nearest 0.05 cm³ [1]

At least 2 titration results consistent to within 0.10 cm³ [1]

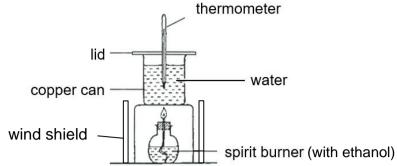
- (ii) Correctly picks 2 values for calculation of average titre value based on the hierarchy:
 - 2 identical values
 average of titre values within 0.05 cm³
 average of titre values within 0.10 cm³
 Correct calculation for average titre value to 2 d.p. [1]

Accuracy Teachers' value: 18.80 cm^3 $18.70 - 18.90 \text{ cm}^3 = [2]$ $18.60 - 19.00 \text{ cm}^3 = [1]$

- **3 (b) (i)** Na₂CO₃ + H₂SO4 \rightarrow Na₂SO₄ + CO₂ + H₂O [1]
 - (ii) Calculation of amount of carbonate in 25.0 cm³ [1]
 Calculation of percentage purity by mass [1]

Example: Average titre value = 19.00 cm^3 Amount of acid use = $19.00/1000 \times 1.00 = 0.0190 \text{ mol}$ Amount of carbonate in 25.0 cm³ = 0.0190 mol *ecf from balanced equation in* **1(b)(i)**

Amount of carbonate in 1 dm³ = $0.0190 / 25 \times 1000 = 0.760$ mol Mass of sodium carbonate = $0.760 \times 106 = 80.56$ g Percentage purity by mass = $80.56/90 \times 100 = 89.51$ % (ecf from wrong value for amount of carbonate in 25.0 cm³)


Correct significant figures for all final answers in calculation questions for whole paper Correct units in final answer for Q3. [1]

Show working for all calculation questions attempted for the whole paper. No penalty for questions left blank. [1]

4 (a) Heat lost by hot water = $mc\Delta T$ = 75 x 4.18 x (60.4 - 25.6) = 10909.8 J [1] Heat gained by cold water = $mc\Delta T$ = 75 x 4.18 x (25.6 - 8.9) = 5235.45 J [1]

> Difference in value of heat = 10909.8 - 5235.45 = 5674 JHeat capacity of copper can = $(5674) \div (25.6 - 8.9) = 340 \text{ J K}^{-1}$ [1]

4 (b) Labelled diagram:

Sample procedure:

- 1. Weigh the spirit burner with ethanol using an electronic balance. Record its mass, M1.
- 2. Using a measuring cylinder, measure 150 cm³ of water and pour into the copper can.
- 3. Record the initial temperature of the water, T1, with a thermometer.
- 4. Set up the apparatus as shown in the diagram.
- 5. Using a lighter, light up the spirit burner to heat up the water. Stir the water carefully and gently using the thermometer.
- 6. Extinguish the flame when the temperature of the water has risen by about 10 °C. Record the maximum temperature reached, T2.
- 7. Cool the spirit burner to room temperature. Re-weigh the spirit burner and the remaining ethanol. Record its mass, M2.

Mark Scheme

Diagram [2] - to obtain full credit, apparatus drawn must be suitable for the experiment described in the question.

- Labelling of thermometer, copper can and spirit burner [1]
- A suitable method to minimise heat loss to the surroundings must be shown and clearly labelled in the diagram (e.g. a lid or wind shield) [1]

Procedure [4] - to obtain full credit, sequence of steps must be logical and suitable for the aim of the experiment.

- Weighing of <u>initial mass of spirit burner and ethanol</u> with <u>electronic balance</u> before experiment starts and <u>re-weighing of spirit burner with remaining ethanol</u> after the experiment. [1]
- Transferring of deionised water to copper can with <u>reasonable volume of water</u> (50 180 cm³) using <u>suitable apparatus</u> to measure volume of water (measuring cylinder burette if 50 cm³) [1]
- <u>Light up</u> spirit burner and <u>extinguish flame when temperature rise of around 10 °C</u>, before the final temperature is taken. [1]
- Recording of <u>initial temperature of water</u> in copper can and <u>final temperature</u> after extinguishing flame. [1]
- 4 (c) maximum temperature rise = $(T2 T1) = \Delta T \circ C$ mass of water used = 150 g q = $(150 \times 4.18 \times \Delta T) + (340 \times \Delta T) J [1]$ ecf from value of C found in (a)

mass of ethanol combusted = (M1 - M2) g n = no. of moles of ethanol combusted = (M1 - M2) / 46 mol enthalpy change of combustion $\Delta H = -q / n J mol^{-1} [1]$ Assumption: There is no heat loss to the surroundings / all heat from the combustion of ethanol was transferred to the copper can and water. [1]