## **RAFFLES INSTITUTION**



1

## 2022 Year 6 H2 Mathematics Preliminary Examination Paper 2 Questions and Solutions with comments

- (i) Show that  $\frac{d}{dx}\left(\frac{1}{\cos^2 x}\right) = \frac{k \sin x}{\cos^n x}$ , where the values of the constants k and n are to be determined. [2]
  - (ii) Hence use integration by parts to evaluate  $\int_{0}^{\frac{\pi}{4}} \sin^{2} x \sec^{3} x \, dx$ , leaving your answer in the form  $a + b \ln c$ , where a, b and c are exact constants. [5]

| (i) $\frac{d}{dx} \left(\frac{1}{\cos^2 x}\right)$ $= \frac{d}{dx} (\cos x)^{-2}$ $= -2(\cos x)^{-3}(-\sin x)$ $= \frac{2\sin x}{\cos^3 x} (i.e. k = 2 \text{ and } n = 3)$ (ii) $\int_0^{\frac{\pi}{4}} \sin^2 x \sec^3 x  dx = \int_0^{\frac{\pi}{4}} \frac{\sin^2 x}{\cos^3 x}  dx$ $= \int_0^{\frac{\pi}{4}} \frac{2\sin x}{\cos^3 x} \cdot \frac{\sin x}{2}  dx$ $= \int_0^{\frac{\pi}{4}} \frac{2\sin x}{\cos^3 x} \cdot \frac{\sin x}{2}  dx$ This part posed some difficulty to some as they could not identify which should be "u" in the by parts process. Students are reminded to pay attention how to apply the "Hence" method for this type of by parts question.<br>$= \frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_0^{\frac{\pi}{4}} - \frac{1}{2} \int_0^{\frac{\pi}{4}} \sec x  dx$ $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_0^{\frac{\pi}{4}}$ $= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \\ \frac{1}{2} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{2} \\ - \frac{1}{2} \\ \ln(\sqrt{2} + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{aligned} &= \frac{d}{dx} (\cos x)^{-2} \\ &= -2(\cos x)^{-3}(-\sin x) \\ &= \frac{2\sin x}{\cos^3 x} \text{ (i.e. } k = 2 \text{ and } n = 3) \end{aligned}$<br>(ii) $\int_0^{\frac{\pi}{4}} \sin^2 x \sec^3 x  dx = \int_0^{\frac{\pi}{4}} \frac{\sin^2 x}{\cos^3 x}  dx \\ &= \int_0^{\frac{\pi}{4}} \frac{2\sin x}{\cos^3 x} \cdot \frac{\sin x}{2}  dx \\ &= \int_0^{\frac{\pi}{4}} \frac{2\sin x}{\cos^3 x} \cdot \frac{\sin x}{2}  dx \\ &= \left[\frac{1}{\cos^2 x} \cdot \frac{\sin x}{2}\right]_0^{\frac{\pi}{4}} - \int_0^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \cdot \frac{\cos x}{2}  dx \\ &= \frac{1}{2} \left[\frac{\sin x}{\cos^2 x}\right]_0^{\frac{\pi}{4}} - \frac{1}{2} \int_0^{\frac{\pi}{4}} \sec x  dx \\ &= \frac{1}{2} \left[\frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0\right] - \frac{1}{2} \left[\ln(\sec x + \tan x)\right]_0^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \cdot \frac{\cos x}{2}  dx \\ &= \frac{1}{\sqrt{2}} \left[\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}\right] - \frac{1}{2} \left[\ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1+0)\right] \\ &= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (i)  | $\frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{1}{\cos^2 x} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Generally, majority of students were<br>able to do this part well. A very                                                          |
| $= \frac{1}{dx} (\cos x)^{\frac{\pi}{2}}$ students made was the missing of<br>the negative sign after<br>differentiating cosine.<br>$= \frac{2 \sin x}{\cos^3 x} (i.e. \ k = 2 \ and \ n = 3)$ (ii)<br>$\int_{0}^{\frac{\pi}{4}} \sin^2 x \sec^3 x  dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x}{\cos^3 x}  dx$ This part posed some difficulty to<br>some as they could not identify<br>which should be "u" in the by parts<br>process. Students are reminded to<br>pay attention how to apply the<br>"Hence" method for this type of by<br>parts question.<br>$= \frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_{0}^{\frac{\pi}{4}} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec x  dx$ $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_{0}^{\frac{\pi}{4}}$ $= \frac{1}{2} \left[ \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1+0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | d · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | common mistake that a number of                                                                                                    |
| $\begin{aligned} \frac{dx}{dt} &= -2(\cos x)^{-3}(-\sin x) \\ &= \frac{2\sin x}{\cos^3 x} \text{ (i.e. } k = 2 \text{ and } n = 3) \end{aligned}$ $\begin{aligned} \text{(ii)} &\int_{0}^{\frac{\pi}{4}} \sin^2 x \sec^3 x  dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin^2 x}{\cos^3 x}  dx \\ &= \int_{0}^{\frac{\pi}{4}} \frac{2\sin x}{\cos^3 x} \cdot \frac{\sin x}{2}  dx \end{aligned}$ $\begin{aligned} &= \int_{0}^{\frac{\pi}{4}} \frac{2\sin x}{\cos^3 x} \cdot \frac{\sin x}{2}  dx \\ &= \left[ \frac{1}{\cos^2 x} \cdot \frac{\sin x}{2} \right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \cdot \frac{\cos x}{2}  dx \end{aligned}$ $\begin{aligned} &= \frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_{0}^{\frac{\pi}{4}} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec x  dx \end{aligned}$ $\begin{aligned} &= \frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_{0}^{\frac{\pi}{4}} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec x  dx \end{aligned}$ $\begin{aligned} &= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_{0}^{\frac{\pi}{4}} \end{aligned}$ $\begin{aligned} &= \frac{1}{2} \left[ \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0) \right] \end{aligned}$ $\begin{aligned} &= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | $=\frac{d}{dx}(\cos x)^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | students made was the missing of                                                                                                   |
| $= -2(\cos x)^{-3}(-\sin x)$ $= \frac{2\sin x}{\cos^3 x} \text{ (i.e. } k = 2 \text{ and } n = 3)$ (ii) $\int_0^{\frac{\pi}{4}} \sin^2 x \sec^3 x  dx = \int_0^{\frac{\pi}{4}} \frac{\sin^2 x}{\cos^3 x}  dx$ $= \int_0^{\frac{\pi}{4}} \frac{2\sin x}{\cos^3 x} \cdot \frac{\sin x}{2}  dx$ This part posed some difficulty to some as they could not identify which should be "u" in the by parts process. Students are reminded to pay attention how to apply the "Hence" method for this type of by parts question.<br>Some common errors were as follows:<br>1. " $\frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_0^{\frac{\pi}{4}} - \frac{1}{2} \int_0^{\frac{\pi}{4}} \sec x  dx$ $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_0^{\frac{\pi}{4}}$ $= \frac{1}{2} \left[ \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1+0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | the negative sign after                                                                                                            |
| (ii)<br>$\begin{aligned} &= \frac{2 \sin x}{\cos^3 x} \text{ (i.e. } k = 2 \text{ and } n = 3) \end{aligned}$ This part posed some difficulty to some as they could not identify which should be "u" in the by parts process. Students are reminded to pay attention how to apply the "Hence" method for this type of by parts question. $\begin{aligned} &= \frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_0^{\frac{\pi}{4}} - \frac{1}{2} \int_0^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \cdot \frac{\cos x}{2} dx \\ &= \frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_0^{\frac{\pi}{4}} - \frac{1}{2} \int_0^{\frac{\pi}{4}} \sec x dx \\ &= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_0^{\frac{\pi}{4}} \\ &= \frac{1}{2} \left[ \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0) \right] \\ &= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1) \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | $=-2(\cos x)^{-3}(-\sin x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | differentiating cosine.                                                                                                            |
| (ii) $\int_{0}^{\frac{\pi}{4}} \sin^{2} x \sec^{3} x  dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin^{2} x}{\cos^{3} x}  dx$ $= \int_{0}^{\frac{\pi}{4}} \frac{2 \sin x}{\cos^{3} x} \cdot \frac{\sin x}{2}  dx$ This part posed some difficulty to some as they could not identify which should be "u" in the by parts process. Students are reminded to pay attention how to apply the "Hence" method for this type of by parts question.<br>$= \frac{1}{2} \left[ \frac{\sin x}{\cos^{2} x} \cdot \frac{\sin^{2} x}{2} \right]_{0}^{\frac{\pi}{4}} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec x  dx$ $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^{2} \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_{0}^{\frac{\pi}{4}}$ $= \frac{1}{2} \left[ \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ This part posed some difficulty to some as they could not identify which should be "u" in the by parts process. Students are reminded to pay attention how to apply the "Hence" method for this type of by parts question.<br>Some common errors were as follows:<br>1. " $\frac{1}{2}$ " was missing.<br>2. Did not recognize<br>$\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \int_{0}^{\frac{\pi}{4}} \sec x  dx \text{ and proceeded to lengthy and tedious working which often were wrong. 3. \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \left[ \ln  \cos x  \right]_{0}^{\frac{\pi}{4}}$ $4. \frac{2}{\sqrt{2}} + 1 = \frac{2 + \sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | $=\frac{2\sin x}{\cos^3 x}$ (i.e. $k = 2$ and $n = 3$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                    |
| $\int_{0}^{\frac{\pi}{4}} \sin^{2} x \sec^{3} x  dx = \int_{0}^{\frac{\pi}{4}} \frac{\sin^{2} x}{\cos^{3} x}  dx$ $= \int_{0}^{\frac{\pi}{4}} \frac{2 \sin x}{\cos^{3} x} \cdot \frac{\sin x}{2}  dx$ $= \left[\frac{1}{\cos^{2} x} \cdot \frac{\sin x}{2}\right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^{2} x} \cdot \frac{\cos x}{2}  dx$ $= \frac{1}{2} \left[\frac{\sin x}{\cos^{2} x}\right]_{0}^{\frac{\pi}{4}} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec x  dx$ $= \frac{1}{2} \left[\frac{\sin \frac{\pi}{4}}{\cos^{2} \frac{\pi}{4}} - 0\right] - \frac{1}{2} \left[\ln(\sec x + \tan x)\right]_{0}^{\frac{\pi}{4}}$ Some common errors were as follows:<br>1. $\frac{1}{2}$ was missing.<br>2. Did not recognize<br>$\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \int_{0}^{\frac{\pi}{4}} \sec x  dx \text{ and proceeded to lengthy and tedious working which often were wrong.}$ $= \frac{1}{2} \left[\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}\right] - \frac{1}{2} \left[\ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0)\right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (ii) | $\pi$ $\pi$ $\sin^2 \pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | This part posed some difficulty to                                                                                                 |
| $\int_{0}^{\pi} \cos^{2} x + \sin^{2} x + \sin^{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (11) | $\int_{\overline{4}}^{\overline{4}} \sin^2 x \sec^3 x  dx = \int_{\overline{4}}^{\overline{4}} \frac{\sin^2 x}{3}  dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | some as they could not identify                                                                                                    |
| $= \int_{0}^{\frac{\pi}{4}} \frac{2\sin x}{\cos^{3} x} \cdot \frac{\sin x}{2} dx$ $= \left[ \frac{1}{\cos^{2} x} \cdot \frac{\sin x}{2} \right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^{2} x} \cdot \frac{\cos x}{2} dx$ $= \frac{1}{2} \left[ \frac{\sin x}{\cos^{2} x} \right]_{0}^{\frac{\pi}{4}} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec x dx$ $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^{2} \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_{0}^{\frac{\pi}{4}}$ Some common errors were as follows:<br>1. "1" was missing.<br>2. Did not recognize<br>$\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \int_{0}^{\frac{\pi}{4}} \sec x dx$ $= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \frac{1}{2} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ Some common errors were as follows:<br>1. "1" was missing.<br>2. Did not recognize<br>$\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \int_{0}^{\frac{\pi}{4}} \sec x dx$ $= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \frac{1}{2} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ Some common errors were as follows:<br>1. "1" was missing.<br>2. Did not recognize<br>$\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \int_{0}^{\frac{\pi}{4}} \sec x dx \text{ and proceeded to lengthy and tedious working which often were wrong. 3. \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \left[ \ln  \cos x  \right]_{0}^{\frac{\pi}{4}}$ $4. \frac{2}{\sqrt{2}} + 1 = \frac{2 + \sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | $J_0 \qquad J_0 \cos^3 x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | which should be "u" in the by ports                                                                                                |
| $= \int_{0}^{\frac{\pi}{2}} \frac{2 \sin x}{\cos^{3} x} \cdot \frac{\sin x}{2} dx$ $= \left[ \frac{1}{\cos^{2} x} \cdot \frac{\sin x}{2} \right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^{2} x} \cdot \frac{\cos x}{2} dx$ $= \frac{1}{2} \left[ \frac{\sin x}{\cos^{2} x} \right]_{0}^{\frac{\pi}{4}} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec x dx$ $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^{2} \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_{0}^{\frac{\pi}{4}}$ $= \frac{1}{2} \left[ \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ $= \frac{1}{\sqrt{2}} + \frac{1}{2} - \frac{1}{2} \ln(\sqrt{2} + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | $\pi^{\pi}$ 2 sin r sin r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | which should be u in the by parts                                                                                                  |
| $= \begin{bmatrix} \frac{1}{\cos^{2} x} & \frac{\sin x}{2} \end{bmatrix}_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^{2} x} & \frac{\cos x}{2} dx$ $= \frac{1}{2} \begin{bmatrix} \frac{\sin x}{\cos^{2} x} \end{bmatrix}_{0}^{\frac{\pi}{4}} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec x dx$ $= \frac{1}{2} \begin{bmatrix} \frac{\sin \frac{\pi}{4}}{\cos^{2} \frac{\pi}{4}} - 0 \end{bmatrix} - \frac{1}{2} [\ln(\sec x + \tan x)]_{0}^{\frac{\pi}{4}}$ $= \frac{1}{2} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{2} \end{bmatrix} - \frac{1}{2} [\ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0)]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | $= \int_{-4}^{4} \frac{2 \sin x}{3} \cdot \frac{\sin x}{2} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | process. Students are reminded to                                                                                                  |
| $= \left[\frac{1}{\cos^{2} x} \cdot \frac{\sin x}{2}\right]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^{2} x} \cdot \frac{\cos x}{2} dx$<br>$= \frac{1}{2} \left[\frac{\sin x}{\cos^{2} x}\right]_{0}^{\frac{\pi}{4}} - \frac{1}{2} \int_{0}^{\frac{\pi}{4}} \sec x dx$<br>$= \frac{1}{2} \left[\frac{\sin \frac{\pi}{4}}{\cos^{2} \frac{\pi}{4}} - 0\right] - \frac{1}{2} \left[\ln(\sec x + \tan x)\right]_{0}^{\frac{\pi}{4}}$<br>$= \frac{1}{2} \left[\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}\right] - \frac{1}{2} \left[\ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0)\right]$<br>$= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$<br>"Hence" method for this type of by<br>parts question.<br>Some common errors were as<br>follows:<br>1. " $\frac{1}{2}$ " was missing.<br>2. Did not recognize<br>$\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \int_{0}^{\frac{\pi}{4}} \sec x dx \text{ and}$<br>proceeded to lengthy and tedious<br>working which often were<br>wrong.<br>3. $\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \left[\ln \cos x \right]_{0}^{\frac{\pi}{4}}$<br>4. $\frac{2}{\sqrt{2}} + 1 = \frac{2 + \sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | $c_0 \cos^2 x = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pay attention how to apply the                                                                                                     |
| $= \left[ \frac{1}{\cos^2 x} \cdot \frac{\sin x}{2} \right]_0^4 - \int_0^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \cdot \frac{\cos x}{2} dx$ $= \frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_0^{\frac{\pi}{4}} - \frac{1}{2} \int_0^{\frac{\pi}{4}} \sec x dx$ $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_0^{\frac{\pi}{4}}$ Some common errors were as follows:<br>1. " $\frac{1}{2}$ " was missing.<br>2. Did not recognize<br>$\int_0^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \int_0^{\frac{\pi}{4}} \sec x dx \text{ and}$ proceeded to lengthy and tedious working which often were wrong.<br>3. $\int_0^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \left[ \ln  \cos x  \right]_0^{\frac{\pi}{4}}$ 4. $\frac{2}{\sqrt{2}} + 1 = \frac{2 + \sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | $\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | "Hence" method for this type of by                                                                                                 |
| $= \frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_0^{\frac{\pi}{4}} - \frac{1}{2} \int_0^{\frac{\pi}{4}} \sec x  dx$ $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_0^{\frac{\pi}{4}}$ $= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \right]_{\frac{1}{2}}^{-\frac{1}{2}} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1+0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ Some common errors were as follows:<br>1. " $\frac{1}{2}$ " was missing.<br>2. Did not recognize<br>$\int_0^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \int_0^{\frac{\pi}{4}} \sec x  dx \text{ and}$ proceeded to lengthy and tedious working which often were wrong.<br>3. $\int_0^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \left[ \ln  \cos x  \right]_0^{\frac{\pi}{4}}$ 4. $\frac{2}{\sqrt{2}} + 1 = \frac{2 + \sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | $= \left[ \frac{1}{\cos^2 x} \cdot \frac{\sin x}{2} \right]_0^{\overline{4}} - \int_0^{\frac{\pi}{4}} \frac{1}{\cos^2 x} \cdot \frac{\cos x}{2}  dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | parts question.                                                                                                                    |
| $= \frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_0^{\frac{\pi}{4}} - \frac{1}{2} \int_0^{\frac{\pi}{4}} \sec x  dx$<br>$= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_0^{\frac{\pi}{4}}$<br>$= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \\ \frac{1}{2} \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Some common errors were as                                                                                                         |
| $= \frac{1}{2} \left[ \frac{\sin x}{\cos^2 x} \right]_0^1 - \frac{1}{2} \int_0^4 \sec x  dx$<br>$= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_0^{\frac{\pi}{4}}$<br>$= \frac{1}{2} \left[ \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0) \right]$<br>$= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$<br>Honows.<br>1. "_1" was missing.<br>2. Did not recognize<br>$\int_0^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \int_0^{\frac{\pi}{4}} \sec x  dx \text{ and}$<br>proceeded to lengthy and tedious<br>working which often were<br>wrong.<br>3. $\int_0^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \left[ \ln  \cos x  \right]_0^{\frac{\pi}{4}}$<br>4. $\frac{2}{\sqrt{2}} + 1 = \frac{2 + \sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | $1 \int \sin r  \frac{\pi}{4}  1  e^{\frac{\pi}{4}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | follows:                                                                                                                           |
| $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_0^{\frac{\pi}{4}}$ $= \frac{1}{2} \left[ \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ 1. " $\frac{1}{2}$ " was missing.<br>2. Did not recognize<br>$\int_0^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \int_0^{\frac{\pi}{4}} \sec x dx \text{ and}$ proceeded to lengthy and tedious<br>working which often were<br>wrong.<br>3. $\int_0^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \left[ \ln  \cos x  \right]_0^{\frac{\pi}{4}}$ 4. $\frac{2}{\sqrt{2}} + 1 = \frac{2 + \sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | $=\frac{1}{2}\left \frac{\sin x}{\cos^2 x}\right  -\frac{1}{2}\left \frac{4 \sec x  dx}{4 \sec x  dx}\right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ionows.                                                                                                                            |
| $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_0^{\frac{\pi}{4}}$ $= \frac{1}{2} \left[ \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | $2 \lfloor \cos x \rfloor_0  2^{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. $_1$ " was missing.                                                                                                             |
| $= \frac{1}{2} \left[ \frac{\sin \frac{\pi}{4}}{\cos^2 \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_0^{\frac{\pi}{4}}$ $= \frac{1}{2} \left[ \frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1 + 0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ 2. Did not recognize $\int_0^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \int_0^{\frac{\pi}{4}} \sec x  dx \text{ and}$ proceeded to lengthy and tedious working which often were wrong. 3. $\int_0^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \left[ \ln  \cos x  \right]_0^{\frac{\pi}{4}}$ 4. $\frac{2}{\sqrt{2}} + 1 = \frac{2 + \sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\overline{2}$                                                                                                                     |
| $= \frac{1}{2} \left[ \frac{3\pi}{\cos^{2} \frac{\pi}{4}} - 0 \right] - \frac{1}{2} \left[ \ln(\sec x + \tan x) \right]_{0}^{\frac{\pi}{4}}$ $= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \frac{1}{2} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1+0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ $\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \int_{0}^{\frac{\pi}{4}} \sec x  dx \text{ and}$ proceeded to lengthy and tedious working which often were wrong. $3. \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x}  dx = \left[ \ln  \cos x  \right]_{0}^{\frac{\pi}{4}}$ $4. \frac{2}{\sqrt{2}} + 1 = \frac{2+\sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | $\sin \frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2. Did not recognize                                                                                                               |
| $= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \frac{1}{2} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1+0) \right]$ $= \frac{1}{\sqrt{2}} \left[ \frac{1}{\sqrt{2}} \frac{1}{2} \right] - \frac{1}{2} \left[ \ln(\sec \frac{\pi}{4} + \tan \frac{\pi}{4}) - \ln(1+0) \right]$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | $-\frac{1}{4} - \frac{3\pi}{4} - 0 - \frac{1}{4} [\ln(\sec r + \tan r)]^{\frac{\pi}{4}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1} du \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} a du and$                                |
| $=\frac{1}{2}\left[\frac{1}{\sqrt{2}}\\\frac{1}{2}\right] - \frac{1}{2}\left[\ln(\sec\frac{\pi}{4} + \tan\frac{\pi}{4}) - \ln(1+0)\right]$ $=\frac{1}{\sqrt{2}} - \frac{1}{2}\ln(\sqrt{2}+1)$ proceeded to lengthy and tedious working which often were wrong.<br>3. $\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \left[\ln\left \cos x\right \right]_{0}^{\frac{\pi}{4}}$ 4. $\frac{2}{\sqrt{2}} + 1 = \frac{2+\sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | $2 \left[ \frac{1}{\cos^2} \pi \right] = 2 \left[ \frac{1}{\cos^2} \pi \right] $ | $\int_0^\infty \frac{1}{\cos x}  dx = \int_0^\infty \sec x  dx$ and                                                                |
| $= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \\ \frac{1}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | $\begin{bmatrix} \cos \frac{1}{4} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | proceeded to lengthy and tedious                                                                                                   |
| $= \frac{1}{2} \left[ \frac{1}{\sqrt{2}} \\ \frac{1}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | working which often were                                                                                                           |
| $ = \frac{1}{2} \left[ \frac{\sqrt{2}}{\frac{1}{2}} \right] - \frac{1}{2} \left[ \ln(\sec\frac{\pi}{4} + \tan\frac{\pi}{4}) - \ln(1+0) \right] $ $ = \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2}+1) $ $ = \frac{1}{\sqrt{2}} + \frac{1}{2} + \frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | wrong                                                                                                                              |
| $ = \frac{1}{2} \left[ \frac{\sqrt{2}}{\frac{1}{2}} \right]^{-\frac{1}{2}} \left[ \ln(\sec \frac{1}{4} + \tan \frac{1}{4}) - \ln(1+0) \right] $ $ = \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1) $ $ 3. \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos x} dx = \left[ \ln \cos x  \right]_{0}^{\frac{\pi}{4}} $ $ 4. \frac{2}{\sqrt{2}} + 1 = \frac{2+\sqrt{2}}{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | $1 \left  \frac{\sqrt{2}}{\sqrt{2}} \right  1 \left[ 1 \left( \pi, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | wrong.                                                                                                                             |
| $\begin{bmatrix} 2 \\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ -\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ \sqrt{2} \end{bmatrix} \begin{bmatrix} 1 \\ $ |      | $=\frac{-1}{2}\left \frac{\sqrt{2}}{1}\right -\frac{-1}{2}\ln(\sec(-1)+\tan(-1)))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 $\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1} dr = \left[ \ln \left  \cos r \right  \right]_{\frac{\pi}{4}}^{\frac{\pi}{4}}$ |
| $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1)$ 4. $\frac{2}{\sqrt{2}} + 1 = \frac{2 + \sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\int_{0}^{\infty} \cos x = \lim  \cos x _{0}$                                                                                     |
| $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1) $ $4.  \frac{2}{\sqrt{2}} + 1 = \frac{2 + \sqrt{2}}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 $2 + \sqrt{2}$                                                                                                                   |
| $= \frac{1}{\sqrt{2}} - \frac{1}{2} \ln(\sqrt{2} + 1) $ $\sqrt{2}$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4. $\frac{2}{\sqrt{2}} + 1 = \frac{2}{2} + \frac{\sqrt{2}}{2}$                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | $=\frac{1}{\sqrt{2}}-\frac{1}{2}\ln(\sqrt{2}+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sqrt{2}$ Z                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                    |

## 2 Do not use a calculator in answering this question.

(a) Let f(z) be a polynomial in z of degree 4 with real coefficients. The equation f(z) = 0 has four roots, namely  $\alpha, \beta, \gamma$  and  $\delta$  such that they satisfy the following two conditions:

$$\alpha \beta \gamma \delta < 0$$
 and  $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 < 0$ .

Based on the two conditions, a student concludes that the equation f(z) = 0 has one positive real root, one negative real root and a pair of complex conjugate roots.

State, with reasons, whether the student's claim is true. [3]

(b) It is given that g(z) = z<sup>4</sup> + z<sup>3</sup> - 2z<sup>2</sup> + 4z - 24.
Verify that z = 2i is a root of the equation g(z) = 0. Hence find the other roots of the equation. [5]

| (a) | The student's claim is true.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | This part posed some         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| [3] |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | difficulty to a number of    |
|     | Reasons:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | students as they took the    |
|     | 1 From $\alpha^2 + \beta^2 + \gamma^2 + \delta^2 < 0$ it shows that at least one of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | wrong approach of using the  |
|     | $\frac{1}{1} = \frac{1}{1} = \frac{1}$ | claim to check on the        |
|     | the roots is complex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | conditions instead of the    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | other way as intended by the |
|     | 2. As the coefficients of $f(z)$ are real, we know that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | questions. These students    |
|     | complex roots exist in conjugate pairs, so there is at least                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | often could not explain why  |
|     | one pair of complex conjugate roots.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | with the claim they began    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | with could satisfy the       |
|     | 3. If there are 2 pairs of complex conjugate roots, then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | second condition.            |
|     | $\alpha\beta\gamma\delta > 0$ . However, given that $\alpha\beta\gamma\delta < 0$ , then there is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Students are also reminded   |
|     | only a pair of complex conjugate roots and 2 real roots of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | to read the question         |
|     | opposite signs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | carefully and answer the     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | question completely as       |
|     | So with 1, 2 and 3, we can conclude that the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | some did not state whether   |
|     | f(z) = 0 has one positive real root one negative real root                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the claim is true or not and |
|     | $\Gamma(2) = 0$ has one positive real root, one negative real root                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | just proceeded to give       |
|     | and a pair of complex conjugate roots.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | reasons to justify.          |
| (b) | Since $f(2i) = (2i)^4 + (2i)^3 - 2(2i)^2 + 4(2i) - 24$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Most students were able to   |
| [5] | =16-8i+8+8i-24=0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | handle this part well though |
|     | so $z = 2i$ is a root of the equation $f(z) = 0$ (verified)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | they are reminded to         |
|     | so $2 - 21$ is a root of the equation $1(2) = 0$ (verified).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | improve in their method to   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | te selve es messeted here    |
|     | As complex roots occur in conjugate pair, so $z = -2i$ is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | to solve as suggested here   |
|     | other complex root.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | very tedious and long        |
|     | Now $(z-2i)(z+2i) = z^2 + 4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | method                       |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | memou.                       |

Hence 
$$z^4 + z^3 - 2z^2 + 4z - 24 = (z^2 + 4)(z^2 + az - 6)$$
.  
Comparing the coefficient of  $z^3$ :  $a = 1$ .  
Thus  
 $z^4 + z^3 - 2z^2 + 4z - 24 = (z^2 + 4)(z^2 + z - 6)$   
 $= (z^2 + 4)(z + 3)(z - 2)$   
So the other 3 roots of the equation  $f(z) = 0$  are  
 $-2i$ , 2 and  $-3$ .  
Some students missed out  
verifying that  $z = 2i$  is a  
root of the equation and a  
number of students did not  
know that  $z = 2i$  is a root  
while  $z - 2i$  is a factor.

3 The line  $L_1$  has equation

$$1-y=\frac{z-1}{2}, x=2,$$

and meets the the xy-plane at point P. The point A has position vector  $\begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$  with

reference to the origin O.

- (i) Find a vector equation of the line  $L_2$  which passes through O and P. [3]
- (ii) Find an equation of the plane  $\pi$  containing both  $L_1$  and  $L_2$ , in the scalar product form. [2]
- (iii) The points A and C are on different sides of  $\pi$  such that AC is perpendicular to  $\pi$ . The distance of C from  $\pi$  is t times the distance of A from  $\pi$ . Find, in terms of t, the position vector of C. [5]
- (iv) Find the value of t such that the line OC is parallel to the plane with equation  $\begin{pmatrix} 2 \end{pmatrix}$

$$\mathbf{r} \cdot \begin{bmatrix} 0\\1 \end{bmatrix} = 2.$$
 [2]

| (i) | Method 1                                                                                                                                                   | This part is well done.                                                                                                   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| [3] | The <i>z</i> -coordinate of <i>P</i> is 0, since <i>P</i> lies on the <i>xy</i> -plane.                                                                    | Quite a significant had                                                                                                   |
|     | Thus, putting $z = 0$ into $L_1$ ,                                                                                                                         | careless mistake, missing                                                                                                 |
|     | $1 - y = \frac{0 - 1}{2}  \Rightarrow \qquad y = \frac{3}{2}$                                                                                              | negative sign or placed at the wrong component.                                                                           |
|     | The position vector of <i>P</i> is $\overrightarrow{OP} = \begin{pmatrix} 2\\ 3\\ 2 \end{pmatrix}$ .                                                       | The vector equation of a line is of the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}, \lambda \in \mathbb{R}$ .     |
|     | $\begin{pmatrix} 0 \end{pmatrix}$ $\begin{pmatrix} 4 \end{pmatrix}$                                                                                        | Missing " $\mathbf{r}$ = " (i.e. writing<br>just $\mathbf{a} + \lambda \mathbf{b}$ ) is considered<br>incomplete. This is |
|     | Hence, equation of $L_2$ is $\mathbf{r} = \lambda \begin{bmatrix} 3 \\ 0 \end{bmatrix}, \ \lambda \in \mathbb{R}$                                          | analogous to writing the<br>Cartesian equation of a 2D                                                                    |
|     | Method 2                                                                                                                                                   | straight line as $mx + c$ (i.e.                                                                                           |
|     | (2) $(0)$                                                                                                                                                  | without $y = $ ).                                                                                                         |
|     | Vector equation of line $L_1$ : $\mathbf{r} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ , $\mu \in \mathbb{R}$ |                                                                                                                           |
|     | (0)                                                                                                                                                        |                                                                                                                           |
|     | Equation of xy-plane : $\mathbf{r} \cdot \begin{bmatrix} 0\\1 \end{bmatrix} = 0$                                                                           |                                                                                                                           |
|     | To find P, consider                                                                                                                                        |                                                                                                                           |
|     | $\left( \begin{pmatrix} 2\\1\\1 \end{pmatrix} + \mu \begin{pmatrix} 0\\-1\\2 \end{pmatrix} \right) \bullet \begin{pmatrix} 0\\0\\1 \end{pmatrix} = 0$      |                                                                                                                           |

|             | $1 + 2\mu = 0$                                                                                                                                                                                  |                                                                                                                                                                                |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | u = 1                                                                                                                                                                                           |                                                                                                                                                                                |
|             | $\mu = -\frac{1}{2}$                                                                                                                                                                            |                                                                                                                                                                                |
|             | Hence, $\overrightarrow{OP} = \begin{pmatrix} 2\\1\\1 \end{pmatrix} + \left(-\frac{1}{2}\right) \begin{pmatrix} 0\\-1\\2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 4\\3\\0 \end{pmatrix}$ .   |                                                                                                                                                                                |
|             | Hence, equation of $L_2$ is $\mathbf{r} = \lambda \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix}, \ \lambda \in \mathbb{R}$                                                                          |                                                                                                                                                                                |
| (ii)<br>[2] | $ \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} = \begin{pmatrix} 6 \\ -8 \\ -4 \end{pmatrix} = -2 \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} $   | This part is also well done.                                                                                                                                                   |
|             | Hence, equation of $\pi$ is $\mathbf{r} \cdot \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} = 0$                                                                                                   |                                                                                                                                                                                |
| (iii)       | Method 1 (Find the foot of perpendicular first)                                                                                                                                                 |                                                                                                                                                                                |
| [5]         | Let F be the foot of perpendicular from A to $\pi$ .                                                                                                                                            |                                                                                                                                                                                |
|             | Equation of the line $AF$ is $\mathbf{r} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix}$ .                                                   |                                                                                                                                                                                |
|             | Since $F$ lies on the line $AF$ , then                                                                                                                                                          | Quite a few wrote that                                                                                                                                                         |
|             | $\overrightarrow{OF} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix}, \text{ for some } \lambda \in \mathbb{R}.$                              | $\overrightarrow{AF} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix}.$<br>Recall that " <b>r</b> " in the equation of a line |
|             | Since F is also on $\pi$ , then                                                                                                                                                                 | represents the <b>position</b>                                                                                                                                                 |
|             | $\begin{bmatrix} 3\\-1\\2 \end{bmatrix} + \lambda \begin{bmatrix} -3\\4\\2 \end{bmatrix} = 0$                                                                                                   | <u>vector</u> of a point on the<br>line (i.e. a vector from<br>the <b>origin</b> to a point on<br>the <b>line</b> ). You need get<br>the concept of the line                   |
|             | $(-9 - 4 + 4) + \lambda(9 + 16 + 4) = 0$                                                                                                                                                        | correct. See Chap 4C                                                                                                                                                           |
|             | $\lambda = \frac{9}{29}$                                                                                                                                                                        | page 2.                                                                                                                                                                        |
|             | Hence, $\overrightarrow{OF} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix} + \frac{9}{29} \begin{pmatrix} -3 \\ 4 \\ 2 \end{pmatrix} = \frac{1}{29} \begin{pmatrix} 60 \\ 7 \\ 76 \end{pmatrix}.$ |                                                                                                                                                                                |
|             |                                                                                                                                                                                                 |                                                                                                                                                                                |





- 4 (a) The first 3 terms of a geometric progression are *a*, *b*, 2 and the first 3 terms of an arithmetic progression are 2, *a*, *b*, with non-zero common difference. Find the values of *a* and *b*. [4]
  - (b) u<sub>1</sub>, u<sub>2</sub>, u<sub>3</sub>, u<sub>4</sub>,..., u<sub>2n</sub> is a sequence of 2n positive terms, with n > 1. The odd-numbered terms form an arithmetic progression with common difference p and the even-numbered terms form a geometric progression with common ratio <sup>6</sup>/<sub>5</sub>. Given that u<sub>1</sub> = u<sub>2</sub> = p and the sum of the odd-numbered terms is less than the sum of the even-numbered terms, find the least value of n. [4]
  - (c) A geometric progression of *n* terms has first term *q* and common ratio *r*, where *q* is non-zero and *r* ≠ 1. For *k* ≤ *n*, find the difference between the sum of the last *k* terms and the sum of the first *k* terms, simplifying your answer. [5]

| (a)        | Given a, b, 2 is GP: $\frac{b}{a} = \frac{2}{a} \implies b^2 = 2a = -(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | This is a simple                                                                                                                                                                                                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [4]        | a b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | question making use of                                                                                                                                                                                                                                                                                  |
|            | Given 2, $a, b$ is AP:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | common ratio in GP                                                                                                                                                                                                                                                                                      |
|            | $a-2=b-a \implies 2a-b=2 - (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and common                                                                                                                                                                                                                                                                                              |
|            | Solving the 2 equations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | difference in AP. Quite                                                                                                                                                                                                                                                                                 |
|            | $b^2 - b - 2 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a handful of students                                                                                                                                                                                                                                                                                   |
|            | (b-2)(b+1) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tend to overthink and                                                                                                                                                                                                                                                                                   |
|            | (b-2)(b+1)=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | complicate the                                                                                                                                                                                                                                                                                          |
|            | b = 2  or  b = -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | working, in the end                                                                                                                                                                                                                                                                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | making the working                                                                                                                                                                                                                                                                                      |
|            | If $b = 2$ , then $a = 2$ , $\Rightarrow$ common difference, $b - a = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | really long and often                                                                                                                                                                                                                                                                                   |
|            | (reject)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | getting final answers                                                                                                                                                                                                                                                                                   |
|            | If $h = -1$ then $a = \frac{1}{2} \implies \text{common difference}  h = a \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | wrong.                                                                                                                                                                                                                                                                                                  |
|            | $\frac{1}{2}$ , $\frac{1}{2}$ common anterence, $\delta$ $u \neq 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                         |
|            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                         |
|            | $\therefore a = \frac{1}{2}, b = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                         |
| (b)        | $\therefore a = \frac{1}{2}, \ b = -1$ $p_{1} p_{2} p_{2} + d_{2} pr_{1} p_{2} + 2d_{2} pr^{2} \dots p + (2n-1)d_{2} pr^{2n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | An <b>important</b>                                                                                                                                                                                                                                                                                     |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, \ b = -1$ $p, \ p, \ p + d, \ pr, \ p + 2d, \ pr^2 \dots, \ p + (2n-1)d, \ pr^{2n-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | An <b>important</b><br>presentation issue:                                                                                                                                                                                                                                                              |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$<br><i>p</i> , <i>p</i> , <i>p</i> + <i>d</i> , <i>pr</i> , <i>p</i> +2 <i>d</i> , <i>pr</i> <sup>2</sup> , <i>p</i> +(2 <i>n</i> -1) <i>d</i> , <i>pr</i> <sup>2<i>n</i>-1</sup><br>Sum of odd terms = $\frac{n}{2} [2p + (n-1)p] = \frac{pn}{2}(n+1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | An <b>important</b><br>presentation issue:<br>$6^n (6)^n$                                                                                                                                                                                                                                               |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$<br><i>p</i> , <i>p</i> , <i>p</i> + <i>d</i> , <i>pr</i> , <i>p</i> +2 <i>d</i> , <i>pr</i> <sup>2</sup> , <i>p</i> +(2 <i>n</i> -1) <i>d</i> , <i>pr</i> <sup>2<i>n</i>-1</sup><br>Sum of odd terms = $\frac{n}{2} [2p + (n-1)p] = \frac{pn}{2} (n+1)$<br>( <i>i</i> , <i>p</i> , <i>n</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | An <b>important</b><br>presentation issue:<br>$\frac{6}{5}^{n} \neq \left(\frac{6}{5}\right)^{n}$ . If this                                                                                                                                                                                             |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$ $p, p, p + d, pr, p + 2d, pr^{2}, p + (2n-1)d, pr^{2n-1}$ Sum of odd terms $= \frac{n}{2} [2p + (n-1)p] = \frac{pn}{2}(n+1)$ Sum of even terms $= \frac{p(1.2^{n}-1)}{2} = 5p(1.2^{n}-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | An <b>important</b><br>presentation issue:<br>$\frac{6}{5}^{n} \neq \left(\frac{6}{5}\right)^{n}$ . If this                                                                                                                                                                                             |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$ $p, p, p+d, pr, p+2d, pr^{2}, p+(2n-1)d, pr^{2n-1}$ Sum of odd terms $= \frac{n}{2} [2p+(n-1)p] = \frac{pn}{2}(n+1)$ Sum of even terms $= \frac{p(1.2^{n}-1)}{1.2-1} = 5p(1.2^{n}-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | An <b>important</b><br>presentation issue:<br>$\frac{6}{5}^{n} \neq \left(\frac{6}{5}\right)^{n}$ . If this<br><b>WRONG</b> presentation                                                                                                                                                                |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$ $p, p, p+d, pr, p+2d, pr^{2}, p+(2n-1)d, pr^{2n-1}$ Sum of odd terms $= \frac{n}{2} [2p+(n-1)p] = \frac{pn}{2}(n+1)$ Sum of even terms $= \frac{p(1.2^{n}-1)}{1.2-1} = 5p(1.2^{n}-1)$ Given $\frac{pn}{2}(n+1) < 5n(1.2^{n}-1) \Rightarrow \frac{n}{2}(n+1) < 5(1.2^{n}-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | An <b>important</b><br>presentation issue:<br>$\frac{6}{5}^{n} \neq \left(\frac{6}{5}\right)^{n}$ . If this<br><b>WRONG</b> presentation<br>were taken into                                                                                                                                             |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$ $p, p, p+d, pr, p+2d, pr^{2}, p+(2n-1)d, pr^{2n-1}$ Sum of odd terms $= \frac{n}{2} [2p+(n-1)p] = \frac{pn}{2}(n+1)$ Sum of even terms $= \frac{p(1.2^{n}-1)}{1.2-1} = 5p(1.2^{n}-1)$ Given $\frac{pn}{2}(n+1) < 5p(1.2^{n}-1) \Rightarrow \frac{n}{2}(n+1) < 5(1.2^{n}-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | An <b>important</b><br>presentation issue:<br>$\frac{6}{5}^{n} \neq \left(\frac{6}{5}\right)^{n}$ . If this<br><b>WRONG</b> presentation<br>were taken into<br>consideration, even<br>more students will                                                                                                |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$ $p, p, p + d, pr, p + 2d, pr^{2}, p + (2n-1)d, pr^{2n-1}$ Sum of odd terms $= \frac{n}{2} [2p + (n-1)p] = \frac{pn}{2}(n+1)$ Sum of even terms $= \frac{p(1.2^{n}-1)}{1.2-1} = 5p(1.2^{n}-1)$ Given $\frac{pn}{2}(n+1) < 5p(1.2^{n}-1) \Rightarrow \frac{n}{2}(n+1) < 5(1.2^{n}-1)$ (since $p > 0$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | An <b>important</b><br>presentation issue:<br>$\frac{6}{5}^{n} \neq \left(\frac{6}{5}\right)^{n}$ . If this<br><b>WRONG</b> presentation<br>were taken into<br>consideration, even<br>more students will<br>have fewer marks!                                                                           |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$ $p, p, p + d, pr, p + 2d, pr^{2}, p + (2n-1)d, pr^{2n-1}$ Sum of odd terms $= \frac{n}{2} [2p + (n-1)p] = \frac{pn}{2}(n+1)$ Sum of even terms $= \frac{p(1.2^{n}-1)}{1.2-1} = 5p(1.2^{n}-1)$ Given $\frac{pn}{2}(n+1) < 5p(1.2^{n}-1) \Rightarrow \frac{n}{2}(n+1) < 5(1.2^{n}-1)$ (since $p > 0$ ) $(a = \frac{p(1.2^{n}-1)}{p(1.2^{n}-1)} = \frac{p(1.2^{n}-1)}{p(1.2^$ | An <b>important</b><br>presentation issue:<br>$\frac{6}{5}^{n} \neq \left(\frac{6}{5}\right)^{n}$ . If this<br><b>WRONG</b> presentation<br>were taken into<br>consideration, even<br>more students will<br>have fewer marks!<br>Also fortunately $n > 0$                                               |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$ $p, p, p+d, pr, p+2d, pr^{2}, p+(2n-1)d, pr^{2n-1}$ Sum of odd terms $= \frac{n}{2} [2p+(n-1)p] = \frac{pn}{2}(n+1)$ Sum of even terms $= \frac{p(1.2^{n}-1)}{1.2-1} = 5p(1.2^{n}-1)$ Given $\frac{pn}{2}(n+1) < 5p(1.2^{n}-1) \Rightarrow \frac{n}{2}(n+1) < 5(1.2^{n}-1)$ (since $p > 0$ ) Using GC, $n > 21.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | An <b>important</b><br>presentation issue:<br>$\frac{6}{5}^{n} \neq \left(\frac{6}{5}\right)^{n}$ . If this<br><b>WRONG</b> presentation<br>were taken into<br>consideration, even<br>more students will<br>have fewer marks!<br>Also, fortunately $p > 0$<br>(informed because                         |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$<br>p, p, p+d, pr, p+2d, pr <sup>2</sup> , p+(2n-1)d, pr <sup>2n-1</sup><br>Sum of odd terms = $\frac{n}{2} [2p + (n-1)p] = \frac{pn}{2}(n+1)$<br>Sum of even terms = $\frac{p(1.2^n - 1)}{1.2 - 1} = 5p(1.2^n - 1)$<br>Given $\frac{pn}{2}(n+1) < 5p(1.2^n - 1) \Rightarrow \frac{n}{2}(n+1) < 5(1.2^n - 1)$<br>(since p > 0)<br>Using GC, n > 21.3<br>Least value of n is 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | An <b>important</b><br>presentation issue:<br>$\frac{6}{5}^{n} \neq \left(\frac{6}{5}\right)^{n}$ . If this<br><b>WRONG</b> presentation<br>were taken into<br>consideration, even<br>more students will<br>have fewer marks!<br>Also, fortunately $p > 0$<br>(inferred because                         |
| (b)<br>[4] | $\therefore a = \frac{1}{2}, b = -1$<br>p, p, p+d, pr, p+2d, pr <sup>2</sup> , p+(2n-1)d, pr <sup>2n-1</sup><br>Sum of odd terms = $\frac{n}{2} [2p + (n-1)p] = \frac{pn}{2}(n+1)$<br>Sum of even terms = $\frac{p(1.2^n - 1)}{1.2 - 1} = 5p(1.2^n - 1)$<br>Given $\frac{pn}{2}(n+1) < 5p(1.2^n - 1) \Rightarrow \frac{n}{2}(n+1) < 5(1.2^n - 1)$<br>(since p > 0)<br>Using GC, n > 21.3<br>Least value of n is 22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | An <b>important</b><br>presentation issue:<br>$\frac{6}{5}^{n} \neq \left(\frac{6}{5}\right)^{n}$ . If this<br><b>WRONG</b> presentation<br>were taken into<br>consideration, even<br>more students will<br>have fewer marks!<br>Also, fortunately $p > 0$<br>(inferred because<br>question states that |

|     |                                                                                    | sequence consists of                            |
|-----|------------------------------------------------------------------------------------|-------------------------------------------------|
|     | Alternatively                                                                      | positive terms) and will                        |
|     | From G.C.                                                                          | not make a difference                           |
|     | n                                                                                  | in the division over the                        |
|     | $n = 21,  \frac{n}{2}(n+1) - 5(1.2^n - 1) = 5.9744 > 0$                            | inequality. Otherwise,                          |
|     | -<br>n                                                                             | even more students                              |
|     | $n = 22, \frac{n}{2}(n+1) - 5(1.2^n - 1) = -18.03 < 0$                             | would have lost marks                           |
|     | Hence the least value of $n$ is 22                                                 | over this.                                      |
|     |                                                                                    | Please note that there                          |
|     |                                                                                    | are <b>TWO</b> points of                        |
|     |                                                                                    | intersection when                               |
|     |                                                                                    | comparing the 2 curves                          |
|     |                                                                                    | $\Rightarrow$ there will be TWO                 |
|     |                                                                                    | regions, $0 < n < 1$ and                        |
|     |                                                                                    | n > 21.27. However,                             |
|     |                                                                                    | it is given that $n > 1$ .                      |
| (c) | Sum of 1 <sup>st</sup> k terms $-q(r^k-1)$                                         | Very few got full                               |
| [4] | r-1                                                                                | everything right)                               |
|     | $q(r^{n-1})  q(r^{n-k}-1)$                                                         | because of a small                              |
|     | Sum of last k terms = $\frac{r-1}{r-1} - \frac{r-1}{r-1}$                          | detail: the question                            |
|     | q ( $p$ , $p$ , $p-k$ , $1$ )                                                      | asks for                                        |
|     | $=\frac{1}{r-1}(r^{n-1}-r^{n-n}+1)$                                                | <b>DIFFERENCE</b> , which means that the        |
|     | $= \frac{q}{r^{n-k}} (r^n - r^{n-k}) = \frac{q}{r^{n-k}} (r^k - 1)$                | modulus will be                                 |
|     | $r-1^{(r-1)}$ $r-1^{(r-1)}$ $r-1^{(r-1)}$                                          | necessary as there is no                        |
|     |                                                                                    | mention of which sum                            |
|     | Alternatively:<br>By writing the sequence backwards                                | is a larger value.                              |
|     | By writing the sequence backwards $ar^{n-1}$ $ar^{n-2}$ $ar^{n-1}$ $ar^2$ $ar$ $a$ | Quite a handful of                              |
|     | qr, $qr$ , $qr$ , $qr$ ,, $qr$ , $qr$ , $q$                                        | students assumed that                           |
|     | (first term = $qr^{n-1}$ / common ratio = $\frac{1}{r}$ )                          | $S_{n-k}$ refers to the sum                     |
|     | $qr^{n-1}\left(\left(\frac{1}{r}\right)^k - 1\right)  qr^n \left(1 - r^k\right)$   | of last <i>k</i> terms, which is <b>WRONG</b> ! |
|     | Sum of last k terms = $\frac{1}{r} = \frac{1}{1-r} \left( \frac{r^k}{r^k} \right)$ |                                                 |
|     | $=\frac{qr^{n-k}(1-r^{k})}{1-r}=\frac{q}{r-1}r^{n-k}(r^{k}-1)$                     |                                                 |

Difference required = 
$$\left| \frac{q(r^{k}-1)}{r-1} - \frac{q}{r-1} r^{n-k} (r^{k}-1) \right|$$
  
=  $\left| \frac{q}{r-1} [(r^{k}-1) - r^{n-k} (r^{k}-1)] \right|$   
=  $\left| \frac{q}{r-1} (r^{k}-1) (1-r^{n-k}) \right|$ 

A club in a school has 5 members from Class P, 4 members from Class Q and 3 members from Class R. Five members are to be chosen for an upcoming competition.

5

- (i) Find the number of ways the team of five can be chosen so that it has exactly two members from each of Class *P* and Class *Q*. [1]
- (ii) Find the number of ways the team of five can be chosen so that it has at least two members from Class *R*. [2]
- (iii) All the 12 members of the club go to a cinema. Find the number of ways they can sit in a row so that no more than 2 members from Class *P* are next to each other.

[4]

2 from each of P and Q, 1 from R:  ${}^{5}C_{2} \times {}^{4}C_{2} \times {}^{3}C_{1} = 180$ Generally well (i) done [1] 2 from Class *R* & 3 from *P* or *Q*:  ${}^{3}C_{2} \times {}^{9}C_{3} = 252$ Generally well (ii) done. [2] 3 from Class *R* & 2 from *P* or *Q*:  ${}^{3}C_{3} \times {}^{9}C_{2} = 36$ Total number of ways is 288 Alternatively, Consider complement cases of none from *R* or one from *R*:  ${}^{12}C_{5} - {}^{9}C_{5} - {}^{3}C_{1} \times {}^{9}C_{4} = 288$ (iii) Class P students are Important to consider cases  $:7! \times {}^{8}C_{5} \times 5! = 33868800$ [4] all separated carefully. separated in groups of 2, 1, 1, 1 :  $7! \times {}^{8}C_{1} \times {}^{7}C_{3} \times 5! = 169344000$ 1) Permute the non-(or  $7! \times {}^{8}C_{4} \times 4 \times 5!$ ) P student separated in groups of 2, 2, 1 :  $7! \times {}^{8}C_{2} \times {}^{6}C_{1} \times 5! = 101606400$ 2) Not more than two members (or  $7! \times {}^{8}C_{3} \times 3 \times 5!$ ) means that we can Total number of ways is 304 819 200 have group(s) of 2 or less. 3) Beware of Alternatively, consider the complement method: double counting separated in groups of 3, 1, 1 :  $7! \times {}^{8}C_{3} \times 3 \times 5! = 101\ 606\ 400$ 4) Consider separated in groups of 3, 2 :  $7! \times {}^{8}C_{2} \times 2! \times 5! = 33\ 868\ 800$ permuting the other 7 students separated in groups of 4, 1 :  $7! \times {}^{8}C_{2} \times 2! \times 5! = 33\ 868\ 800$ 5) Consider slotting 5 members of P are seated in a group :  $8! \times 5! = 4838400$ in the groups of P

| Total number of ways =                                      |                  |
|-------------------------------------------------------------|------------------|
| 12! - 101606400 - 33868800 - 33868800 - 4838400 = 304819200 | 6) Consider the  |
|                                                             | arrangement of   |
|                                                             | these groups     |
|                                                             | 7) Consider the  |
|                                                             | arrangement of P |
|                                                             | members in these |
|                                                             | groups           |

6 A car insurance company collected the following data about the percentage occurrence of accident-involved vehicles, p% for vehicles of different weight, w tons.

| w (tons)     | 2.2 | 1.9 | 1.7 | 1.5 | 1.3 | 1.1 | 1.0 | 0.9 |
|--------------|-----|-----|-----|-----|-----|-----|-----|-----|
| <i>p</i> (%) | 2.6 | 3.2 | 3.8 | 4.3 | 5.4 | 5.3 | 7.4 | 8.6 |

<sup>(</sup>i) Calculate the value of the product moment correlation coefficient between w and p, and explain whether your answer suggests that a linear model is appropriate. [2]

[1]

- (ii) Draw a scatter diagram of the data.
- One of the values of p appears to be incorrect.
- (iii) Indicate the corresponding point on your diagram by labelling it R, and explain why the scatter diagram for the remaining points may be consistent with a model of the form  $\ln p = a + bw$ . [2]
- (iv) Omitting *R*, calculate least squares estimates of *a* and *b* for the model  $\ln p = a + bw$ . [2]
- (v) Assume that the value of w at R is correct. Estimate the value of p for this value of w. [1]

| (i)  | Since $r = -0.92821 = -0.928$ (3.s.f) is close to -1, it                                                 | Focus on commenting                                 |
|------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| [2]  | suggests a strong negative linear correlation, a linear model                                            | on just the pmcc value.                             |
|      | seems appropriate.                                                                                       |                                                     |
| (ii) | р                                                                                                        | The number of points                                |
| [1]  | <b>▲</b>                                                                                                 | must be drawn correctly.                            |
|      | 8.6<br>×<br><i>R</i><br><i>x</i><br><i>R</i><br><i>x</i><br><i>x</i><br><i>x</i><br><i>x</i><br><i>x</i> | The range of <i>p</i> and <i>w</i> should be given. |
|      | 0.9 2.2 ► W                                                                                              |                                                     |

| (iii) | With the point $R$ removed, the values of $p$ decreases as $w$                                           | Focus on commenting                                                 |
|-------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| [2]   | increases, but by decreasing amounts. Hence it is consistent with a model of the form $\ln p = a + bw$ . | on the scatter diagram,<br>and there is no need to                  |
|       |                                                                                                          | value.                                                              |
| (iv)  | From GC, $\ln p = 2.910569 - 0.916387w \dots (1)$                                                        | To conclude answers in                                              |
| [2]   | a = 2.91 (3  s.f.)<br>b = -0.916 (3  s.f.)                                                               | 3.s.f                                                               |
| (v)   | Substitute $w = 1.1$ into (1) :<br>$\ln p = 2.910569 - 0.916387(1.1)$<br>p = 6.70 (to 3 s.f.)            | A reminder to use at<br>least 5.s.f answers of<br>(iv) for accuracy |

- 7 On average, 11% of the students in school *A* have been infected before by a contagious disease. Every class has 20 students. The number of students in a class who has been infected by the disease before is denoted by *X*.
  - (i) State, in the context of this question, two assumptions needed for X to be well modelled by a binomial distribution. Explain why your assumptions may not be met. [4]

Assume now that the context above is well-modelled by a binomial distribution.

(ii) A class is chosen at random. Find the probability that at least 1 but fewer than 10 students in the class has been infected by the disease before. [2]

Fatihah is a student reporter tasked to ask students in a randomly chosen class, one by one, if they have been infected by the disease before.

- (iii) Find the probability that the 20<sup>th</sup> student she asks is the fifth student who has been infected by the disease before. [2]
- (iv) Without doing any further calculation, is the probability found in (iii) higher or lower than the probability that there are exactly 5 students in the class who have been infected by the disease before? Explain your answer. [2]

| (i) | Condition 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Generally well done with                                                                                                                                                                                                                                                                                           |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [4] | The event that a student infected by the disease is independent<br>of any other student infected by the disease.<br>This might not be true. Since the disease is contagious, it can<br>easily be passed from one student to another.<br><u>Condition 2</u><br>The probability of a student infected by the disease is<br>constant.<br>This might not be true as the probability will depend on each<br>individual's lifestyle or exposure, some will have a higher<br>chance of catching the disease. | many students using the<br>contagious nature of the<br>disease to argue against<br>both assumptions<br>convincingly. It is<br>advisable that students list<br>the 2 assumptions and<br>write out their<br>explanations separately as<br>some students who gave a<br>single explanation was<br>not specific enough. |

| (ii)         | $X \sim B(20, 0.11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A number of students                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2]          | $P(1 \le X < 10) = P(1 \le X \le 9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | incorrectly used the value                                                                                                                                                                                                                                                                                                                                                                                             |
|              | -P(X < 9) - P(X - 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of $P(X \le 10)$ instead of                                                                                                                                                                                                                                                                                                                                                                                            |
|              | -1(X = 0) - 1(X = 0)<br>- 0.999983 - 0.097230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P(X < 10) in their                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | -0.902753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calculations giving a                                                                                                                                                                                                                                                                                                                                                                                                  |
|              | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | value of 0.902757 which                                                                                                                                                                                                                                                                                                                                                                                                |
|              | = 0.903                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | still gives the answer as                                                                                                                                                                                                                                                                                                                                                                                              |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.903. These students                                                                                                                                                                                                                                                                                                                                                                                                  |
| (:::)        | Lat V denote the much of students who has an as here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Were not given the marks.                                                                                                                                                                                                                                                                                                                                                                                              |
| (III)<br>[2] | Let I denote the number of students who has once been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | students were able to                                                                                                                                                                                                                                                                                                                                                                                                  |
| [4]          | $\frac{1}{1000} = \frac{1}{1000} = 1$ | figure out the solution but                                                                                                                                                                                                                                                                                                                                                                                            |
|              | $I \sim B(19.0.11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | not all of them define the                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Required probability = $P(Y = 4) \times 0.11 = 0.0109$ (to 3s.f.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $R \vee Y$ but just wrote out<br>the values of $P(V - A)$                                                                                                                                                                                                                                                                                                                                                              |
|              | Alternative solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the values of $P(T = 4)$ .                                                                                                                                                                                                                                                                                                                                                                                             |
|              | Required probability = $\frac{{}^{19}C_4}{C_4} P(X-5) = 0.0109$ (to 3 s f)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              | $^{20}C_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (iv)         | Lower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Most students gave the                                                                                                                                                                                                                                                                                                                                                                                                 |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Most students gave the<br>answer as lower with                                                                                                                                                                                                                                                                                                                                                                         |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values                                                                                                                                                                                                                                                                                                                    |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the                                                                                                                                                                                                                                                                                         |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students<br>approached are the only 5 students in the class who has once                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the<br>question stated "without                                                                                                                                                                                                                                                             |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students<br>approached are the only 5 students in the class who has once<br>been infected. This event would have been considered under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the<br>question stated "without<br>doing any further                                                                                                                                                                                                                                        |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students<br>approached are the only 5 students in the class who has once<br>been infected. This event would have been considered under<br>"exactly 5 students" in the class have once been infected, but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the<br>question stated "without<br>doing any further<br>calculation".                                                                                                                                                                                                                       |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students<br>approached are the only 5 students in the class who has once<br>been infected. This event would have been considered under<br>"exactly 5 students" in the class have once been infected, but<br>not considered in (iii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the<br>question stated "without<br>doing any further<br>calculation".<br>Students need to provide                                                                                                                                                                                           |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students<br>approached are the only 5 students in the class who has once<br>been infected. This event would have been considered under<br>"exactly 5 students" in the class have once been infected, but<br>not considered in (iii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the<br>question stated "without<br>doing any further<br>calculation".<br>Students need to provide<br>an example to show that                                                                                                                                                                |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students<br>approached are the only 5 students in the class who has once<br>been infected. This event would have been considered under<br>"exactly 5 students" in the class have once been infected, but<br>not considered in (iii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the<br>question stated "without<br>doing any further<br>calculation".<br>Students need to provide<br>an example to show that<br>the event in (iii) is indeed                                                                                                                                |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students<br>approached are the only 5 students in the class who has once<br>been infected. This event would have been considered under<br>"exactly 5 students" in the class have once been infected, but<br>not considered in (iii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the<br>question stated "without<br>doing any further<br>calculation".<br>Students need to provide<br>an example to show that<br>the event in (iii) is indeed<br>a subset as merely stating<br>that it is a subset is a                                                                      |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students<br>approached are the only 5 students in the class who has once<br>been infected. This event would have been considered under<br>"exactly 5 students" in the class have once been infected, but<br>not considered in (iii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the<br>question stated "without<br>doing any further<br>calculation".<br>Students need to provide<br>an example to show that<br>the event in (iii) is indeed<br>a subset as merely stating<br>that it is a subset is a<br>generic response when the                                         |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students<br>approached are the only 5 students in the class who has once<br>been infected. This event would have been considered under<br>"exactly 5 students" in the class have once been infected, but<br>not considered in (iii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the<br>question stated "without<br>doing any further<br>calculation".<br>Students need to provide<br>an example to show that<br>the event in (iii) is indeed<br>a subset as merely stating<br>that it is a subset is a<br>generic response when the<br>answer to (iii) is a lower           |
| (iv)<br>[2]  | Lower.<br>The event described in part (iii) is a subset of having exactly 5<br>students in the class who have been infected by the disease<br>before. For example, it is possible that the first 5 students<br>approached are the only 5 students in the class who has once<br>been infected. This event would have been considered under<br>"exactly 5 students" in the class have once been infected, but<br>not considered in (iii).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Most students gave the<br>answer as lower with<br>some students working<br>out the numerical values<br>to compare although the<br>question stated "without<br>doing any further<br>calculation".<br>Students need to provide<br>an example to show that<br>the event in (iii) is indeed<br>a subset as merely stating<br>that it is a subset is a<br>generic response when the<br>answer to (iii) is a lower<br>value. |

- 8 A game is played by throwing a fair coin and two fair four-sided dice. The dice are coloured red or blue, and have faces numbered from 1 to 4. If the coin shows a head, then the score is the number shown on the red die. Otherwise, the score is the sum of the numbers shown on the two dice.
  - Show that the probability that a game results in a score of 4 is  $\frac{7}{32}$ . [2] (i)
  - **(ii)** Find the expectation and variance of the score.
  - (iii) The game is played 35 times. Estimate the probability that the average score of the 35 games is at least 4, given that the first and second games result in a score of 3 and 4 respectively. [3]

[5]

| (i)  | Let <i>X</i> be the score obtained in one game.                                                                                                                                                  | Candidates were usually                                   |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| [2]  | P(Y-4) - P((H 4) (T 1+3) (T 2+2))                                                                                                                                                                | able to show the required                                 |
|      | 1(X - T) - 1((11, T), (1, 1 + 3), (1, 2 + 2))                                                                                                                                                    | probability. Note the                                     |
|      | $=\frac{1}{1}\cdot\frac{1}{1}+\frac{1}{1}\cdot\frac{1}{1}\cdot\frac{1}{1}\cdot\frac{3}{1}=\frac{7}{1}$                                                                                           | importance of listing the                                 |
|      | 2 4 2 4 4 32                                                                                                                                                                                     | cases.                                                    |
| (ii) | $P(X=1) = P(H=1) = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$                                                                                                                                  | Most candidates are able to                               |
| [5]  | $1(x-1) - 1(11,1) - \frac{2}{2} - \frac{4}{4} - \frac{8}{8}$                                                                                                                                     | calculate the probabilities                               |
|      | $P(X=2) = P((H,2), (T,1+1)) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} = \frac{5}{2}$                                                       | correctly and subsequently                                |
|      |                                                                                                                                                                                                  | the expectation and                                       |
|      | $P(X=3) = P((H,3),(T,1+2)) = \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{12}$ | variance. Others made                                     |
|      |                                                                                                                                                                                                  | cases or made slips during                                |
|      | $P(X = 5) = P((T, 1+4), (T, 2+3)) = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot 4 = \frac{1}{8}$                                                                                       | the use of the calculator. A                              |
|      | $P(X = c) = P(T = 2 + 4) (T = 2 + 2) = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$                                                                                                    | handful erroneously worked                                |
|      | P(X = 6) = P((1,2+4), (1,3+3)) =                                                                                                                                                                 | out the sum of                                            |
|      | $P(X = 7) = P(T, 3+4) = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot 2 = \frac{1}{16}$                                                                                                  | $r\left[\mathbf{P}(X=r)^2\right]$ for $\mathbf{E}(X^2)$ . |
|      | $P(X=8) = P(T,4+4) = \frac{1}{2} \cdot \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{32}$                                                                                                             |                                                           |
|      | $E(X) = \sum_{r=1}^{8} r P(X=r) = \frac{15}{4}$ (or 3.75)                                                                                                                                        |                                                           |
|      | $E(X^2) = \sum_{r=1}^{8} r^2 P(X=r) = \frac{35}{2}$ (or 17.5)                                                                                                                                    |                                                           |
|      | Var $X = E(X^2) - [E(X)]^2 = \frac{35}{2} - (\frac{15}{4})^2 = \frac{55}{16}$                                                                                                                    |                                                           |
|      |                                                                                                                                                                                                  |                                                           |

(iii)  
[3] 
$$P\left(\frac{X_{1}+\dots+X_{35}}{35} \ge 4 \mid X_{1} = 3 \text{ and } X_{2} = 4\right)$$

$$= \frac{P\left(\frac{X_{1}+\dots+X_{35}}{35} \ge 4 \cap (X_{1} = 3 \text{ and } X_{2} = 4\right)}{P(X_{1} = 3 \text{ and } X_{2} = 4)}$$

$$= \frac{P\left(\frac{3+4+X_{3}+\dots+X_{35}}{35} \ge 4\right)P(X_{1} = 3)P(X_{2} = 4)}{P(X_{1} = 3)P(X_{2} = 4)}$$

$$= P(X_{3}+\dots+X_{35} \ge 4 \times 35 - 3 - 4)$$

$$= P(X_{3}+\dots+X_{35} \ge 4 \times 35 - 3 - 4)$$

$$= P(X_{3}+\dots+X_{35} \ge 133)$$
The sample size 33 is large. By Central Limit Theorem,  

$$X_{3}+\dots+X_{35} \sim N\left(33 \times \frac{15}{4} = \frac{495}{4}, 33 \times \frac{55}{16} = \frac{1815}{16}\right)$$
approximately.  

$$P(X_{3}+\dots+X_{35} \ge 133) = 0.1925638 = 0.193 \text{ (3sf)}$$

part proves more lenging for candidates the earlier parts. It also aled much understanding about the cept of Central Limit orem (CLT). A nificant number thought CLT approximates X as ormal distribution and so  $+\cdots+X_{35}$  also follows a mal distribution when it uld have been CLT roximates the sum  $+\cdots+X_{35}$  as a normal ribution instead because is not to be used for *X*.

9

A large company claims that its employees work an average of 41 hours a week. After receiving feedback from some employees that they work longer than claimed, a survey involving 200 randomly chosen employees is conducted. The amount of time they spend at work per week, x thousand hours, are summarised below.

$$\sum x = 8.71 \qquad \sum x^2 = 0.505$$

- (i) Calculate unbiased estimates of the population mean and variance of the amount of time spent by an employee at work per week. [2]
- (ii) Test, at the 5% significance level, whether the average working hours of an employee per week is more than 41. State hypotheses for the test, defining any symbols you use.
- (iii) After the company restructures its operations, it claims that the average working hours a week is now 40. The human resource manager takes a random sample of 12 employees and finds that they spend an average of 40.1 hours per week at work. Suppose the population variance is k hours<sup>2</sup>.
  - (a) Stating a necessary assumption, find the range of possible values of k if the manager concludes that there is insufficient evidence to reject the company's claim that the average working hours is 40, at the 5% significance level.
  - (b) Explain why the Central Limit Theorem does not apply in this context. [1]

| 9<br>(i)<br>[2] | Unbiased estimate of population mean is<br>$\frac{8.71}{200} = 0.04355 \text{ thousand hrs} = 43.55 \text{ hours}$ Unbiased estimate of population variance is<br>$\frac{1}{199} \left( 0.505 - \frac{8.71^2}{200} \right) = 6.31555 \times 10^{-4} \text{ (thousand hours)}^2$ $= 632 \text{ hours}^2 \text{ (3sf)}$                                                                                                                                                                                                                                                                 | Most students who obtained 2<br>marks would have gotten zero,<br>if marking demanded the<br>correct units. Proper<br>presentation must be taken<br>note of, the correct name of<br>each item, and not just<br>"mean"/"variance".<br>Many faltered for $s^2$ as they<br>multiplied by 1000 instead of<br>$1000^2$                                                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii)<br>[5]     | Let $\mu$ be the population mean amount of time, in<br>thousand hours, an employee spends at work per week.<br>Null Hypothesis $H_0$ : $\mu = 0.041$<br>Alternative Hypothesis $H_1$ : $\mu > 0.041$<br>Perform a 1-tail test at 5% significance level.<br>Under $H_0$ , since sample size 200 is large,<br>$\overline{X} \sim N\left(0.041, \frac{6.31555 \times 10^{-4}}{200}\right)$ approximately by Central<br>Limit Theorem.<br>From the sample, $\overline{x} = 0.04355$<br>Using a <i>z</i> -test, <i>p</i> -value = $P\left(\overline{X} \ge 0.04355\right) = 0.0756 > 0.05$ | Clear handwriting cannot be<br>over-emphasized. Cambridge<br>markers have stated they<br>cannot mark what they can't<br>read. Many of our students<br>need to improve in this aspect.<br>Many did not define $\mu$<br>properly, which is such a<br>regret since this was done<br>before in<br>• Chap S5 Eg 4<br>• Tut S5 Qn 9<br>• Recent CT<br>Central Limit Theorem must<br>be stated. |

|       | We do not reject $H_0$ . There is insufficient evidence, at                                                                                                  | Proper conclusion statement –           |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
|       | the 5% significance level, that the average working hours                                                                                                    | do follow what has been given           |
|       | of an employee per week is more than 41.                                                                                                                     | in the notes and solutions –            |
|       |                                                                                                                                                              | students who choose to                  |
|       |                                                                                                                                                              | of missing out key terms or             |
|       |                                                                                                                                                              | putting it in a wrong logical           |
|       |                                                                                                                                                              | order.                                  |
| (iii) | Assume that the number of working hours per week of an                                                                                                       | Many students faltered here,            |
| (a)   | employee follows a normal distribution.                                                                                                                      | they need to know the                   |
| [4]   |                                                                                                                                                              | difference between the                  |
| [']   | Lat V he the number working hours per week of an                                                                                                             | working hours and the mean              |
|       | Let T be the number working hours per week of an                                                                                                             | working hours.                          |
|       | employee after the restructuring.                                                                                                                            |                                         |
|       | $H_0: \mu = 40$                                                                                                                                              | Also a 2-tail test reverse              |
|       | $H_1: \mu \neq 40$                                                                                                                                           | method question does not                |
|       | - $($ $k$ $)$                                                                                                                                                | necessarily involve 2                   |
|       | Under $H_0$ , $Y \sim N = 40, \frac{\pi}{12}$                                                                                                                | inequalities. In this case the          |
|       | (12)                                                                                                                                                         | claimed mean and sample                 |
|       | If $H_0$ is not rejected at the 5% significance level,                                                                                                       | mean are both known, the                |
|       | $P(\overline{V} > 40.1) > 0.025$                                                                                                                             | inequality is only 1 directional.       |
|       | $P(I \ge 40.1) > 0.023 \qquad \qquad$ | Just need to half the                   |
|       | 0.025                                                                                                                                                        | probability.                            |
|       |                                                                                                                                                              | 1                                       |
|       | $ \mathbf{P}  Z \ge \frac{1}{\sqrt{k}} > 0.025$                                                                                                              | An large number of students             |
|       | $\sqrt{\frac{\pi}{12}}$ 40.401                                                                                                                               | worked towards rejecting H <sub>0</sub> |
|       |                                                                                                                                                              | instead or only did a 1-tailed          |
|       | $\frac{0.1}{} < 1.9600$                                                                                                                                      | test.                                   |
|       | k                                                                                                                                                            |                                         |
|       | $\sqrt{12}$                                                                                                                                                  | A handful number of students            |
|       | $k (0,1)^2$                                                                                                                                                  | should also take note not to            |
|       | $\frac{\kappa}{12} > \left  \frac{0.1}{1.0000} \right $                                                                                                      | convert an irrational answer            |
|       | 12 (1.9600)                                                                                                                                                  | into an exact fraction.                 |
|       | k > 0.0312 (3sf)                                                                                                                                             |                                         |
| (b)   | The Central Limit Theorem does not apply here as the                                                                                                         | Most students got the mark              |
|       | sample size 12 is small.                                                                                                                                     | here, but they should take note         |
|       | -                                                                                                                                                            | not to write extra irrelevant or        |
|       |                                                                                                                                                              | inaccurate information, which           |
|       |                                                                                                                                                              | may not always be ignored.              |
| Over  | all, this question was done below expectations with many students                                                                                            | s making mistakes that arose            |
| from  | unfamiliarity. With the abundance of suggested solutions, student                                                                                            | s should not be complacent but          |

spare some time to properly study Hypothesis Testing questions and their solutions.

10 In this question you should state the parameters of any normal distributions you use.



A leather craftsman company handcrafts customized leather watch straps according to the lug width of their customers' watches. Over a period of time it is found that the lug widths of their customers' watches are normally distributed; 85% of the watches have lug widths less than 21 mm, and 15% of the watches have lug widths less than 19 mm.

(a) Find the mean and the standard deviation of the lug width of their customers' watches. [3]

The widths of the straps made by the company follow the normal distribution with mean 19.6 mm and standard deviation 1.1 mm.

(b) Find the expected number of straps of width more than 20.2 mm in a randomly chosen batch of 40 straps. [3]

The straps are handcrafted in pairs. Each pair consists of a long end strap and a short end strap. The strap widths of both the long end straps and the short end straps follow the same normal distribution, and are independent of each other. In order for the strap to fit into the lug of the watch, the strap width needs to be shorter than the lug width of the watch. If the strap width is less than 0.2 mm shorter than the lug width of the watch, it is considered a good fit. Otherwise, the strap is a bad fit. A pair of strap is only usable for the watch if the long end strap and the short end strap are both good fits.

- (c) A customer walks in with a watch with lug width of 20 mm. He randomly chooses a pair of straps. Show that the probability the pair of straps is usable for his watch is 0.00487, correct to 3 significant figures. [3]
- (d) Another customer walks in with two watches of lug widths 18.5 mm and 20 mm respectively. He randomly chooses 2 pairs of straps of different designs. Find the probability that at least 1 pair of straps are usable for any of his watches, giving your answer correct to 5 decimal places. [4]

| <b>(a)</b> | Let X denote the lug width (in mm) of their customers' watches. | General reminder    |
|------------|-----------------------------------------------------------------|---------------------|
| [3]        | $X \sim N(E(X) \sigma^2)$                                       | for (a) – (d) : Do  |
|            |                                                                 | remember to work    |
|            | E(X) = 20                                                       | with higher degree  |
|            |                                                                 | of accuracy in your |
|            |                                                                 | intermediate        |
|            |                                                                 | working.            |

|     | P(X < 21) = 0.85                                                    |                           |
|-----|---------------------------------------------------------------------|---------------------------|
|     | (21-20)                                                             | In <b>(a)</b> ,           |
|     | $P\left(Z < \frac{21-20}{\sigma}\right) = 0.85$                     | E(X) is most              |
|     | From G C                                                            | conveniently              |
|     | 1                                                                   | deduced by                |
|     | $\frac{1}{}=1.03643$                                                | symmetry.                 |
|     | $\sigma$                                                            | Standard deviation        |
|     | $\sigma = 0.96484 = 0.965$ (to 3s.f.)                               | $(\sigma)$ obtained is    |
|     |                                                                     | clearly non-exact,        |
|     |                                                                     | and hence you             |
|     |                                                                     | should be leaving         |
|     |                                                                     | your ans in 3 s.f.        |
|     |                                                                     | (and not as a             |
|     |                                                                     | rational number).         |
| (b) | Let W denote the strap width (in mm) made by the company.           | Common mistakes :         |
| [3] | $W = N(10.6 \pm 1.2)$                                               | 1) finding                |
| [•] | $W \sim N(19.0, 1.1)$                                               | $P(\overline{W} > 20.2)$  |
|     | $P(W_{1}, 20.2) = 0.20272$                                          | instead of                |
|     | P(W > 20.2) = 0.292/2                                               | P( <i>W</i> >20.2).       |
|     | Let V denote the number of strong of width more than 20 2mm out     |                           |
|     | Let $T$ denote the number of straps of width more than 20.21111 out | 2) finding mode           |
|     |                                                                     | instead of                |
|     | $Y \sim B(40, 0.29272)$ .                                           | expected number.          |
|     | $E(Y) = 40 \times 0.20272 = 11.708 = 11.7 (t_2.25 f)$               |                           |
|     | $E(T) = 40 \times 0.29272 = 11.708 = 11.7$ (to 58.1.)               |                           |
|     |                                                                     | <u>NOTE</u> : Expected    |
|     |                                                                     | statistical value and     |
|     |                                                                     | statistical value and     |
|     |                                                                     | round off/down/up         |
|     |                                                                     | to an integer.            |
|     |                                                                     |                           |
| (c) | $P(19.8 < W \le 20) = 0.069798$                                     | The value                 |
| [3] |                                                                     | "0.00487" is <u>given</u> |
|     | Required probability = $0.069798^2 = 0.0048717 = 0.00487$ (to 3s f) | in the question.          |
|     | $(0.0077)^{-0.0077}$                                                | Hence, there is a         |
|     |                                                                     | need to show              |
|     |                                                                     | detailed working,         |
|     |                                                                     | and the value             |
|     |                                                                     | (0.0048717) right         |
|     |                                                                     | before your               |
|     |                                                                     | conclusion.               |
|     |                                                                     |                           |
|     |                                                                     |                           |

| (d) | General comment :                                                                                                                                                                                                                                                                                    |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [4] | This part proves to be difficult for most students. To facilitate discussion, let's set some background.<br>Let's refer to the watches with lug widths 18.5 mm and 20 mm as the 18.5mm-watch and 20mm-watch respectively.                                                                            |  |
|     | Let $\alpha$ be the probability that a pair of straps is usable for the 18.5mm-watch, and $\beta$ be the probability that a pair of straps is usable for the 20mm-watch.                                                                                                                             |  |
|     | Clearly, $\alpha = \left[ P(18.3 < W \le 18.5) \right]^2 = 0.0016013$ (to 7 d.p.).                                                                                                                                                                                                                   |  |
|     | From part (c), $\beta = [P(19.8 < W \le 20)]^2 = 0.0048717$ (to 7d.p.)                                                                                                                                                                                                                               |  |
|     | IMPORTANT NOTE :                                                                                                                                                                                                                                                                                     |  |
|     | When a pair of strap is <u>not</u> usable for the 18.5mm-watch, it may still be usable for the 20mm-watch.                                                                                                                                                                                           |  |
|     | Hence, the probability $1 - \alpha$ only suggests the chance that a pair of straps is not usable for the 18.5mm-watch, but it doesn't rule out that the pair is usable for the 20mm-watch.                                                                                                           |  |
|     | <b>Method 1</b> :<br>Probability that a pair of straps is not usable for both watches<br>$= 1 - \alpha - \beta$<br>Hence, the required probability<br>= 1 - P(both pairs of straps are not usable for both watches)<br>$= 1 - (1 - \alpha - \beta)^2 \dots (*)$<br>= 0.0129041904 = 0.01290 (5 d.p.) |  |
|     | Note that the expression (*) when expanded is<br>$2\alpha + 2\beta - 2\alpha\beta - \alpha^2 - \beta^2$ (**)<br>This expression can provide a quick check for any other approaches to this<br>quastion you may have in mind                                                                          |  |
|     |                                                                                                                                                                                                                                                                                                      |  |
|     | <u>Method 2</u> :<br>Let Q be the number of pairs of straps (out of 2) that are usable (for<br>either the 18.5mm-watch or the 20mm-watch.<br>$Q \sim B(2, \alpha + \beta)$<br>Hence, the required probability<br>$= P(Q \ge 1) = 1 - P(Q = 0)$                                                       |  |
|     | $= 1 - (1 - (\alpha + \beta))^2 = 1 - (1 - \alpha - \beta)^2  (\text{ same as } (*))$ $= 0.0129041904 = 0.01290 \text{ (5 d.p.)}$                                                                                                                                                                    |  |

Method 3 : Case 1 : One pair of straps is usable for 18.5mm-watch, but the other pair is not usable for the 20mm-watch. Probability =  $\alpha(1-\beta) \times 2! - \alpha^2$  $= 2\alpha - 2\alpha\beta - \alpha^2$ [Many students using this approach forgot to multiple by 2, and/or forgot to subtract double counted cases.] Case 2 : One pair of straps is usable for 20mm-watch, but the other pair is not usable for the 18.5mm-watch. Probability =  $\beta(1-\alpha) \times 2! - \beta^2$  $= 2\beta - 2\alpha\beta - \beta^2$ Case 3 : One pair of straps is usable for the 18.5mm-watch and the other pair is usable for the 20mm-watch. Probability =  $2\alpha\beta$ Hence, the required probability  $= \left(2\alpha - 2\alpha\beta - \alpha^{2}\right) + \left(2\beta - 2\alpha\beta - \beta^{2}\right) + 2\alpha\beta$  $= 2\alpha + 2\beta - 2\alpha\beta - \alpha^2 - \beta^2 \quad (\text{ same as } (**))$ = 0.0129041904= 0.01290 (5 d.p.)Method 4 : Case 1 : There is a usable pair of straps (out of the 2) for the 18.5mm-watch. Probability = 1 - P(both pairs of straps are not usable for the18.5mm-watch)  $= 1 - (1 - \alpha)^2 = 2\alpha - \alpha^2$ OR Probability =  $\alpha^2 + 2\alpha(1-\alpha) = 2\alpha - \alpha^2$ Case 2 : There is a usable pair of straps (out of the 2) for the 20mmwatch. Probability = 1 - P(both pairs of straps are not usable for the20mm-watch)  $= 1 - (1 - \beta)^2 = 2\beta - \beta^2$ OR Probability =  $\beta^2 + 2\beta(1-\beta) = 2\beta - \beta^2$ Case 3 : One pair of straps is usable for the 18.5mm-watch and the other pair is usable for the 20mm-watch. Probability =  $2\alpha\beta$ [Note that case 3 is repeated in case 1 and case 2.]

Hence, the required probability  $= (2\alpha - \alpha^2) + (2\beta - \beta^2) - 2\alpha\beta$  $= 2\alpha + 2\beta - 2\alpha\beta - \alpha^2 - \beta^2 \quad (\text{ same as } (**))$ = 0.0129041904= 0.01290 (5 d.p.)This approach may be *re-packaged* as the following : Let *A* be the event that there is a usable pair of straps for the 18.5mm-watch. Let *B* be the event that there is a usable pair of straps for the 20mm-watch. Required probability  $= P(A \cup B) = P(A) + P(B) - P(A \cap B)$  $= \left[\alpha^2 + 2\alpha(1-\alpha)\right] + \left[\beta^2 + 2\beta(1-\beta)\right] - 2\alpha\beta$  $= 2\alpha + 2\beta - 2\alpha\beta - \alpha^2 - \beta^2 \quad (\text{ same as } (**))$ = 0.0129041904 = 0.01290 (5 d.p.)**NOTE** :  $P(A) \neq \alpha^2$  ;  $P(B) \neq \beta^2$  ;  $P(A \cap B) \neq \alpha\beta$ . Method 5: Case 1 : First pair of straps chosen is usable. Probability =  $(\alpha + \beta)(1)$ Case 2 : Second pair of straps chosen is usable. Probability =  $(1)(\alpha + \beta)$ Case 3 : One pair of straps is usable for the 18.5mm-watch and the other pair is usable for the 20mm-watch. Probability =  $2\alpha\beta$ [Note that case 3 is repeated in case 1 and case 2.] Case 4 : 2 pairs of straps are usable for the same watch. Probability =  $\alpha^2 + \beta^2$ [Note that case 4 is also repeated in case 1 and case 2.] **NOTE** : Case 3 and Case 4 may be more conveniently combined as "First and second pair of straps are both usable". Probability =  $(\alpha + \beta)^2 = \alpha^2 + \beta^2 + 2\alpha\beta$ Hence, the required probability  $= 2(\alpha + \beta) - 2\alpha\beta - \alpha^2 - \beta^2$  $= 2\alpha + 2\beta - 2\alpha\beta - \alpha^2 - \beta^2 \quad \text{(same as (**))}$ = 0.0129041904 = 0.01290 (5 d.p.)

