Sec 4 Pure Chem Muck Paper Set 5 Ams 4E CHEMISTRY PRELIMINARY EXAMINATION 2019 MARK SCHEME

			141	MILLI S		1			
1	2	3	4	5	6	7	8	9	10
С	В	В	В	D	С	D	D	C	D
11	12	13	14	15	16	17	18	19	20
С	Α	Α	D	В	D	С	Α	C	D
21	22	23	24	25	26	27	28	29	30
В	С	В	С	С	A	С	C	В	D
31	32	33	34	35	36	37	38	39	40
Α	В	В	С	С	A	С	В	C	A

Question number	Suggested answer	Allocated mark	
A1a	B and D	2	
A1b	A	1	
A1c	E	1	
A1d	C	1	
A1ei	Add aq ammonia. [1] A blue precipitate should form that dissolves in excess to give a dark blue solution [1] OR Add aq NaOH. [1] a blue precipitate should form that is insoluble in excess [1] OR Add dilute nitric acid followed by barium nitrate solution [1] A white precipitate should form [1]	2	
A1eii	Exothermic reaction 1 mark for correct diagram 1 mark for activation energy and enthalpy change 1 mark for correct labelling of reactants and products chemical formula	3	
A1f	Na Hydride ion 1 mark for correct diagram and symbols, 1 mark for key, 0 mark if diagram is wrong.	2	
A2a	B [1] it has very poor electrical conductivity/very low melting and boiling points of -210 °C and -196°C/no reaction with water (Accept any 2).[2] OR	3	

	C [1] it has very poor electrical conductivity [1] and no reaction with water [1]	
A2bi	F [1]. High melting and boiling points of 1535°C and 3000°C/high density of 7900 kg/m³/forms coloured compounds like reddish brown solid/has good electrical conductivity (Accept any 2). [2]	3
A2bii	Metals have giant metallic lattice structure [1] with a lattice of positive ions <u>surrounded</u> by a sea of delocalized, mobile, negatively-charged valence electrons that can <u>move</u> and carry charge [1] while non-metals have a small and simple molecular structure [1] with weak intermolecular forces of attraction between molecules and strong covalent bonds between atoms. There are no mobile electrons or ions that	4
	can move and carry charge. [1]	
A2c	true false	2
	, ,	
A3a	Any two correct earns 1 mark.	
АЗа	C ₆ H ₁₂ O ₆ + 6O ₂ → 6CO ₂ + 6H ₂ O 1m for correct chemical formula 1m for balancing	2
A3b	Respiration, decay, bacterial decomposition and combustion of fuels take place which produces carbon dioxide. Photosynthesis and ocean uptake takes in carbon dioxide. [1] The rate of production of carbon dioxide is equal to the rate of removal of carbon dioxide in the atmosphere, thus keeping the carbon dioxide level constant. OWITE [11]	2
A3ci	diol	1
A3cii	-0	i
A3d	H	1
A4a	Vol of carbon dioxide produced = 24 cm ³	2

Scanned with CamScanner

	increase, more carbon dioxide and water is formed, so more energy is given out to form more bonds. [1]	
A6a	$N_2 + 3$ $H_2 \neq 2$ NH_3 Must have reversible arrow.	1
A6b	450°C, 200-250 atm, finely divided iron catalyst	11
A6c	945 + 3 x - 6 (391) = - 93 [1] X = 436 kJ/mol [1]	2

Question	Suggested answer	Allocated mark
В7а	Substance A is ethanol as there is a significant dip at wavenumber of approximately 3500 cm ⁻¹ indicating presence of O-H bond [1] and at 1100 cm ⁻¹ , indicating the presence of C-O bond. [1] Substance B is dimethyl ether as there is a significant dip at wavenumber of 1100 cm ⁻¹ , indicating the strong presence of more C-O bonds [1] and also at 2900 cm ⁻¹ , indicating more C-H bonds. [1]	4
В7ь	H-C-C-O-C-H H-C-H-C-H-H-C-H	1
В7с	Solubility decreases [1], boiling point increases [1]	2
B7d	$C_2H_4(g) + H_2O(g) \rightarrow C_2H_5OH(l)[1]$ 300°C, 60 atmospheres, phosphoric (V) acid [1]	2
B7e	Fermentation of glucose	1
B8a	Magnesium / anode / negative electrode reacts with dilute sulfuric acid to give hydrogen gas [1] and hydrogen gas was produced at the copper / cathode / positive electrode since hydrogen ions accept electrons/hydrogen ions are preferentially discharged to give hydrogen gas. [1]	1
B8b	W X Z Y [1] A positive voltmeter reading indicates that metal rod 1 would be more reactive than metal rod 2. The larger the magnitude, the further apart they are in the reactivity series. [1] In experiment 1, Y is more reactive than W, given that the magnitude of voltmeter reading is 2 V. In experiment 2, Z is more reactive than X. In experiment 3, Z is more reactive than W and W is further below in reactivity series than X since the	3

Scanned with CamScanner

	magnitude of the voltmeter reading is 1.10 V.	
	more than 0.32 V in experiment 2. [1]	
	1 m for basis of reasoning, 1 m for quoting data	
	in explaining	
B8ci	Concentration increases [1] hydrogen ions and hydroxide ions are preferentially discharged so water is leaving the solution, leaving behind	2
	sodium and chloride ions. [1]	
B8cii	Cathode: copper	1
	Anode: chlorine gas [1]	
	Copper (II) ions are preferentially discharged to	2
	form copper as copper is lower than hydrogen in	
	the reactivity series. [1] chloride ions are	
	preferentially discharged at the anode as chloride	
	ions are in higher concentration than hydroxide	
	ions. [1]	
ITHER	(Marker's comment:	
B9a	Sulfur dioxide irritates eyes and lungs/causes	2
	breathing difficulties [1] and can dissolve in	
	rainwater to form acid rain which can damage	
	agricultural crops, metal structures, buildings and	
	harm aquatic life. [1]	
B9b	Pass the waste gases through an aqueous	2 `
	suspension of calcium carbonate (or oxide) / wet	
	calcium carbonate (or oxide). [1]	
	SO ₂ + CaCO ₃ → CaSO ₃ + CO ₂ [1]	
	OR CaO + SO₂ → CaSO₃	
	Optional:	
	Calcium sulfite is further oxidized to calcium	
	sulfate in atmospheric oxygen.	
	2CaSO ₃ + O ₂ → CaSO ₄	
В9с	$ZnO + C \rightarrow Zn + CO$	1
	OR 2ZnO + C → 2Zn + CO ₂	
	OR	
	ZnO + CO → Zn + CO ₂	
B9d	Zinc oxide. [1] It oxidised carbon to form carbon	2
D90	monoxide / carbon dioxide while itself is reduced	_
	to form zinc by losing oxygen. / It oxidised carbon	
	monoxide to carbon dioxide while itself is	
	reduced to form zinc by losing oxygen. [1]	
B9e	The blast furnace is at very high temperatures	1
Das	and zinc, having a lower boiling point than iron.	
	will exist as a gas/vapour which needs to be	
	condensed into a liquid. [1]	
	Calcium silicate / molten slag	1
DO!	Calcium sincate / monten sing	
B9f B9g	Amphoteric	1

В9а	Add acidified aqueous potassium dichromate (VI) /potassium manganate (VII). [1] 2,3-dihydroxybutanedioic acid will turn acidified potassium dichromate (VI) from orange to green / potassium manganate (VII) from Purple to colourless [1] while potassium dichromate (VI) will remain orange / potassium manganate (VII) will remain purple in the presence of butanedioic	3
	acid. [1]	2
B9b	H – O – H [1]	
	HOHKOK	
	H O H H O H	
	1 "	
B9c	[1] It will have a low melting point, as it is a covalent	2
550	compound with small and simple molecular	
	structure, [1] with weak intermolecular forces of	
	attraction between molecules which require little heat energy to overcome.[1]	
B9d	Concentration of salt = 0.45 mol/dm ³	3
	Volume present is = 25 + 25 cm ³ = 50 cm ³ No. of moles of salt = 0.45 x (50/1000) = 0.0225	
	mol [1]	
	No. of moles of NaOH = 0.0225 x 2 = 0.045 mol	
	Concentration = 0.045 / (25/1000) = 1.80 mol/dm ³ [1]	
	Final ans must be to 3 s.f.	

Scanned with CamScanner