2020 H2 Math Prelim Paper 2 Marking Scheme

Q	Solution	Marks Allocation
1(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\tan\left(x^3\right) = 3x^2\sec^2\left(x^3\right)$	
(ii)	$2x^3 \tan\left(x^3\right) - 2\ln\left \sec\left(x^3\right)\right + c$	

2(a)	z = -2	
2(b)(i)	$\frac{\text{Method 1:}}{z = e^{i\frac{\pi}{2}}};$ $w = e^{-i\frac{\pi}{4}}$	
2(b)(ii)		
	Im $A \equiv z$ 1 $C \equiv z + w$ O $1 - \frac{\pi}{4}$ $B \equiv w$ $C \equiv z + w$	
	OACB is a rhombus.	
2(b) (iii)		

3(i)		
	Fountions of lines of summative and a summative of summative states of summative state	
(ii)	Equations of lines of symmetry: $y=0$ and $x=0$. $\theta = \frac{\pi}{2}$ or $\frac{3\pi}{2}$	
(iii)		
(iv)	33π	
4 (i)	2x - y + z = 5	
(ii)	$\mathbf{r} = \begin{pmatrix} 3\\1\\0 \end{pmatrix} + t \begin{pmatrix} 1\\0\\-2 \end{pmatrix}, t \in \mathbb{R}$	
(iii)	Square of the distance AD = $\left \overrightarrow{AD} \right ^2 = 5t^2 + 12t + 12$ $\left(\frac{9}{5}, 1, \frac{12}{5} \right).$	
(iv)	$k = -2$ or $k = \frac{22}{5}$	

5(i)	No of ways = $(7-1)! \times 2!$	
	=1440	
(ii)	No of ways = $(5-1)! \times {}^{5}P_{3} \times 8$ or $(5-1)! \times (5 \times 4 \times 3) \times 8$	
	=11520	
(iii)	Method 1	
	No. of ways without restriction	
	$= {}^{\circ}C_3 \times 3! or 8 \times 7 \times 6$	
	= 336	
	No. of ways when couple is selected	
	$= {}^{6}C_{1} \times 3! = 36$	
	Required no. of ways = $336 - 36 = 300$	
(6)	2	
(0) (i)	$P(A \mid A \cup B) = \frac{3}{2}$	
(1)		
(ii)	- (-) 4	
	$P(B) = \frac{1}{9}$	
(iii)	$\frac{1}{3} \le P(B) \le \frac{7}{12}, P(B) \ne \frac{4}{9}$	

7 (i)							
(ii)	x	0	1	2	3		
	$\mathbf{P}(X=x)$	$\frac{1}{10}$	$\frac{14}{45}$	$\frac{3}{10}$	$\frac{13}{45}$		
(iii)	$P(X_1 - X_2 \ge 1) = \frac{583}{810}$						
(iv)	≈ 0.941						

8 (i)	The probability that a surgical mask is defective is constant					
	at 0.15 in a randomly chosen box.					
	Whether a randomly chosen surgical mask is defective or not is independent of any other surgical mask.					
(ii)	0.332 (3 s.f)					
(iii)	0.909					
(iv)	0.997					
(v)	$\therefore \frac{1}{11}$					
9 (i)	$\mu = 120$					
	$\sigma = 6.00 (3 \text{ s.f.})$					
(ii)	0.123 (3 s.f.)					
(iii)	Least value of $n = 27$					
(iv)	0.687 - (3.5 f)					
$(\mathbf{u}\mathbf{v})$	0.007 (3.5.1.)					

10	An unbiased estimate of μ is $\overline{x} = 616.25$	
(i)		
	An unbiased estimate of σ^2 is	
	$s^2 = 450$ (3 s.f)	
(ii)	p -value $\approx 0.0569 > 0.05$	
(iii)	"5% level of significance" means that there is a probability of	
	0.05 that the test will indicate that mean tensile strength of the	
	reinforcing bar is less than 620 MPa when it is at least 620	
	MPa.	
(iv)	We need to assume that the distribution of the tensile strengths	
	of the reinforcing bars is normal.	

(v) Range of population variance = $\{\sigma^2 \in \mathbb{R}^+ : \sigma^2 \le 206\}$	
---	--