1 Water is poured at a constant rate of 300 cm^3 per second into a conical container, as shown in the diagram. The conical container has a base radius of 30 cm and semi-vertical angle of 30° . At time *t* seconds, the water in the conical container has a volume of $V \text{ cm}^3$, depth *h* cm and the radius of the water surface *r* cm.

(i) Show that
$$V = 9000\sqrt{3}\pi - \frac{\pi}{9} (30\sqrt{3} - h)^3$$
. [3]

[The volume of cone with radius *r* and height *h* is $\frac{1}{3}\pi r^2 h$.]

- (ii) Find the rate of change of depth of the water in the conical container when $h = 5\sqrt{3}$. [2]
- 2 Solve the inequality $\frac{x^2 + 2x + 3}{ax^2 (a+1)x + 1} < 0$, for $a \in \mathbb{R}$, $a \neq 0$, a < 1. You need to distinguish the cases where *a* is positive and *a* is negative. [5]
- 3 It is given that $f(r) = \ln(2 + \alpha^{r+1})$, where α is a constant and $-1 < \alpha < 1$. By considering f(r+1) - f(r), find $\sum_{r=1}^{n} \ln\left(\frac{2 + \alpha^{r+2}}{2 + \alpha^{r+1}}\right)$ in terms of *n* and α . [3] Hence, give a reason why the series

$$\ln\left(\frac{2+\alpha^4}{2+\alpha^3}\right) + \ln\left(\frac{2+\alpha^5}{2+\alpha^4}\right) + \ln\left(\frac{2+\alpha^6}{2+\alpha^5}\right) + \dots$$

converges. Given that $\alpha = 0.7$, find the value of the sum to infinity. [4]

4 (i) It is given that
$$y = \sqrt{1 + \ln(1 + 2x)}$$
. Show that $y \frac{dy}{dx} = \frac{1}{1 + 2x}$. [2]

- (ii) By repeated differentiation of this result, find the Maclaurin expansion of y in ascending powers of x, up to and including the term in x^2 . [3]
- (iii) Verify that the same result is obtained using the standard series expansions given in the List of Formulae (MF26).[3]
- 5 (i) One of the roots of the equation $x^3 3x + c = 0$, where c is real, is 2-3i. Without the use of a calculator, find the value of c and the other roots of the equation. [5]
 - (ii) If c is a non-zero purely imaginary number, explain if it is possible for $x^3 3x + c = 0$ to have real roots. [1]
 - (iii) It is given instead that c is a real number. By considering the graph of $y = x^3 3x$, find the range of values of c for which the equation $x^3 - 3x + c = 0$ has only real roots. [2]
- 6 The sequence a₁, a₂, a₃... is a geometric progression A with common ratio 3/4, and the sequence b₁, b₂, b₃... is an arithmetic progression B. The sum to infinity of A is equal to the sum of the first ten terms of B. Given that a₁ = b₉ +13 and the sum of a₂ and b₂ is 35.825, find a₁ + a₂ + a₃ + ... + a₂₅, giving your answer correct to 2 decimal places. [8]
- 7 With reference to the origin O, the points A, B, P, Q and R have position vectors a, b, a-2b, -2a-3b and 2a+b respectively, where a and b are non-parallel vectors and a•b < 0.

Given that **a** is a unit vector and the area of triangle *PQR* is equal to the magnitude of **b**, show that $\sin \theta = \frac{1}{4}$, where θ is the angle between **a** and **b**. Hence, find the value of θ .[5]

M lies on *PR* such that $PM = \frac{1}{2}MR$. Given that *PR* is perpendicular to *OM*, find the magnitude of **b**, giving your answer correct to 3 decimal places. [5]

- 8 (a) The curve C with equation $y = \frac{x^2 + \lambda}{x+2}$, $\lambda \neq 4$, where λ is a real constant, has a
 - positive gradient at any point on the curve.
 - (i) Find the range of values of λ .
 - (ii) Sketch C, stating the equations of any asymptotes and the coordinates of the points where C crosses the axes.[3]

[2]

- (b) The transformations A, B and C are given as follows:
 - A: A translation of 3 units in the negative *x*-direction.
 - B: A reflection about the *x*-axis.
 - C: A stretch parallel to the y-axis with a stretch factor of 4, with x-axis invariant.

A curve undergoes in succession, the transformations A, B and C and the equation of the resulting curve is $y = -\frac{4(x+3)}{x+2}$.

Determine the equation of the curve before the transformations were effected. [3] (c) It is given that

f(x) =
$$\begin{cases} x & \text{for } 0 \le x \le 1, \\ \sqrt{1 - \frac{(x-1)^2}{4}} & \text{for } 1 < x \le 3, \end{cases}$$

and that f(x) = f(x+3) for all real values of x.

On separate diagrams, sketch for $-2 \leqslant x \leqslant 4$, the graphs of

(i)
$$y = f(x)$$
, [3]

(ii)
$$y = f(|x|)$$
. [2]

9 The position of a particle P, moving along a curve C, at any time t is given by the parametric equation

$$x = \frac{t}{2} - \sin t$$
, $y = 3 - \cos t$, for $0 \le t \le \frac{3\pi}{2}$,

where x and y are measured in metres and t in seconds.

- (i) Show that $\frac{dy}{dx} = \frac{2\sin t}{1 2\cos t}$. [2]
- (ii) Find the exact equation of the tangent to C at which the tangent is parallel to the y-axis.
- (iii) Sketch the graph of C. Give in exact form the coordinates of the points where C meets the y-axis, and also give in exact form the coordinates of the end points and maximum point on the curve. [4]
- (iv) The speed of the particle at time t is given by the formula

$$\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \, .$$

Given that the particle is moving at maximum speed when $t = \pi$, find its speed at this instance. [1]

(v) The distance between two points along a curve is the arc length. The arc length between two points on *C*, where $t = \alpha$ and $t = \beta$, is given by the formula

$$\int_{\alpha}^{\beta} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \,\mathrm{d}t \,.$$

Find the distance, in metres, travelled by the particle from the start to the instant when it attains maximum speed, giving your answer correct to 3 decimal places. [2]

- **0** The velocity, v of an object is given by $v = \frac{dx}{dt}$, where x is its displacement from a point O
 - at time t. Given that the acceleration, a of the object is given by $a = \frac{dv}{dt}$, prove that

$$a = v \frac{\mathrm{d}v}{\mathrm{d}x} \ . \tag{1}$$

Newton's second law states that the *nett force* (in N) acting on an object is equal to the product of its mass (in kg) and its acceleration (in ms^{-2}).

In military exercises, parachutists jump from stationary helicopters and their motion is tracked by sensors tagged to their bodies. One parachutist of mass 80 kg falls vertically from a Chinook helicopter. When the parachutist is x m below the helicopter (when the parachute is not opened), his velocity is v ms⁻¹ and the nett force acting on him is $800-0.4v^2$.

Show that his motion can be modelled by the differential equation $v \frac{dv}{dx} = 10 - 0.005v^2$. [2] Solve the differential equation and sketch v against x where $v \ge 0$. [8] For an object falling through the atmosphere, the object is said to have reached *terminal velocity* when the object's acceleration is zero. State the *terminal velocity* of the parachutist. [1]

11 Let $\theta = f(t)$ be the outdoor temperature, in degree Celsius, of a typical day in May in a small town, *t* hours after 12 midnight. It can be shown that

$$f(t) = a \cos\left(\frac{\pi}{24}t - \frac{\pi}{2}\right) + b, \ 0 \le t < 24 \text{ and } a \text{ and } b \text{ are positive constants.}$$

It is given that on a typical day in May, the outdoor temperature is 25 °C at 12 midnight and the maximum temperature of the day is 38 °C at 12 noon.

- (i) Find the value *b* and show that a = 13. [2]
- (ii) It is given α and β , where $\alpha \neq \beta$ are such that $f(\alpha) = f(\beta)$. Show that $\alpha + \beta = k$, where k is a constant to be determined. [2]

The rate of absorption of nutrients, $g(\theta) \text{ mgs}^{-1}$, of a plant is influenced by the outdoor temperature θ , and can be modelled by the function g where

$$g: \theta \mapsto 50 \ln \theta - 150, \ \theta > 23.$$

- (iii) Write, in context of the question, what the composite function gf represents and show that this function exists. [3]
- (iv) Determine if gf has an inverse. [2]
- (v) Find the range of the rate of absorption between (12 s) am and *s* pm on a typical day in May. [3]