
Marking Scheme
1 In cell C3 enter an appropriate formula to extract the year of purchase of the car from the purchase date

given, and use it to complete the Year of Purchase column.

=RIGHT(B3,4) - 1 mark

2 Use an appropriate function to search for the Annual Interest Rate (%) and use it to complete the

Annual Interest Rate (%) column.

=VLOOKUP(E3,A14:B17,2,FALSE) - 1 mark
 - 1 mark for $ sign and correct column values

3 In cell H3 enter an appropriate formula to calculate the monthly principal payment of the car, and use it

to complete the Monthly Principal Payment ($) column.

=PPMT(G3/100/12,F3,10*12,D3) - 1 mark
 - 1 mark for correct column values

4 In cell I3 enter an appropriate formula to calculate the monthly interest payment of the car, and use it to

complete the Monthly Interest Payment ($) column.

=IPMT(G3/100/12,F3,E3*12,D3) - 1 mark
 - 1 mark for correct column values

5 In cell J3 enter an appropriate formula to calculate the total monthly payment of the car, and use it to

complete the Total Monthly Payment ($) column.

=H3+I3 - 1 mark

6 The company uses a credit status system to classify its customer.

There are 3 groups:
A: total monthly payment is less than $1000
B: total monthly payment is less than $2000
C: total monthly payment is $2000 or more
Use a conditional statement in cell K3 to indicate if the customer belongs to group A, B or C, and use it
to complete the Credit Status column.

=IF(J3>-1000,"A",IF(J3>-2000,"B","C"))
 - 1 mark for outer condition, 1 mark for inner condition

7 word = input ("Enter a word: ")
longest_word = word [Q7(b): M1]
shortest_word = word
num_words = 9 [Q7(a): A1]
palindrome = 0 [Q7(c): M1]

for count in range (num_words):
 word = input ("Enter a word: ")
 if len (longest_word) < len(word):
 longest_word = word [Q7(b): M1]
 if len(shortest_word) > len(word):
 shortest_word = word
 if word == word [::-1]: [Q7(c): M1]
 palindrome += 1 [Q7(c): M1]

print ("Longest word is " + longest_word) [Q7(b): A1]
print ("Shortest word is " + shortest_word)
print ("There are " + str(palindrome) + " palindrome word(s)")
[Q7(c): A1]

8 word = input ("Enter a word: ")

longest_word = word
shortest_word = word
num_words = int(input(“Enter the number of words to input”))
[Q8: 2 marks]
palindrome = 0
for count in range (num_words):
 word = input ("Enter a word: ")
 if len (longest_word) < len(word):
 longest_word = word
 if len(shortest_word) > len(word):
 shortest_word = word
 if word == word [::-1]:
 palindrome += 1

print ("Longest word is " + longest_word)
print ("Shortest word is " + shortest_word)
print ("There are " + str(palindrome) + " palindrome word(s)")

9 vending_list= ["Coffee", 23, "Coke", 12,

 "Tea", 19, "Milo", 18] #do not modify this line

total_order = [0,0,0,0]
message = "Please enter your choice (1: Coffee, 2: Coke, " \
"3: Tea, 4: Milo, 0: Confirm Selection): "

order = int(input(message))
if order != 0:
 qty = int(input("Enter the quantity to dispense: ")) #1m

while order !=0:
 if order == 1: #1m
 if vending_list[1] - qty >= 0:
 total_order [0] = qty
 else:
 print ("Quantity unavailable, " \
 + str(vending_list[1]) + " remaining")

 elif order == 2:
 if vending_list[3] - qty >= 0:
 total_order [1] = qty #1m
 else:
 print ("Quantity unavailable, " \
 + str(vending_list[3]) + " remaining")

 elif order == 3:
 if vending_list[5] - qty >= 0: #1m
 total_order [2] = qty
 else:
 print ("Quantity unavailable, " \
 + str(vending_list[5]) + " remaining") #1m

 elif order == 4: #1m
 if vending_list[7] - qty >= 0:
 total_order [3] = qty
 else:
 print ("Quantity unavailable, " \
 + str(vending_list[7]) + " remaining")
 else:
 print ("Input error.")

 order = int(input(message))
 if order != 0:
 qty = int(input("Enter the quantity to dispense: "))

vending_list[1] = vending_list[1] - total_order[0] #1m
vending_list[3] = vending_list[3] - total_order[1]
vending_list[5] = vending_list[5] - total_order[2]
vending_list[7] = vending_list[7] - total_order[3] #1m

print ("You have bought the following items: ")

i = 0 #1m
while i in range (len(total_order)):
 if total_order[i] > 0:
 print (vending_list[i*2] + ": " + str(total_order[i])) #1m
 i += 1

 Task 4, Question 10

sum_age = 0
revenue = 0
num_guest = 0
guest_lst = [0, 0, 0, 0] #Num of infant, children, adult, senior
price_lst = [0, 56, 76, 38] #Price for infant, children, adult, senior

def is_valid(string):
 age_lst = string.split(", ")
 for age in age_lst:
 if not age.isdigit():
 return False
 elif int(age) < 0 or int(age) > 120:
 return False
 return True

for group_num in range(5):
 group = input("Enter ages of guests in the group: ")
 is_invalid = not is_valid(group)
 while is_invalid:
 group = input("Enter valid ages of guests: ")
 is_invalid = not is_valid(group)
 age_lst = group.split(", ")
 for age in age_lst:
 age = int(age)
 sum_age += age
 num_guest += 1
 if age < 3:
 guest_lst[0] += 1
 elif age < 13:
 guest_lst[1] += 1
 elif age < 60:
 guest_lst[2] += 1
 else:
 guest_lst[3] += 1

print("")
print("Guest statistics")
print("Number of infants: ", guest_lst[0])
print("Number of children: ", guest_lst[1])
print("Number of adults: ", guest_lst[2])
print("Number of seniors: ", guest_lst[3])
print("")

print("Average age of guests is ", int(sum_age/num_guest), " years old")
print("")
print("Revenue by category")
print("Children: $%.2f" % (guest_lst[1]*price_lst[1]))
print("Adults: $%.2f" % (guest_lst[2]*price_lst[2]))
print("Seniors: $%.2f" % (guest_lst[3]*price_lst[3]))
print("")
print("Collected total revenue of $%.2f" % (guest_lst[1]*price_lst[1] + guest_lst[2]*price_lst[2] +
guest_lst[3]*price_lst[3]))
• Initialise counter variables with suitable data types
• Use of for / while loops correctly
• Obtains (5 valid sets of) user input
• Manipulation of input data to retrieve ages (e.g. string slicing / list.split())
• Type forcing of input to integer
• Validates input are integers and ensures valid input
• Validates input are between 0 and 120 (inclusive) and ensures valid input
• Use of conditional statements correctly to check for age group
• Rounds down average age to nearest year (e.g. round() / int() / quotient)
• Prints currency to 2 decimal places (e.g. using print formatting / hard code “.00”)

Task 4, Question 11

• Guest statistics block printed accurately & correctly

• Average age sentence printed accurately & correctly (excludes rounding
inaccuracies)

• Revenue by category block printed accurately & correctly
• Total revenue block printed accurately & correctly (excludes d.p. inaccuracies)
• An empty line between each block (total of 3 empty lines)

Task 4, Question 12
Same code as Question 11
• Amend for / while loop iterations correctly to cater for varying lengths of input
• Validates that there must be at least 1 guest entered each time
• Prints output accurately and correctly

Task 4, Question 13
• Asks user for input on number of entries before initiating the loop / Checks for a

specific end-loop process (e.g. blank entry / typing “END”)
Prints private test case accurately and correctly (1st input: “END”)

