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b Since ,s n  and 1 21 si i i n     , we need to choose s integers from 

 1,2,...,n  for each term 
1 2 si i ia a a  in the sum.  

Thus, there will be 
n

s

 
 
 

 terms in the sum.  

c 
Similarly, the number of terms will be 

1

1

n

s

− 
 

− 
. 

d ( )( ) ( )

1 2

1 2

1 2

1 1

1 2

1

1 1 1

1

... ... ...
s

s

n

i i j i j k

i j n i j k n

i i i n

i i i n

a a a

a a a a a a

a a a a a a

      

    

+ + +

= + + +

+ + + +

  



 



( )

( )

1

1 1 1
1

1 1 1 2
1 2 1 2

1

1 1 1
1

1 1 1

1 2 1 2

1
1 2

... ... ...    

(by AM-GM and (b),

n n n n

n
n n

n n n n n

s s s s n
n n

n n
a a a a a a

n
a a a a a a

s

− − −       
       
       

− − −       
       − − −       

    
  + +        

    
 + + + +        

( )

1 1

1 1

2

2

 (c))

1 ... ...
1 2

1 ... ...  (by (a)) 
1 2

1

n n

s
n n

n n

s n

s
n n

nn n

n

n n n
g g g g

s

n n n
g g g g

s

g

− −   
   

−   

   
   
   

   
   
   

     
= + + + + + +     

     

     
= + + + + + +     

     

= +

 

  

 

 

Qn Solution 

3(a) 

 

Observe that the first time the nth line enters the circle, it will create a new region.  

In addition, each time the nth line intersects with each of the previous 1n  lines, a 

new region is created. 

Additionally, as there are only 1n −  lines previously, and lines cuts other lines at 

most once, there can only be at most 1n −  intersections between the new line and 

the previous 1n −  lines, giving rise to at most n new regions.  

Since the total possible maximum can only arise when the maximum number of new 

regions is created with the addition of each line, we have 
1 1 ( 1)n n n nm m − += −− = . 
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(b) Note that for each white and black sector on the smaller circle, it will match with 

exactly 1n  sectors and n sectors respectively on the bigger circle.  

 

Hence there will be in total 1 1 2 1n n n n n n such matches 

across all possible rotations. 

 

Since there are 2 1n  possible rotations of the smaller circle, there will be at least 

2 ( 1)
1

2 1 2 1

n n n
n n

n n
matches for one of the rotations by Pigeonhole 

Principle. 
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4(a) Now, 2 1 2 2 1 2 2 1 2 1n n n n n nF F F F F F+ − + −= +  = −  for 1n  . 
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Similarly, 
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(b) 
1055 SF=   

7 9 12191 SF F F= + +   



 

Note: We can see this from; 
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(ci) 
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Alternatively 

If 2iu i=  for all i. 

Then, 2 4 6 2... sk F F F F= + + + +  and  

( )2 1 2 11 1 1s s Sk F F+ ++ = − = + . 

 

If 2iu i  for some i, consider the smallest i where this happens, call this m + 1.  

(Or consider the largest m such that 1 2i iu u −= +  for all i m ).  

So, 1 2 2mu m+  + . This implies, 
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Since ( )1 2 2 2 1 1mu m m+  + = + +  we have that, 

12 11 ...
m sm u u Sk F F F
+++ = + + + . 

 

(cii) Let P(n) be the statement that n S  for 1n  . 

 

Base Case: 

21 SF=   

So, P(1) is true. 

 

Inductive Step: 

Assume that P(k) is true for some 1k  , i.e. k S , 

1 2
...

su u uk F F F= + + +  for some appropriate sequence 1 2, ,..., su u u . 

 

If 1 2u = , from (ci) we are done. 

 

 

 

If 1 3u = , we can use a similar argument from (ci). Hence it is true. 

[For more details: 

If 2 1iu i= +  for all i. Then, 

3 5 7 2 1... sk F F F F += + + + +  and  

( )2 2 2 2 21 1 s sk SF F F+ ++ = + = − . 

 

If 2 1iu i +  for some i, then there exist 1m   where 1 2 3mu m+  + . This implies, 
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Since ( )2 3 2 2 1mu m m + = + +  we have that, 

12 21 ...
m sm u u Sk F F F
+++ = + + + .] 

 

If 1 4u  , 

1 221 ...
su u u Sk F F F F+ = + + + +  as 1 4 2 1u   + . 

 

Hence P(k+1) is also true. 

 



Conclusion: 

As P(1) is true, as well as P(k) is true ( )1P k +  is true, by Principle of Mathematical 

Induction, P(n) is true for 1n  . 
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5(a) 1 1
2 2
( ) 1 ( 2)
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n k k n k
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Both n and k must be of the same parity. 

(b) Without restrictions, each kid has k flavours to choose from so there are nk possible 

orders.  

Each order can include exactly r flavours where 1 .r k  

There are ( , )S n r  ways to divide the n kids into r disjoint, non-empty subsets. 

There are k flavours to assign to the first subset, 1k  flavours to assign to the 

second subset and so on. Thus there are 1( ( )1)
r

kk k rk P ways to assign 

r flavours to the subsets.  

(ci) Note that the total number of possible orders is ! ( , )k S n k  (a special case from part 

(b)) 

Let 
i
A be the set of orders where flavour i is excluded, 1 .i k  

Then 1
n

i
A k and there are 

1

k
such ' .

i
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n

i j
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k
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i
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r
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Thus number of orders of n single scoop cones where no flavour is excluded is  
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Thus combining this result with the answer in (b), we have 
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6a  2 ,na n +    

b +  

Bi 
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2 2g f ( ) g (2 )

2 2

f ( 1)

fg( ) (shown)

x x

x

x

x

=

= +

= +

=

 

 
2 2 2 4 2f g( ) 4 4 fg f ( ) g fgf ( ) g f ( )x x x x x= + = = =  

From (b)(i), 

( ) ( ) ( )2 2 2 2 2f g( ) f g f ( ) g f gf ( ) g g f f ( )x x x x= = =  

The arrangements are 2 2 2 4 2f g,fg f ,g fgf and g f . 

 

g fg fg ( ) 4 4 2i j k x x k j i= + + +  

cii As the coefficient of x is 4, the function f must be applied twice. 

 

Therefore g fg fg ( ) 4 4 2i j k x x k j i= + + +  where i, j, k are non-negative integers 

describes all possible arrangements of f and g which are equal to a function with a 

coefficient of x of 4. 

 

The number of arrangements that satisfy the condition is the number of non-negative 

integer solutions for i, j, k to the equation 4 2 4k j i m+ + =  

 

 

Method 1 

As all terms are non-negative, 0 mk  . 

Then 2( )
2

i
j m k= − − , so 0 2( )j m k  − . Hence there are 2 2 1m k− + corresponding 

choices for j, after which 4 4 2i m k j= − −  is fixed. 

 

The number of arrangements of f and g that are equal to 4 4x m+  is 

( ) ( )( )

( )( )
( )

( )

0 1

2

2 2 1 2 1 1 2

1
2 1 1 2

2

1   (shown)

m m

k k

m k m m k

m m
m m

m

= =

− + = + + −

+
= + + −

= +

 

 



 

Method 2 

( ) 00 m4 o2 du4 lo 2 2i ik j i m i+ +    ==  for  
0 0i  . 

0 04 2 2 4 2 2k jk j m mi i + += =+ +  0,j i  both odd or even. 

If both odd:  
1 0 1 1 1 1 12 1, 2 1, , 10 k j ij j mi i i j  = + = + + + = − . As 

1 1, ,k j i  are non-

negative integers, the number of solutions is 
1 3 1 1

3 1 2

m m− + − +   
=   

−   
. 

 

If both even:  
22 0 2 2 222 , 2 1, , 0 k j i mj j i i i j   += + == + . As 

2 2, ,k j i  are non-

negative integers, the number of solutions is 
3 1 2

3 1 2

m m+ − +   
=   

−   
. 

 

Hence, the total number of ways is  

( )( ) ( )( )

( )
( )

( )
2

1 2 1 2 1

2 2 2 2

1
2

2

1 .

m m m m m m

m
m m

m

+ + + + +   
+ = +   

   

+
= + +

= +

 

 

Method 3 (Proof by Induction) 

Let mP  be the proposition that the number of arrangements of f and g that are equal 

to the function 4 4x m+  is 2( 1)m + . 

 

1P  : From (b)(ii), there are 2(1 1) 4+ = arrangements equal to 4 4x + . Therefore 1P  is 

true. 

 

Assume nP  is true for some m n= , n + . 

1nP +  :  

As the coefficient of x is 4, the function f must be applied twice. 

 

Therefore g fg fg ( ) 4 4 2i j k x x k j i= + + +  where i, j, k are non-negative integers 

describes all possible arrangements of f and g which are equal to a function with a 

coefficient of x of 4. 

 

The number of arrangements equal to 4 4( 1)x n+ +  is the number of non-negative 

integer solutions for i, j, k to the equation 4 2 4 4k j i n+ + = + . 

 

To count number of arrangements where 1k  : 

This is the number of non-negative integer solutions for i, j, k – 1 to the equation 

4( 1) 2 4k j i n− + + = . By induction hypothesis there are 2( 1)n +  such arrangements. 

 



To count number of arrangements where 0k = : 

This is the number of non-negative integer solutions for i, j to the equation 

2 4 4j i n+ = + . 

Note 0 2 2j n  + , following which there will be one solution for i, so there are 

2 3n +  such arrangements. 

 

Hence there are a total of 2 2 2( 1) 2 3 4 4 ( 2)n n n n n+ + + = + + = +  

arrangements equal to 4 4( 1)x n+ + , so 1nP +  is true. 

 

As 1P  is true and nP  is true   1nP +  is true, mP  is true for all m + . 

ciii As all arrangements of f and g that are equal to 4 4x m+  or 4 4 1x m+ +  take the form 

g fg fgi j k , we will represent them using the corresponding 3-tuples ( ), ,i j k . 

 

Consider the mapping between the set of arrangements of f and g that are equal to 

the function 4 4x m+  to the set of arrangements of f and g that are equal to the 

function 4 4 1x m+ +  defined by: 

( ) ( ), , 1, ,i j k i j k+  

This map is injective: 

As ( ) ( ) ( ) ( ), , 1, , , , , ,1 i j k i j k     = + + = . 

This map is surjective: 

Let ( ), ,    represent an arrangement of f and g that is equal to the function 

4 4 1x m+ + . 

As the constant term 4 1m +  is odd, then   must be odd, and in particular 0  . 

Hence ( ), ,1  −  represents an arrangement equal to the function 4 4x m+  that 

maps to ( ), ,   . 

 

Therefore the mapping is a bijection, and there are ( )
2

1m +  arrangements of f and g 

that are equal to the function 4 4 1x m+ + . 

  

 

 

Qn Solution 

7(ai) Let 1b a= + . 

( )
22 211 1 2 1 121a a a+ = +  + =  

So 60a =   ( )11,60,61  is a Pythagorean triple. 

(aii) Let ( ) ( )
2 222 1 1k m m+ + = +  

( )
2 22 1 2 1 2 2k m m k k+ = +  = +  

So ( )2 22 1,2 2 ,2 2 1k k k k k+ + + +  is a Pythagorean triple for all positive integers k. 



This infinite family of triples is primitive since 22 2k k+ and 22 2 1k k+ +  are 

consecutive integers, so no primes divide both of them.  

 

(bi) gcd(2,2,3) 1=  but gcd(2 2,2 3,3 2) 2   =  

(bii) Let ( ), ,x y z  be a primitive Pythagorean triple. 

Claim: gcd( , ) 1x y = . 

Proof: Suppose otherwise for contradiction. Let | ,p x y , p prime.  

Then 2 2 2|p x y z+ = . 

So by Euclid’s Lemma, |p z  too. But this contradicts gcd( , , ) 1x y z = . 

Similarly, gcd( , ) gcd( , ) 1x z y z= = . (So, ( ), ,x y z  are pairwise coprime.) 

 

Claim: gcd( , , ) 1xy yz zx = . 

Proof: Let p be a prime. We need to prove that if p divides any one of the terms, it 

does not divide another.  

WLOG, Let |p xy . We need to prove that p does not divide yz or p does not divide 

xz. 

Since p is prime, | |  or |p xy p x p y  by Euclid’s Lemma. 

WLOG, |p x .  

By earlier claim, gcd( , ) 1x y = , so p does not divide y. 

Similarly, p does not divide z.  

Since p is prime, and p divides neither y nor z, p does not divide yz (shown).  

 

Alternatively  

Suppose for contradiction that gcd( , , ) 1x y z  . Then | , ,p xy xz yz  for some prime p.  

Since p is prime, | |  or |p xy p x p y  by Euclid’s Lemma. 

WLOG, |p x .  

Since p is prime, | |  or |p yz p y p z  by Euclid’s Lemma. 

WLOG, |p y  

So 2 2 2| |p x y z p z+ =   by Euclid’s Lemma 

This means that | gcd( , , )p x y z , which contradicts gcd( , , ) 1x y z = . 

(The other cases are similar.) 

c ( ) ( )
2 44 2 2 8 2 2 42z x y z x y z xy− = − + , so it suffices to prove that  

( ) ( )
4 4 8 2 2 42yz zx z x y z+ = − , or equivalently, that  

4 4 4 2 22x y z x y+ = − . 

Substituting 2 2 2x y z+ =  into RHS,  

( )
2

4 2 2 2 2 2 2

4 4

2 2

LHS (shown)

z x y x y x y

x y

− = + −

= + =

 



d By (c) and (bii), each primitive Pythagorean triple ( ), ,x y z  gives rise to an integer 

solution ( )4 2 2, , ,xy yz zx z x y−  to 4 4 4 2u v w t+ + =  such that gcd( , , ) 1u v w = . 

By (aii), there are infinitely many primitive Pythagorean triples of the form 

( )2 22 1,2 2 ,2 2 1k k k k k+ + + + . 

Different primitive triples are associated with different integer solutions, since each 

component of ( )2 22 1,2 2 ,2 2 1k k k k k+ + + +  is an increasing function of k, so 

products of them are also increasing functions.  

(E.g. 
1 2k k   ( )( ) ( )( )2 2 2 2

1 1 1 1 2 2 2 22 2 2 2 1 2 2 2 2 1k k k k k k k k+ + +  + + + )  

 

Alternatively  

Suppose ( ) ( ) ( ), , , , , ,xy yz zx ab bc ca p q r= = , then 

, ,
p

pqr p
x a y b z c

q r

qr pqr
= = = = = = .  

This implies that if ( ) ( ) ( ) ( ), , ,, , , , ,a b c xy yz zx ab bc cax y z     

So there are infinitely many integer solutions to 4 4 4 2u v w t+ + =  such that 

gcd( , , ) 1u v w =  as required. 

  

 

Qn Solution 

8a Let iz x y= +  where x and y are real. Let wx  and wy  be the integers closest to x and y 

respectively.  

 

Clearly 0.5wx x−   and 0.5wy y−  , so 2 2.
1

0.5 5
2

0z w  =− + . 

[Or: Since ( ) ( ) 1 or 0x x x x− + − =       , the smaller of these is always 0.5 .] 

 

Alternative presentation: 
 

Divide the complex plane into unit squares centred on the Gaussian integers. 

Each point in the complex plane must lie in one of these squares. (Use any of the adjoining 

squares for points on the edges or vertices.) 
Since the maximum distance of a point on a square from the Gaussian integer at its centre is 

2 21 1
1 1

2 2
+ = , applying this to the point representing z, we obtain the result.  

 

 



b 
Applying the result from (a) to the complex number 

s

t
, there is a complex number q such 

that 
1

1
2

s
q

t
−   . 

Multiplying both sides by t ,  

s
q t t

t
−   

s qt t−   

Let r s qt= − , which is a Gaussian integer because s, q and t are Gaussian integers. The 

Gaussian integers q and r defined, meet the required conditions.  

c 5 4i
2.6 1.2i

1 2i

s

t

+
= = −

+
 

 

Consider Gaussian integers w with Re( ) 2 or 3w = , and Im( ) 2 or 1w = − − . All other 

Gaussian integers will have either Re( ) 2.6 1w −   or Im( ) ( 1.2) 1w − −  , and thus 

1
s

w
t
−  . We have 

( )

( )

( )

( )

2 2

2 2

2 2

2 2

6

2 i

3 i

0.6 0.2 1

0.4 0.2 1

0. 0.8 1

0.4 0.8 1

2 2i

3 2i

s

t

s

t

s

t

s

t

− −

− −

= + 

=

=− −

− −

+ 

+ =

= + 

 

so there are exactly 3 pairs of Gaussian integers ( , )q r , namely (2 i,1 i)− + , (3 i, i)− −  and 

(3 2i, 2)− − . 

d 
The problem is equivalent to showing that for all Gaussian integers s, t such that 

s

t
 is not a 

Gaussian integer, there exist at least two Gaussian integers q such that 1
s

q
t
−  , i.e. less 

than 1 unit away from 
s

t
. 

Let iz
s

x y
t

= = +  where x and y are real. 

 

If x is integer, then y is not an integer. Then iq x y= +     and iq x y= +     are distinct 

Gaussian integers satisfying the condition. Similarly, if y is integer, then x is not an integer, 

so iq x y= +    and iq x y= +    are distinct Gaussian integers satisfying the condition. 

 

The last case is where neither x nor y are integer. Then: 



 
Method 1 

Let a x x= −    , b x x= −   , c y y= −    , d y y= −    (see diagram) 

 

 
 

Observe that 2 2 2 2 22 ( ) 1a b a ab b a b+  + + = + =  and similarly 2 2 1c d+  , so that 
2 2 2 2 2a b c d+ + +  . 

 

Grouping the terms, we get ( ) ( )2 2 2 2 2a c b d+ + +  . This implies that either 2 2 1a c+   or 

2 2 1b d+  , so either ix y+        or ix y+        is less than 1 unit away from ix y+ . 

Similarly, by grouping the sum as ( ) ( )2 2 2 2 2a d b c+ + +  , either ix y+        or 

ix y+        is less than 1 unit away from ix y+ .  

So we have found two Gaussian integers less than 1 unit away from z. 

 
Method 2 

 

 
 
Consider the unit square containing z with vertices on Gaussian integers. Define a to be the 

shortest distance from z to an edge of the square, and define b to be the next shortest such 

distance, such that the distance from z to the nearest Gaussian integer at a vertex of the 

square is 2 2a b+ . Clearly 0
1

2
a b   , so this distance is less than 1. 

 

But observe that 

a 

b 

 

 
 

 
a b 

c 

d 

 



 

2 2 2 2

2 2

2

(1 ) (1 )

2 (1 ) (1 )

(1 )

1

a b b b

bb

b

b

b

b

+ − + −

+ −



= −

+ −

+

=

 

i.e. there is a second vertex (Gaussian integer) less than distance 1 away from z, which is 
what we wanted. 

 

Method 3 

Consider the unit square containing z with vertices on Gaussian integers. 
Draw a quadrant of a unit circle centred at the lower-left vertex, and another centred at the 

upper-right vertex. Since every point in the interior of the square lies in the interior of at 

least one of these two quadrants, at least one of the two Gaussian integers represented by the 
vertices at the lower-left and upper-right lies within distance 1 of z.  

 

 
 
Similarly, by considering quadrants centred at the upper-left and lower-right vertices, at 

least one of these is a Gaussian integer within distance 1 of z. 

 

So there are at least 2 such Gaussian integers. 

 

  

 


