1 (i) $\frac{1}{k!} - \frac{1}{(k+1)!} = \frac{(k+1)-1}{(k+1)!} = \frac{k}{(k+1)!}$ Series $= \sum_{r=2}^{2n+1} \frac{r}{(r+1)!}$ = $\sum_{r=2}^{2n+1} \left(\frac{1}{r!} - \frac{1}{(r+1)!} \right)$ = $\frac{1}{2!} - \frac{1}{3!}$ + $\frac{1}{3!} - \frac{1}{4!}$: $\frac{1}{(2n)!} - \frac{1}{(2n+1)!} + \frac{1}{(2n+1)!} - \frac{1}{(2n+2)!} = \frac{1}{2!} - \frac{1}{(2n+2)!} = \frac{1}{2} - \frac{1}{(2n+2)!}$ **(ii)** $\sum_{r=2}^{2n} \frac{2}{(r+2)!} = \sum_{r=3}^{2n+1} \frac{2}{(r+1)!}$ $<\sum_{r=3}^{2n+1} \frac{r}{(r+1)!} = \left[\frac{1}{2} - \frac{1}{(2n+2)!}\right] - \frac{2}{(2+1)!} < \frac{1}{6}$ 2 (i) Distance travelled at the $(n+1)^{th}$ bounce $= 10 + 2(10) \left[\left(\frac{3}{4}\right)^{1} + \left(\frac{3}{4}\right)^{2} + \left(\frac{3}{4}\right)^{3} + \dots \left(\frac{3}{4}\right)^{n} \right]$ $= 10 + 20 \left[\frac{\frac{3}{4} \left(1 - \frac{3^{n}}{4} \right)}{1 - \frac{3}{4}} \right]$ $= 10 + 60 \left(1 - \frac{3^n}{4} \right)$

$$= 70 - 60 \left(\frac{3}{4}\right)^n$$

(ii) Distance travelled at the $(n+1)^{th}$ bounce ≤ 55

$$70 - 60 \left(\frac{3}{4}\right)^n \le 55$$

$$\frac{70-55}{60} \le \left(\frac{3}{4}\right)'$$

 $n \leq 4.82$

So the largest value of *n* is 4. In other words, at the $(4+1)^{\text{th}} = 5^{\text{th}}$ bounce, the distance travelled is less than 55m, while at the 6th bounce, the distance travelled is more than 55m.

Therefore, when the ball has travelled exactly 55m, it has only bounced 5 times.

(iii)

Total distance travelled at the maximum height after the 4th bounce (at the exact moment when the floor is raised)

$$= 10 + 2\left[10\left(\frac{3}{4}\right)\right] + 2\left[10\left(\frac{3}{4}\right)^{2}\right] + 2\left[10\left(\frac{3}{4}\right)^{3}\right] + 10\left(\frac{3}{4}\right)^{4}$$

= 47.8515625m

Height after 4th bounce, $h = 10\left(\frac{3}{4}\right)^4 = 3.1640625 \text{ m}$

New height on platform, h' = 3.1640625 - 2 = 1.1640625 m

Distance travelled on the raised floor

$$= h' + 2(h') \left[\left(\frac{3}{4} \right)^1 + \left(\frac{3}{4} \right)^2 + \left(\frac{3}{4} \right)^3 + \dots \right]$$
$$= h' + 2h' \left(\frac{\frac{3}{4}}{1 - \frac{3}{4}} \right) = h' + 2h' (3) = 7h' = 8.1484375 \text{ m}$$

4	$\frac{dx}{dt} = kx(10-x)$				
	dt				
	$\int \frac{1}{10x - x^2} dx = \int k dt$				
	$\int \frac{1}{5^2 - (x - 5)^2} dx = \int k dt$				
	$\frac{1}{10}\ln\left(\frac{5+(x-5)}{5-(x-5)}\right) = kt + C$				
	$\ln\!\left(\frac{x}{10-x}\right) = 10kt + D$				
	$\frac{x}{10-x} = Be^{10kt}, \qquad \text{where } B = e^D$				
	Where $t = 0, x = 2$				
	$B = \frac{1}{4}$				
	$\frac{x}{10-x} = \frac{1}{4}e^{10kt}$				
	$4x = e^{10kt}(10 - x)$				
	$10e^{10kt}$				
	$x = \frac{100}{4 + e^{10kt}}$				
	(i)				
	y				
	Asymptote: $y = 10$ $k = 1$				
	k = 0				
	-5				
	(ii)				
	k < 0				
	A vaccination had been found to eliminate the virus OR				
5	The people infected by the virus had passed away OR any other reasonable answer. $i\alpha \qquad i\beta$				
3	$Z = W = e^{i\omega} - e^{i\rho}$				
	$= (\cos \alpha + i\sin \alpha) - (\cos \beta + i\sin \beta)$ $= (\cos \alpha - \cos \beta) + i (\sin \alpha - \sin \beta)$				
	$= 2\sin(\alpha + \beta)\sin(\alpha - \beta) + i(2\sin(\alpha - \beta))\cos(\alpha + \beta)$				
	$=-2\sin(\frac{1}{2})\sin(\frac{1}{2})+i(2\sin(\frac{1}{2})\cos(\frac{1}{2}))$				

$$\begin{array}{|c|c|c|c|c|} \hline \left(\begin{array}{c} = 2i\sin(\frac{\alpha-\beta}{2}) \lim_{z \to z} \left[\sin(\frac{\alpha+\beta}{2}) + \cos(\frac{\alpha+\beta}{2}) \right] \\ = 2i\sin(\frac{\alpha-\beta}{2}) e^{i(\frac{\alpha+\beta}{2})} & (\operatorname{Proved}). \end{array} \right. \\ \hline \left((z-w)(z^*-w^*) \\ = (z-w)(z-w)^* \\ = (z-w)(z-w)^* \\ = (z-w)(z-w)^* \\ = (z-w)(z^*-w^*) \\ = 2i\sin(\frac{\alpha-\beta}{2}) e^{i(\frac{\alpha+\beta}{2})} \\ = 4\sin^2(\frac{\alpha-\beta}{2}) e^{i(\frac{\alpha+\beta}{2})} \\ = 4\sin^2(\frac{\alpha-\beta}{2}), \text{ since } |i|=1 \& |e^{i(\frac{\alpha+\beta}{2})}|=1 \\ = 2(1-\cos(\alpha-\beta)) \\ \text{Therefore, } k=2. \\ \hline \text{Alternatively,} \\ \operatorname{Since} \arg(z^*) = -\alpha \text{ and } \arg(w^*) - \beta, \text{ we have} \\ (z-w)(z^*-w^*) = [2i\sin(\frac{\alpha-\beta}{2}) e^{i(\frac{\alpha+\beta}{2})}][2i\sin(\frac{-\alpha+\beta}{2}) e^{i(\frac{-\alpha+\beta}{2})}] \\ = 4i^2(-\sin^2(\frac{\alpha-\beta}{2})) \\ = 4i^2(-\sin^2(\frac{\alpha-\beta}{2})) \\ = 2(1-\cos(\alpha-\beta)) \\ \text{Therefore, } k=2. \\ \hline \left(\begin{array}{c} \mathbf{b} \end{array} \right) \quad \left(\frac{(z-1)}{1+i\sqrt{3}} \right)^3 + 2\left(\frac{1+i\sqrt{3}}{z^2} \right) = 0 \\ \frac{z^5+2(1+\sqrt{3}i)^4}{(1+\sqrt{3}i)^4} = 0 \\ z^5 = -2(1+\sqrt{3}i)^4 \\ = -2(2e^{i(\frac{\pi}{3})}) \\ = 2^5 e^{i(\frac{\pi}{3})} \operatorname{since} e^{i\pi} = -1 \\ = 2^5 e^{i(\frac{\pi}{3})} \operatorname{correct to principal range.} \end{array} \right) \\ \hline \end{array}$$

	sentiments of all	eligible voters in t	the United States.		
	(iii) One could use str 1000 voters be sa	atified sampling.	This could be con wing manner	ducted by ensuring the	at the sample of
	Educational Qualification	No degree	Bachelor Degree	Master degree or higher]
	Percentage /	58.61%	30.44%	10.95%	-
	(Number)	586	304	110	
	degrees, 304 elig degrees or higher respective educat ensure that each being selected.	ible voters have B The company ca ional institutions (of the chosen inter	achelor degrees a n randomly choos (representing diffe viewees within ea	nd 110 eligible voters se the required number erent regions/states in ach stratum have an eq	that have Master r provided by the America) to jual chance of
8	(i) By symmetry, μ P(X < 250) = 0.2 $P\left(Z < \frac{250 - 275}{\sigma}\right)$ $\frac{-25}{\sigma} = -0.84162$ $\therefore \sigma = 29.7$ (ii) P(X > c) = 0.01 $\therefore P(X < c) = 0.99$	$=\frac{250+300}{2}=275$	5		
	c = 344 (correct t	to 3 s.f.)			
9	$\frac{4}{15}$	red $\frac{5}{11}$ yellow $\frac{6}{10}$ green $\frac{5}{9}$	yellow 1 green green 1 yellow red 1 green green 1 red red 1 yellow yellow 1 red		
	(i) P(last ball is g	$(reen) = \frac{4}{15} \times \frac{5}{11} + \frac{5}{11}$	$\frac{5}{15} \times \frac{4}{10} = \frac{14}{55}$		

(ii)

$$P(first yellow|last green) = \frac{P(first yellow AND last green)}{P(last green)} = \frac{\frac{1}{21} \frac{x^4}{40}}{\frac{11}{55}} = \frac{11}{21}$$
10

$$X - P_e(\lambda)$$

$$P(X = 2) = \frac{1}{8} P(X = 0)$$

$$\frac{e^{-\lambda}\lambda^2}{2!} = \frac{1}{4} e^{-\lambda}\frac{\lambda^0}{0!}$$

$$\lambda^2 = \frac{1}{4} \Rightarrow \lambda = \frac{1}{2} = 0.5 \text{ (-ve rejected)}$$
Alternative:
Using GC

$$P(1 \le X < 4) = P(X = 1) + P(X = 2) + P(X = 3)$$
or $P(X \le 3) - P(X = 0)$

$$= 0.392 (3 \text{ s.f.})$$
Let Y be the no. of defects in the carpet of area 500 m².

$$Y \sim P_e(\frac{50}{20} \approx 0.5)$$

$$Y \sim P_e(\frac{50}{20} \approx 0.5)$$

$$Y \sim P_e(12.5)$$
Since $\lambda = 12.5 > 10$, $Y \sim N(12.5, 12.5)$ approximately.
 $P(Y > 10) \xrightarrow{cc} P(Y > 10.5) = 0.714 (3 \text{ s.f.})$
11
(i)
Let X be the r.v. " volume of content of randomly chosen milk carton" and μ be the mean volume of content in milk cartons.
 $H_0; \mu = 2$
 $We carry out 1-tailed t-test at 10% significance level, since the population variance is unknown and sample size n is small.
Under H0, $T = \frac{\overline{X} - \mu}{s/\sqrt{n}} \approx 1(9)$
From GC,$

$\bar{x} = 1.9834$
p-value = 0.00882
Since <i>p</i> -value < 0.10 , we reject H ₀ and conclude that at 10% significance level, there is sufficient evidence that the manufacturer has overestimated the volume of the content of the milk cartons.
(ii) $H_0: \mu = 2$
$H_1: \mu \neq 2$
We carry out 2-tailed <i>t</i> -test at 10% significance level $r_{10} = 2(0.00822) = 0.01764$
p-value = 2(0.00882)=0.01764 Since p-value is still less than 10%, the conclusion in (i) does not change.
(iii)
Since standard deviation is known, we use <i>z</i> -test instead.
$\begin{array}{c} H_0: \mu = 2 \\ H_2: \mu < 2 \end{array}$
We carry out 1-tailed <i>z</i> -test at 10% significance level
$\overline{X} - \mu$
Under H ₀ , $Z = \frac{1}{\sigma / \sqrt{n}} \sim N(0, 1)$
To reject H_0 ,
$\frac{\overline{x} - \mu}{s / \sqrt{n}} < -1.2816$ $\Rightarrow \frac{1.998 - 2}{0.012 / \sqrt{s}} < -1.2816$
$0.012/\sqrt{n}$
$\Rightarrow n > 59.15$
Least number of mink cartons to be measured is oo.
Alternatively, using GC, $P(\overline{X} < 1.998) < 0.10$
[Y=normcdf(-E99,1.998, 2, $\frac{0.012}{\sqrt{n}}$)]
X Y1 55 .10822 56 .10616 57 .10414 58 .10217 59 .10024 59 .10024 50 .09835 61 .09651
X=60
n = 59, P(\overline{X} < 1.998) = 0.10024 n = 60, P(\overline{X} < 1.998) = 0.09835
Least number of cartons used is 60.

12	(i)
	The scatter diagram is
	y ↑
	82 •
	$\begin{array}{c} 21 \\ \hline 5 \\ 5 \\ 30 \end{array} \rightarrow x$
	(ii)
	From the scatter diagram, the regression line of y on x should have negative gradient.
	Therefore $y = 79 - 2x$ is the correct regression line of y on x.
	(iii)
	Since $(\overline{x}, \overline{y})$ lie on both regression lines, using GC to find the points of intersection,
	$\overline{x} = 20.015 \approx 20$
	$\overline{y} = 38.969 \approx 39$
	Let the lost pair of reading be (s, t)
	$s = 20 \times 7 - (5 + 10 + 15 + 20 + 25 + 30) = 35$
	$t = 39 \times 7 - (82 + 56 + 42 + 30 + 24 + 21) = 18$
	The 7 th pair of values is (35, 18).
	9=a+b× a=79 b=-2
	r ² =.8701056557 r=932794541
	From GC : $r = -0.932784541 = -0.933$
	(v)
	$e^{y} = ax^{b}$
	$\Rightarrow y = \ln a + b \ (\ln x)$
	$\ln a = 134.1077 \implies a = 1.746' \ 10^{58} = 1.75' \ 10^{58} (3 \text{ s.f.})$
	$b = -33.63857 \implies b = -33.6 \text{ (to 3 s.f.)}$

13	 (i) Each of the students is equally likely to answer the Differential Equation question correctly (i.e. constant p throughout all trials) The event of a student answering the Differential Equation question correctly is independent of the other students. 				
	(ii)				
	Let X be the random variable "no of students out of 30 students who could do the Differential Equation sugging"				
	$X \sim B(30, 0.3)$				
	$P(X \ge 6) = 1 - P(X \le 5)$				
	=0.92341≈0.923				
	(iii)				
	Let S be the r.v. "no of students out of 8 who could do that question"				
	Let T be the r.v "no of students out of 22 who could do that question" $\begin{bmatrix} r & P(0, 0, 2) \end{bmatrix}$				
	$S \sim B(8, 0.3)$				
	$T \sim B(22, 0.3)$				
	P(only 2 among first 8 could do that question $ X \ge 6$)				
	$=\frac{P(S=2)P(1 \ge 4)}{P(X \ge 6)}$				
	$P(X \ge 6)$				
	= 0.299				
	Let Y be the r.v. "no of students out of n who could do that question"				
	$Y \sim B(n, 0.3)$				
	$P(Y \le 5) > 0.9$				
	From G.C,				
	10 .95265 92178 12 .88215 13 .8346 14 .78052 15 .72162 16 .65978				
	Therefore, the largest possible value of n is 11				
	Since sample size = 50 is large.				
	$\overline{X} \sim N(9, \frac{6.3}{50})$ approximately by Central Limit Theorem				
	$P(\overline{X} \ge 10) = 0.00242$				