2015 H1 A Level Mathematics Solution

Q1. For
$$-2x^{2} + (k-4)x + 2k$$
 to be always negative,
Discriminant < 0 and coefficient of $x^{2} = -2 < 0$
 $(k-4)^{2} - 4(-2)(2k) < 0$
 $(k^{2} - 8k + 16) + 16k < 0$
 $k^{2} + 8k + 16 < 0$
 $(k + 4)^{2} < 0$
But $(k + 4)^{2} < 0$ for all real values of k. Therefore there is no solution for
 $(k + 4)^{2} < 0$ and there are no values of k for which $-2x^{2} + (k-4)x + 2k$ is always
negative.
Graph of $y = (x + 4)^{2}$
NORHAL FLOAT DEC REAL RADIAN HP
 $(i) \frac{d}{dx} \left(\frac{3}{(2x-1)^{4}} \right) = 3(-4)(2)(2x-1)^{-5} = -\frac{24}{(2x-1)^{5}}$
 $(ii) \int_{1}^{1} \left[(x + \frac{2}{x})^{2} dx \right]$
 $= \int_{1}^{1} \frac{x^{2} + 4 + \frac{4}{x^{2}} dx}{3}$
 $= \left[\frac{x^{3}}{3} + 4x - \frac{4}{x} \right]_{1}^{1}$
 $= 6\frac{7}{24}$

Perimeter of the remaining shape
$$PQRSTU = 30 \text{ cm}$$

 $\Rightarrow 3(y-2x)+3x = 30$
 $\Rightarrow y-x=10$
 $\Rightarrow y = 10+x$
Method 1:
Area of the remaining shape $PQRST$, A
= Area of triangle FDE – 3 (Area of triangle PDQ)
 $= \frac{1}{2}y^2 \sin 60^\circ - 3\left(\frac{1}{2}x^2 \sin 60^\circ\right)$
 $= \frac{1}{2}y^2 \frac{\sqrt{3}}{2} - 3\left(\frac{1}{2}x^2 \frac{\sqrt{3}}{2}\right)$
 $= \frac{\sqrt{3}}{4}\left[(10+x)^2 - 3x^2\right]$
 $= \frac{\sqrt{3}}{4}\left[(10+20x+x^2-3x^2)\right]$
 $= \frac{\sqrt{3}}{2}(50+10x-x^2)$
Method 2:
Area of the remaining shape $PQRSTU$, A
= Area of triangle FDE – 3 (Area of triangle PDQ)
 $= \frac{1}{2}(y)\left(\sqrt{\frac{3y^2}{4}}\right) - 3\left[\left(\frac{1}{2}\right)(x)\left(\sqrt{\frac{3x^2}{4}}\right)\right]$
 $= \frac{\sqrt{3}}{2}\left[\frac{1}{2}(10+x)^2\left(\frac{\sqrt{3}}{2}\right) - \left[\left(\frac{3}{2}\right)(x)\left(\frac{\sqrt{3}}{2}x\right)\right]$
 $= \frac{\sqrt{3}}{2}\left[\frac{1}{2}(10+20x+x^2) - \frac{3}{2}x^2\right]$
 $= \left(\frac{1}{2}\sqrt{3}\right)(50+10x-x^2)$ (shown)

	(1	
	$A = \left(\frac{1}{2}\sqrt{3}\right) \left(50 + 10x - x^2\right)$	
	$\frac{\mathrm{d}A}{\mathrm{d}x} = \left(\frac{1}{2}\sqrt{3}\right)(10 - 2x)$	
	For stationary value of A, $\frac{dA}{dx} = 0$	
	10-2x=0	
	<i>x</i> = 5	
	$\frac{d^2 A}{2} = -2 < 0$	
	dx^2 $\therefore A$ is maximum when $x = 5$.	
	Maximum value of $A = \left(\frac{1}{2}\sqrt{3}\right) (50 + 10(5))$	$(1) - (5)^2 = \left(\frac{75}{2}\sqrt{3}\right) \operatorname{cm}^2$
Q5.	(i) y	
	$y = (0.5)^{x} - \ln(x+1)$	
	(0,1 0 (0.7) <u>×</u> 86,0)
	x = -1	
	At x axis intercept $(y = 0)$ At y	axis intercept ($x = 0$)
	$(0.5)^{x} - \ln(x+1) = 0$ $y = 0$	$(0.5)^0 - \ln(1) = 1$
	$\left(0.5\right)^x = \ln\left(x+1\right)$	
	Using GC, $x = 0.786$	
	The coordinates of points of intersection with Asymptote : $x = -1$	th the axes are (0 , 1) and (0.786, 0).
	(ii) When $x = 0.5$, $y = 0.30164$	
	$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right _{x=0.5} = -1.1568 \approx -1.157 (3 \text{ dec. places})$	
	(iii) Equation of normal is not in syllabus following:	. But we can change the question to the

	The value of product moment correlation, r , shows a strong positive linear correlation between the height and weight of members of a rowing club : as height increase, the		
	weight of members of a rowing club increases linearly (at a constant rate).		
(iii)	w = 58.0325h - 6.3005		
(iv)	w = 58.0h - 6.30 Where $h = 1.66$ we 58.02250082(1.66) = 6.2004(8072) = 00.0 (22.6)		
(1V)	when $n = 1.00$, $W = 36.03230062(1.00) = 0.300406972 = 90.0(38.1)$ The estimated weight is 90.0 kg		
	The estimate is reliable as the value of r is close to 1 and 1.66 metres is within given data		
	range of the height of the members of the rowing club, i.e. the estimate is an interpolation.		
11	Let M and W be the random variables denoting the mass of a man and the mass of a woman in kg		
	$M \sim N(77, 9.8^2)$ $W \sim N(62, 10.6^2)$		
	(i) $P(\mu - 2 < M < \mu + 2) = P(77 - 2 < M < 77 + 2) = P(75 < M < 79) = 0.162$		
	OK .		
	$P(M - \mu < 2) = P(-2 < M - 77 < 2) = P(75 < M < 79) = 0.162$		
	(ii) Let $X = (M_1 + M_2 + M_3) - (W_1 + + W_4)$		
	$E(X) = 3 \times 77 - 4 \times 62 = -17$		
	$Var(X) = 3 \times 9.8^{2} + 4 \times 10.6^{2} = 737.56$		
	$X \sim N(-17,737.56)$		
	$P(M_1 + M_2 + M_3 > W_1 + W_2 + W_3 + W_4)$		
	$= P((M_1 + M_2 + M_3) - (W_1 + W_2 + W_3 + W_4) > 0)$		
	= P(X > 0) = 0.266		
	(iii) Let $Y = (M_1 + M_2 + M_3) + (W_1 + + W_4)$		
	$E(Y) = 3 \times 77 + 4 \times 62 = 479$		
	$Var(Y) = 3 \times 9.8^2 + 4 \times 10.6^2 = 737.56$		
	$Y \sim N(479, 737.56)$		
	$P(Y \le 460) = 0.242$		

Unbiased estimate of the population variance, $s^2 = \frac{1}{39} \left(325 - \frac{(-32)^2}{40} \right) = 7.6769 = 7.68$ (iii) A sample statistic T is an unbiased estimator of a population parameter θ if $E(T) = \theta$.i.e. $E(\overline{X}) = \mu$ and $E(S^2) = \sigma^2$ Or: A sample statistic is an unbiased estimate if it contains no systematic bias i.e. it does not tend to overestimate or underestimate the population parameter. (iv) Let Y be the random variable denoting the length of fish from the second lake in cm and μ be the population mean length of fish. $H_0: \mu = 18$ $H_1: \mu < 18$ Under H_o , $\overline{Y} \sim N(18, \frac{7.6769}{40})$ approximately by Central Linit Theorem since n = 40 is large. Using a 1-tailed z test at α % level of significance, $\overline{x} = 17.2$ gives p-value = 0.033917 Since Ho is rejected, p-value $\leq \alpha \%$ $0.033917 \le \frac{\alpha}{100}$ $\alpha \ge 3.39$ The set values of α is $\{\alpha \in \mathbb{R} : 3.39 \le \alpha < 100\}$