Anglo - Chinese School (Independent)

FINAL EXAMINATION 2021 YEAR 3 INTEGRATED PROGRAMME CORE MATHEMATICS PAPER 1

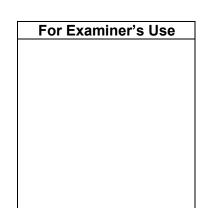
1st October 2021

Friday

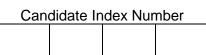
Candidates answer on the Question Paper. No additional materials are required.

INSTRUCTIONS TO CANDIDATES

- Write your index number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Answer all questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.


This paper consists of 15 printed pages and 1 blank page.

• The maximum mark for this paper is 80.

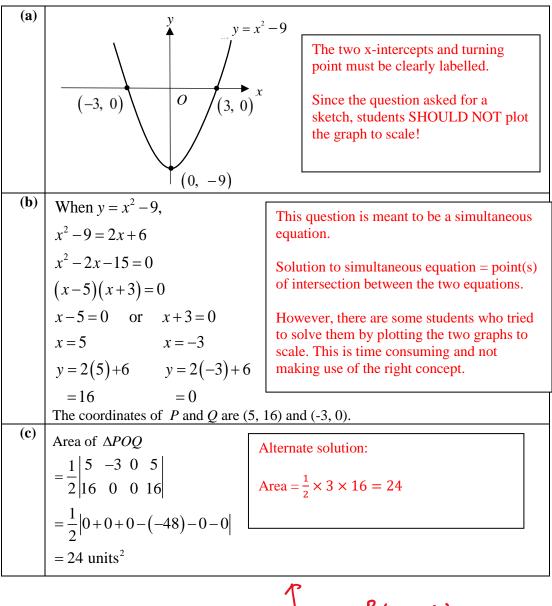

Paper 1 containts more straight-forward questions, but many students made careless mistakes in expansion, simplification and factorisation. They do not check the workings and verify the answers with the knowledge or the facts they learned. Many students still could not give the form of equation properly and they wrote expression instead.

1 hour 30 minutes

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all the questions in the spaces provided.

1. [Maximum mark: 9]


(a) Evaluate
$$4 - \frac{3}{3 - \frac{3}{4}}$$
. [3 marks]

(**b**) Make q the subject of the formula, $p = \sqrt{\frac{3q-2p}{q+5}}$. [3 marks]

(c) Factorise
$$12x^{3} - 4x^{2}y - 3xz^{2} + yz^{2}$$
 completely. [3 marks]
1 (a) $4 - \frac{3}{3 - \frac{3}{3}} = 4 - \frac{3}{3 - \frac{3}{9}}$
 $= 4 - \frac{3}{3 - \frac{4}{3}}$
 $= 4 - \frac{3}{5}$
 $= 4 - \frac{9}{5}$
 $= \frac{11}{5}$
(b) $p = \sqrt{\frac{3q - 2p}{q + 5}}$
 $p^{2} = \frac{3q - 2p}{q + 5}$
 $p^{2}q + 5p^{2} = 3q - 2p$
 $q(p^{2} - 3) = -2p - 5p^{2}$
 $q = \frac{-2p - 5p^{2}}{p^{2} - 3}$
Since the question wants q to be subject, q must not appear on the right hand side of the equation.
 $q = \frac{-2p - 5p^{2}}{p^{2} - 3}$
Since the question wants q to be subject, q must not appear on the right hand side of the equation.
 $q = 4x^{2}(3x - y) - z^{2}(3x - y)$
 $= (2x + z)(2x - z)(3x - y)$
Students did not factorise completely the last step.
 $q = (2x - z)(3x - y)$

2. [Maximum mark: 8]

- (a) Sketch the graph of $y = x^2 9$ clearly labelling the coordinates of the axes-intercepts and turning point. [2 marks]
- (b) The curve $y = x^2 9$ meets the line y = 2x + 6 at points *P* and *Q*. Find the coordinates of *P* and *Q*. [4 marks]
- (c) Hence, find the area of $\triangle POQ$ where O is the origin.

Q(-3,0) (5) 0 (5,16)

3

[2 marks]

3. [Maximum mark: 8]

(a) Solve
$$5y \ge y^2 + 6$$
. [2 marks]

(b) Solve $\frac{2x+1}{2} < -4(x+2) \le 5x+19$ and hence state the integer values of x that satisfies the inequality.

[6 marks]

3 (a)				
	$y^2 - 5y + 6 \le 0$			
	$(y-3)(y-2) \le 0$			
	$2 \le y \le 3$			
(b)	$\frac{2x+1}{2} < -4(x+2) \le 5x+19$			
	$\frac{2x+1}{2} < -4(x+2)$	$-4(x+2) \le 5x+19$		
	2x + 1 < -8x - 16	$-4x-8 \le 5$	x+19	
	10 <i>x</i> < -17	$-27 \le 9x$	Students must state the integer	
	<i>x</i> < -1.7	$x \ge -3$	values which satisfies the final	
	$\therefore -3 \le x < -1.7$		inequality.	
	The integer values are -3 and -2	2.		

4. [*Maximum mark: 5*]

A cuboid has a square base of length $1+\sqrt{2}$ units and the volume is $7+5\sqrt{2}$ units³. Express the height of the cuboid, *H*, in the form $a+b\sqrt{2}$, where *a* and *b* are constants. What do you notice about this cuboid?

4
$$(1+\sqrt{2})(1+\sqrt{2})H = (7+5\sqrt{2})$$

 $H = \frac{7+5\sqrt{2}}{3+2\sqrt{2}} \times \frac{3-2\sqrt{2}}{3-2\sqrt{2}}$
 $= \frac{21-14\sqrt{2}+15\sqrt{2}-10(2)}{9-4(2)}$
 $= 21-20+\sqrt{2}(15-14)$
 $= 1+\sqrt{2}$ units
The height of the cuboid is equal to the length of its square base. Hence it is a cube.

5. [Maximum mark: 5]

Given that A is an acute angle and $\cos A = \frac{1}{3}$, (a) find the value of $\sin A$, [2 marks] (a) Find the value of 2 (b) hence, show that $\frac{2 \tan A - 1}{3 \sin A} = 2 - \frac{\sqrt{2}}{4}$. **5** (a) $\sin A = \frac{\sqrt{3^2 - 1}}{3}$ [3 marks] Angle A is acute and it is in Quadrant 1. Hence all the trigo ratios are positive. Some $=\frac{\sqrt{8}}{3}/\frac{2\sqrt{2}}{3}$ students gave sin A as a negative value which don't make sense. $\frac{2\tan A - 1}{3\sin A} = \frac{4\sqrt{2} - 1}{3\left(\frac{2\sqrt{2}}{3}\right)}$ **(b)** $=2-\frac{1}{4\sqrt{2}}$ or $2-\frac{\sqrt{2}}{4}$ (shown) When asked to "show", students SHOULD not cross multiply with the right-hand side of the equation. Students are expected to manipulate the lefthand side of the equation until it looks like the expression on the right hand side.

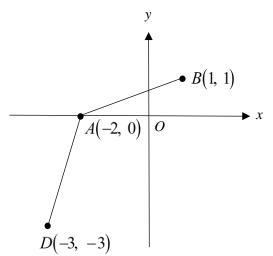
6. [*Maximum mark:* 9]

Given that the roots of the quadratic equation $3x^2 - 2x - 3 = 0$ are α and β .

(a) State the value of $\alpha + \beta$ and of $\alpha\beta$. [2 marks]

(**b**) Show that
$$\alpha^2 + \beta^2 = \frac{22}{9}$$
. [2 marks]

(c) Find the quadratic equation with roots $\alpha + 2\beta$ and $2\alpha + \beta$.


(a)
$$3x^2 - 2x - 3 = 0$$

 $x^2 - \frac{2}{3}x - 1 = 0$
 $\therefore \alpha + \beta = \frac{2}{3}, \ \alpha\beta = -1.$
(b) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$
 $= \left(\frac{2}{3}\right)^2 - 2(-1)$
 $= \frac{22}{9} \text{ (shown)}$
(c) $(\alpha + 2\beta) + (2\alpha + \beta) = 3\alpha + 3\beta$
 $= 3\left(\frac{2}{3}\right)$
 $(\alpha + 2\beta)(2\alpha + \beta) = 2\alpha^2 + \alpha\beta + 4\alpha\beta + 2\beta^2$
 $= 2(\alpha^2 + \beta^2) + 5(\alpha\beta)$
 $= 2\left(\frac{22}{9}\right) + 5(-1)$
 $= -\frac{1}{9}$
Quadratic equation, $x^2 - 2x - \frac{1}{9} = 0/9x^2 - 18x - 1 = 0$

NOTE: It is a MUST for students to equate the expression to 0! [5 marks]

7. [Maximum mark: 8]

The points A(-2,0), B(1, 1) and D(-3, -3) are the three vertices of a rhombus *ABCD*. *E* is a point at the foot of the perpendicular from *A* to *BD*.

- (a) Find the equation of *CD*. [3 marks]
- (**b**) Find the length of *AE*, leaving your answer in surd form. [3 marks]
- (c) Find the area of the rhombus. [2 marks]

(a) Coordinates of C are (0, -2)
Equation of CD,

$$y - (-3) = \left(\frac{0-1}{-2-1}\right) \left[x - (-3)\right]$$
Use the wrong formula to find gradient

$$y = \frac{1}{3}x - 2$$
(b) Method 1
Coordinates of E

$$= \left(\frac{-3+1}{2}, \frac{-3+1}{2}\right)$$

$$= \frac{1}{2} \begin{vmatrix} 1 & -2 & -3 & 1 \\ 1 & 0 & -3 & 1 \end{vmatrix}$$

$$= (-1, -1)$$

$$= \frac{1}{2} |0 + 6 + (-3) - (-2) - 0 - (-3)|$$
Distance of AE

$$= \sqrt{\left[-1 - (-2)\right]^2 + (-1 - 0)^2}$$
Area of $\Delta ABD = \frac{1}{2} \times AE \times BD$

$$= \sqrt{2} \text{ units}$$

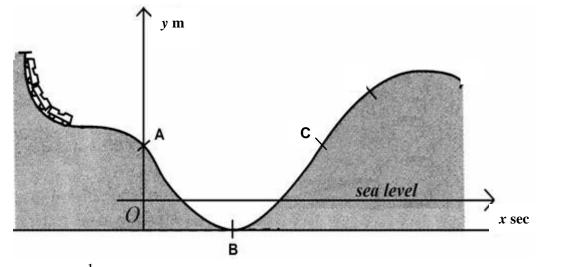
$$4 = \frac{1}{2} \times AE \times \sqrt{(-3-1)^2 + (-3-1)^2}$$
AE = $\frac{8}{\sqrt{32}}$

$$= \frac{2}{\sqrt{2}} \text{ or } \sqrt{2} \text{ units}$$
(c) Area of frombus

$$= \frac{1}{2} \begin{vmatrix} 1 & -2 & -3 & 0 \\ 1 & 0 & -3 & -2 \end{vmatrix}$$

$$= 2 \times \text{ Area of triangle } ABD$$

$$= \frac{1}{2} |0 + 6 + 6 + 0 - (-2) - 0 - 0 - (-2)| \text{ or } 2 \times \frac{1}{2} \times \sqrt{2} \times \sqrt{2(-3-1)^2}$$


$$= 8 \text{ units}^2$$

$$= 8 \text{ units}^2$$

$$= 8 \text{ units}^2$$

ACS(Independent)/Y3IPCoreMathP1/2021/FinalExamination

A roller coaster at an amusement park goes through an underwater tunnel. The track traveled by the roller coaster is shown in the diagram below. The height, *y* metres of the roller coaster above the sea level as it travels from point *A* to point *C* can be modelled by the equation $y = \frac{1}{10}x^2 - 4x + 5$, where *x* is the time in seconds.

(a) Express
$$y = \frac{1}{10}x^2 - 4x + 5$$
 in the form of $y = a(x-h)^2 + k$. [3 marks]

- (b) (i) State the height of the roller coaster above sea level at point *A*. [1 mark]
 - (ii) State the time when the roller coaster reaches the lowest point at *B*. [1 mark]
- (c) Hence, solve y = 0, leaving your answers in the surd form and state what the answers represent.

1 1			[4 marks]		
(a)	$y = \frac{1}{10}x^{2} - 4x + 5$ $= \frac{1}{10}(x^{2} - 40x) + 5$	Did not factorise the expression but change the expression to equation.			
	$= \frac{1}{10} (x - 40x) + 5$ $= \frac{1}{10} (x - 20)^{2} - \frac{1}{10} (-20)^{2} + 5$ $= \frac{1}{10} (x - 20)^{2} - 35$	Missing step in leading to the final answer. (b)(i) can use the original expression given to find			
	$-\frac{10^{-10}}{10^{-10}}$	given to find			
(bi)	The height of the roller coaster above sea level at point <i>A</i> is 5 m.				
(ii)	The time when the roller coaster reaches the lowest point at <i>B</i> is 20 seconds.				

(c)
$$y = 0$$

$$\frac{1}{10}(x-20)^2 - 35 = 0$$

$$(x-20)^2 = 350$$

$$x - 20 = \pm\sqrt{350}$$
Context in the questions as in the *x* values found are referring to the time at the sea level not time taken or points or *x*-intercepts.

$$x = 20 \pm \sqrt{350} \text{ or } x = 20 \pm 5\sqrt{14}$$

$$20 \pm \sqrt{350} \text{ or } 20 \pm 5\sqrt{14} \text{ seconds are the time when the roller coaster is at the sea level.}$$

- **9.** [Maximum mark: 10]
 - (a) Find $\log_2 r$ if $r^x = 16$ and $3^x = 81$. [3 marks]
 - (**b**) Given that $3^p = 8$ and $8^q = 81$, find the value of pq.

(c) Solve for x if
$$(\ln x)^2 - 3(\ln 5)^2 = 2(\ln 5)(\ln x)$$
.

(a)	$\therefore 3^x = 81$					
	$3^x = 3^4$	Did not answer the question by finding the value of				
	$\therefore x = 4$	$\log_2 r$	Did not answer the question by finding the value of $\log_2 r$			
	$\therefore r^x = 16$	-				
	$r^4 = 2^4$	Square-root ar	Square-root any square must have 2 answers			
	$r = \pm 2$					
	$\log_2 r = \log_2 2 \qquad \log_2 r = \log_2 R \ \log_2 r = \log_2 r = \log_2 R \ \log_2 r = \log_2 r = \log_2 R \ \log_2 r = \log_2 r = \log_2 R \ \log_2 r = \log_2 r = \log_2 R \ \log_2 r \ \log_2 r = \log_2 R \ \\log_2 r \ \log_2$	$\log_2 r = \log_2 \left(-2\right) \ \left(NA\right)$				
	=1					
(b)	Given that $3^p = 8$ and $8^q = 81$,					
	$\left(3^p\right)^q = 3^4$	$p = \frac{\lg 8}{\lg 3}, q = \frac{\lg 81}{\lg 8}$		Did not show the stop that		
		8	0	Did not show the step that $81 = 3^4$ or simplify the		
	$3^{pq} = 3^4$ or	$pq = \frac{\lg 8}{\lg 3} \times \frac{\lg 81}{\lg 8}$		logarithm wrongly (penalize 1 method mark)		
		e e				
	$\therefore pq = 4$	$=\frac{1}{\lg 3}$				
	= 4					
(b)	$(\ln x)^{2} - 3(\ln 5)^{2} = 2(\ln 5)(\ln x)$ $(\ln x)^{2} - 2(\ln 5)(\ln x) - 3(\ln 5)^{2} = 0$		Solving the equation as Quadratic equation			
			is the key to solve this question.			
	$(\ln x - 3\ln 5)(\ln x + \ln 5) = 0$		Method marks only awarded to logical and			
	$\ln x - 3\ln 5 = 0 \qquad \text{or}$	$\ln x + \ln 5 = 0$	useful steps or workings shown.			
	$\ln x = 3\ln 5$	$\ln x = -1\ln 5$	Common mi	istakes:		
	$\ln x = \ln 5^3$	$\ln x = \ln 5^{-1}$	$2\ln x - 6\ln$	$5 = 2\ln(5+x)$		
	x = 125	$x = \frac{1}{5}$	$\ln^2 x - 3\ln^2$	$f^2 5 = \ln\left(2 \times 5x\right)$		
(b)	$(\ln x)^{2} - 2(\ln 5)(\ln x) - (\ln x - 3\ln 5)(\ln x + \ln 5)(\ln x - 3\ln 5) = 0 \text{ or } \ln x = 3\ln 5 \ln x = \ln 5^{3}$	$(\ln 5)(\ln x)$ $-3(\ln 5)^{2} = 0$ 5) = 0 $\ln x + \ln 5 = 0$ $\ln x = -1 \ln 5$	is the key to Method mar useful steps Common mi $2 \ln x - 6 \ln x$	equation as Quadratic equations solve this question. ks only awarded to logical and or workings shown. istakes: $5 = 2\ln(5+x)$		

[3 marks]

[4 marks]

10. [Maximum mark: 9]

- (a) Find the range of values of k such that the curve $y = -(x-1)^2 k^2 4k$ is always negative for all real values of x. [4 marks]
- (b) Given that a-b=22 and $\sqrt{a}+\sqrt{b}=11$, find the value of \sqrt{ab} .

 $-(x-1)^2-k^2-4k$ **(a)** Without expansion, students could $=-(x^2-2x+1)-k^2-4k$ not look for the value of a, b and c to substitute into the discriminant $=-x^{2}+2x-k^{2}-4k-1$ formula. Discriminant < 0Some students are unable to link the concept – discriminant. $2^{2}-4(-1)(-k^{2}-4k-1)<0$ By using graph, it will be easier to $4 + 4\left(-k^2 - 4k - 1\right) < 0$ locate the range of k instead of $4 - 4k^2 - 16k - 4 < 0$ separating into 2 factors. [Common mistakes] $4k^2 + 16k > 0$ Only a few students managed to (4k)(k+4) > 0answer using Method 2. k < -4 or k > 0Method 2 For the negative curve to be always negative, $(1, -k^2 - 4k)$ must be the maximum point and $-k^2 - 4k < 0$ -k(k+4) < 0k(k+4) > 0k < -4 or k > 0

[5 marks]

(b)
$$\begin{array}{c} a - b = (\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b}) \\ 22 = 11(\sqrt{a} - \sqrt{b}) \\ \sqrt{a} - \sqrt{b} = 2 \end{array}$$

$$\begin{array}{c} \text{Method } 1(\sqrt{a} + \sqrt{b}) + (\sqrt{a} - \sqrt{b}) = 2\sqrt{a} \\ 11 + 2 = 2\sqrt{a} \\ \sqrt{a} = \frac{13}{2} \\ \sqrt{a} = \frac{13}{2} \\ \sqrt{a} = \frac{13}{2} \\ \frac{11}{2} \\ \frac{117}{4} \\ \frac{11$$

End of Paper